sha_locl.h 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdlib.h>
#include <string.h>

#include <openssl/opensslconf.h>
#include <openssl/sha.h>

#define DATA_ORDER_IS_BIG_ENDIAN

#define HASH_LONG               SHA_LONG
#define HASH_CTX                SHA_CTX
#define HASH_CBLOCK             SHA_CBLOCK
#define HASH_MAKE_STRING(c,s)   do {    \
        unsigned long ll;               \
        ll=(c)->h0; (void)HOST_l2c(ll,(s));     \
        ll=(c)->h1; (void)HOST_l2c(ll,(s));     \
        ll=(c)->h2; (void)HOST_l2c(ll,(s));     \
        ll=(c)->h3; (void)HOST_l2c(ll,(s));     \
        ll=(c)->h4; (void)HOST_l2c(ll,(s));     \
        } while (0)

#define HASH_UPDATE                     SHA1_Update
#define HASH_TRANSFORM                  SHA1_Transform
#define HASH_FINAL                      SHA1_Final
#define HASH_INIT                       SHA1_Init
#define HASH_BLOCK_DATA_ORDER           sha1_block_data_order
#define Xupdate(a,ix,ia,ib,ic,id)       ( (a)=(ia^ib^ic^id),    \
                                          ix=(a)=ROTATE((a),1)  \
                                        )

#ifndef SHA1_ASM
static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
#else
void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
#endif

#include "internal/md32_common.h"

#define INIT_DATA_h0 0x67452301UL
#define INIT_DATA_h1 0xefcdab89UL
#define INIT_DATA_h2 0x98badcfeUL
#define INIT_DATA_h3 0x10325476UL
#define INIT_DATA_h4 0xc3d2e1f0UL

int HASH_INIT(SHA_CTX *c)
{
    memset(c, 0, sizeof(*c));
    c->h0 = INIT_DATA_h0;
    c->h1 = INIT_DATA_h1;
    c->h2 = INIT_DATA_h2;
    c->h3 = INIT_DATA_h3;
    c->h4 = INIT_DATA_h4;
    return 1;
}

#define K_00_19 0x5a827999UL
#define K_20_39 0x6ed9eba1UL
#define K_40_59 0x8f1bbcdcUL
#define K_60_79 0xca62c1d6UL

/*
 * As pointed out by Wei Dai, F() below can be simplified to the code in
 * F_00_19.  Wei attributes these optimizations to Peter Gutmann's SHS code,
 * and he attributes it to Rich Schroeppel.
 *      #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
 * I've just become aware of another tweak to be made, again from Wei Dai,
 * in F_40_59, (x&a)|(y&a) -> (x|y)&a
 */
#define F_00_19(b,c,d)  ((((c) ^ (d)) & (b)) ^ (d))
#define F_20_39(b,c,d)  ((b) ^ (c) ^ (d))
#define F_40_59(b,c,d)  (((b) & (c)) | (((b)|(c)) & (d)))
#define F_60_79(b,c,d)  F_20_39(b,c,d)

#ifndef OPENSSL_SMALL_FOOTPRINT

# define BODY_00_15(i,a,b,c,d,e,f,xi) \
        (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
        (b)=ROTATE((b),30);

# define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
        Xupdate(f,xi,xa,xb,xc,xd); \
        (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
        (b)=ROTATE((b),30);

# define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
        Xupdate(f,xi,xa,xb,xc,xd); \
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
        (b)=ROTATE((b),30);

# define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
        Xupdate(f,xa,xa,xb,xc,xd); \
        (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
        (b)=ROTATE((b),30);

# define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
        Xupdate(f,xa,xa,xb,xc,xd); \
        (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
        (b)=ROTATE((b),30);

# define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
        Xupdate(f,xa,xa,xb,xc,xd); \
        (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
        (b)=ROTATE((b),30);

# ifdef X
#  undef X
# endif
# ifndef MD32_XARRAY
  /*
   * Originally X was an array. As it's automatic it's natural
   * to expect RISC compiler to accommodate at least part of it in
   * the register bank, isn't it? Unfortunately not all compilers
   * "find" this expectation reasonable:-( On order to make such
   * compilers generate better code I replace X[] with a bunch of
   * X0, X1, etc. See the function body below...
   */
#  define X(i)   XX##i
# else
  /*
   * However! Some compilers (most notably HP C) get overwhelmed by
   * that many local variables so that we have to have the way to
   * fall down to the original behavior.
   */
#  define X(i)   XX[i]
# endif

