bn_gcd.c 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include "internal/cryptlib.h"
#include "bn_lcl.h"

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);

int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
{
    BIGNUM *a, *b, *t;
    int ret = 0;

    bn_check_top(in_a);
    bn_check_top(in_b);

    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    if (b == NULL)
        goto err;

    if (BN_copy(a, in_a) == NULL)
        goto err;
    if (BN_copy(b, in_b) == NULL)
        goto err;
    a->neg = 0;
    b->neg = 0;

    if (BN_cmp(a, b) < 0) {
        t = a;
        a = b;
        b = t;
    }
    t = euclid(a, b);
    if (t == NULL)
        goto err;

    if (BN_copy(r, t) == NULL)
        goto err;
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return ret;
}

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
{
    BIGNUM *t;
    int shifts = 0;

    bn_check_top(a);
    bn_check_top(b);

    /* 0 <= b <= a */
    while (!BN_is_zero(b)) {
        /* 0 < b <= a */

        if (BN_is_odd(a)) {
            if (BN_is_odd(b)) {
                if (!BN_sub(a, a, b))
                    goto err;
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a odd - b even */

                if (!BN_rshift1(b, b))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            }
        } else {                /* a is even */

            if (BN_is_odd(b)) {
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a even - b even */

                if (!BN_rshift1(a, a))
                    goto err;
                if (!BN_rshift1(b, b))
                    goto err;
                shifts++;
            }
        }
        /* 0 <= b <= a */
    }

    if (shifts) {
        if (!BN_lshift(a, a, shifts))
            goto err;
    }
    bn_check_top(a);
    return a;
 err:
    return NULL;
}

/* solves ax == 1 (mod n) */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx);

BIGNUM *BN_mod_inverse(BIGNUM *in,
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
    BIGNUM *rv;
    int noinv;
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
    if (noinv)
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
    return rv;
}

BIGNUM *int_bn_mod_inverse(BIGNUM *in,
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
                           int *pnoinv)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    /* This is invalid input so we don't worry about constant time here */
    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
        if (pnoinv != NULL)
            *pnoinv = 1;
        return NULL;
    }

    if (pnoinv != NULL)
        *pnoinv = 0;

    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
        return BN_mod_inverse_no_branch(in, a, n, ctx);
    }

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        if (!BN_nnmod(B, B, A, ctx))
            goto err;
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
        /*
         * Binary inversion algorithm; requires odd modulus. This is faster
         * than the general algorithm if the modulus is sufficiently small
         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
         * systems)
         */
        int shift;

        while (!BN_is_zero(B)) {
            /*-
             *      0 < B < |n|,
             *      0 < A <= |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|)
             */

            /*
             * Now divide B by the maximum possible power of two in the
             * integers, and divide X by the same value mod |n|. When we're
             * done, (1) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
                shift++;

                if (BN_is_odd(X)) {
                    if (!BN_uadd(X, X, n))
                        goto err;
                }
                /*
                 * now X is even, so we can easily divide it by two
                 */
                if (!BN_rshift1(X, X))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(B, B, shift))
                    goto err;
            }

            /*
             * Same for A and Y.  Afterwards, (2) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
                shift++;

                if (BN_is_odd(Y)) {
                    if (!BN_uadd(Y, Y, n))
                        goto err;
                }
                /* now Y is even */
                if (!BN_rshift1(Y, Y))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(A, A, shift))
                    goto err;
            }

            /*-
             * We still have (1) and (2).
             * Both  A  and  B  are odd.
             * The following computations ensure that
             *
             *     0 <= B < |n|,
             *      0 < A < |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|),
             *
             * and that either  A  or  B  is even in the next iteration.
             */
            if (BN_ucmp(B, A) >= 0) {
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
                if (!BN_uadd(X, X, Y))
                    goto err;
                /*
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
                 * actually makes the algorithm slower
                 */
                if (!BN_usub(B, B, A))
                    goto err;
            } else {
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
                if (!BN_uadd(Y, Y, X))
                    goto err;
                /*
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
                 */
                if (!BN_usub(A, A, B))
                    goto err;
            }
        }
    } else {
        /* general inversion algorithm */

        while (!BN_is_zero(B)) {
            BIGNUM *tmp;

            /*-
             *      0 < B < A,
             * (*) -sign*X*a  ==  B   (mod |n|),
             *      sign*Y*a  ==  A   (mod |n|)
             */

            /* (D, M) := (A/B, A%B) ... */
            if (BN_num_bits(A) == BN_num_bits(B)) {
                if (!BN_one(D))
                    goto err;
                if (!BN_sub(M, A, B))
                    goto err;
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
                /* A/B is 1, 2, or 3 */
                if (!BN_lshift1(T, B))
                    goto err;
                if (BN_ucmp(A, T) < 0) {
                    /* A < 2*B, so D=1 */
                    if (!BN_one(D))
                        goto err;
                    if (!BN_sub(M, A, B))
                        goto err;
                } else {
                    /* A >