# if !defined(SHA1_ASM)
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
{
    const unsigned char *data = p;
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
#  ifndef MD32_XARRAY
    unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
        XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
#  else
    SHA_LONG XX[16];
#  endif

    A = c->h0;
    B = c->h1;
    C = c->h2;
    D = c->h3;
    E = c->h4;

    for (;;) {
        const union {
            long one;
            char little;
        } is_endian = {
            1
        };

        if (!is_endian.little && sizeof(SHA_LONG) == 4
            && ((size_t)p % 4) == 0) {
            const SHA_LONG *W = (const SHA_LONG *)data;

            X(0) = W[0];
            X(1) = W[1];
            BODY_00_15(0, A, B, C, D, E, T, X(0));
            X(2) = W[2];
            BODY_00_15(1, T, A, B, C, D, E, X(1));
            X(3) = W[3];
            BODY_00_15(2, E, T, A, B, C, D, X(2));
            X(4) = W[4];
            BODY_00_15(3, D, E, T, A, B, C, X(3));
            X(5) = W[5];
            BODY_00_15(4, C, D, E, T, A, B, X(4));
            X(6) = W[6];
            BODY_00_15(5, B, C, D, E, T, A, X(5));
            X(7) = W[7];
            BODY_00_15(6, A, B, C, D, E, T, X(6));
            X(8) = W[8];
            BODY_00_15(7, T, A, B, C, D, E, X(7));
            X(9) = W[9];
            BODY_00_15(8, E, T, A, B, C, D, X(8));
            X(10) = W[10];
            BODY_00_15(9, D, E, T, A, B, C, X(9));
            X(11) = W[11];
            BODY_00_15(10, C, D, E, T, A, B, X(10));
            X(12) = W[12];
            BODY_00_15(11, B, C, D, E, T, A, X(11));
            X(13) = W[13];
            BODY_00_15(12, A, B, C, D, E, T, X(12));
            X(14) = W[14];
            BODY_00_15(13, T, A, B, C, D, E, X(13));
            X(15) = W[15];
            BODY_00_15(14, E, T, A, B, C, D, X(14));
            BODY_00_15(15, D, E, T, A, B, C, X(15));

            data += SHA_CBLOCK;
        } else {
            (void)HOST_c2l(data, l);
            X(0) = l;
            (void)HOST_c2l(data, l);
            X(1) = l;
            BODY_00_15(0, A, B, C, D, E, T, X(0));
            (void)HOST_c2l(data, l);
            X(2) = l;
            BODY_00_15(1, T, A, B, C, D, E, X(1));
            (void)HOST_c2l(data, l);
            X(3) = l;
            BODY_00_15(2, E, T, A, B, C, D, X(2));
            (void)HOST_c2l(data, l);
            X(4) = l;
            BODY_00_15(3, D, E, T, A, B, C, X(3));
            (void)HOST_c2l(data, l);
            X(5) = l;
            BODY_00_15(4, C, D, E, T, A, B, X(4));
            (void)HOST_c2l(data, l);
            X(6) = l;
            BODY_00_15(5, B, C, D, E, T, A, X(5));
            (void)HOST_c2l(data, l);
            X(7) = l;
            BODY_00_15(6, A, B, C, D, E, T, X(6));
            (void)HOST_c2l(data, l);
            X(8) = l;
            BODY_00_15(7, T, A, B, C, D, E, X(7));
            (void)HOST_c2l(data, l);
            X(9) = l;
            BODY_00_15(8, E, T, A, B, C, D, X(8));
            (void)HOST_c2l(data, l);
            X(10) = l;
            BODY_00_15(9, D, E, T, A, B, C, X(9));
            (void)HOST_c2l(data, l);
            X(11) = l;
            BODY_00_15(10, C, D, E, T, A, B, X(10));
            (void)HOST_c2l(data, l);
            X(12) = l;
            BODY_00_15(11, B, C, D, E, T, A, X(11));
            (void)HOST_c2l(data, l);
            X(13) = l;
            BODY_00_15(12, A, B, C, D, E, T, X(12));
            (void)HOST_c2l(data, l);
            X(14) = l;
            BODY_00_15(13, T, A, B, C, D, E, X(13));
            (void)HOST_c2l(data, l);
            X(15) = l;
            BODY_00_15(14, E, T, A, B, C, D, X(14));
            BODY_00_15(15, D, E, T, A, B, C, X(15));
        }

        BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
        BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
        BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
        BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));

        BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
        BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
        BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
        BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
        BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
        BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
        BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
        BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
        BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
        BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
        BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
        BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));

        BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
        BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
        BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
        BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
        BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
        BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
        BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
        BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));

        BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
        BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
        BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
        BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
        BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
        BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
        BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
        BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
        BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
        BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
        BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
        BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
        BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
        BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
        BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
        BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
        BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
        BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
        BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
        BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));

        BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
        BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
        BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
        BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
        BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
        BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
        BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
        BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
        BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
        BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
        BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
        BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
        BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
        BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
        BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
        BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
        BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
        BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
        BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
        BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));

        c->h0 = (c->h0 + E) & 0xffffffffL;
        c->h1 = (c->h1 + T) & 0xffffffffL;
        c->h2 = (c->h2 + A) & 0xffffffffL;
        c->h3 = (c->h3 + B) & 0xffffffffL;
        c->h4 = (c->h4 + C) & 0xffffffffL;

        if (--num == 0)
            break;

        A = c->h0;
        B = c->h1;
        C = c->h2;
        D = c->h3;
        E = c->h4;

    }
}
# endif

#else                           /* OPENSSL_SMALL_FOOTPRINT */

# define BODY_00_15(xi)           do {   \
        T=E+K_00_19+F_00_19(B,C,D);     \
        E=D, D=C, C=ROTATE(B,30), B=A;  \
        A=ROTATE(A,5)+T+xi;         } while(0)

# define BODY_16_19(xa,xb,xc,xd)  do {   \
        Xupdate(T,xa,xa,xb,xc,xd);      \
        T+=E+K_00_19+F_00_19(B,C,D);    \
        E=D, D=C, C=ROTATE(B,30), B=A;  \
        A=ROTATE(A,5)+T;            } while(0)

# define BODY_20_39(xa,xb,xc,xd)  do {   \
        Xupdate(T,xa,xa,xb,xc,xd);      \
        T+=E+K_20_39+F_20_39(B,C,D);    \
        E=D, D=C, C=ROTATE(B,30), B=A;  \
        A=ROTATE(A,5)+T;            } while(0)

# define BODY_40_59(xa,xb,xc,xd)  do {   \
        Xupdate(T,xa,xa,xb,xc,xd);      \
        T+=E+K_40_59+F_40_59(B,C,D);    \
        E=D, D=C, C=ROTATE(B,30), B=A;  \
        A=ROTATE(A,5)+T;            } while(0)

# define BODY_60_79(xa,xb,xc,xd)  do {   \
        Xupdate(T,xa,xa,xb,xc,xd);      \
        T=E+K_60_79+F_60_79(B,C,D);     \
        E=D, D=C, C=ROTATE(B,30), B=A;  \
        A=ROTATE(A,5)+T+xa;         } while(0)

# if !defined(SHA1_ASM)
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
{
    const unsigned char *data = p;
    register unsigned MD32_REG_T A, B, C, D, E, T, l;
    int i;
    SHA_LONG X[16];

    A = c->h0;
    B = c->h1;
    C = c->h2;
    D = c->h3;
    E = c->h4;

    for (;;) {
        for (i = 0; i < 16; i++) {
            (void)HOST_c2l(data, l);
            X[i] = l;
            BODY_00_15(X[i]);
        }
        for (i = 0; i < 4; i++) {
            BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
        }
        for (; i < 24; i++) {
            BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
                       X[(i + 13) & 15]);
        }
        for (i = 0; i < 20; i++) {
            BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
                       X[(i + 5) & 15]);
        }
        for (i = 4; i < 24; i++) {
            BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
                       X[(i + 5) & 15]);
        }

        c->h0 = (c->h0 + A) & 0xffffffffL;
        c->h1 = (c->h1 + B) & 0xffffffffL;
        c->h2 = (c->h2 + C) & 0xffffffffL;
        c->h3 = (c->h3 + D) & 0xffffffffL;
        c->h4 = (c->h4 + E) & 0xffffffffL;

        if (--num == 0)
            break;

        A = c->h0;
        B = c->h1;
        C = c->h2;
        D = c->h3;
        E = c->h4;

    }
}
# endif

#endif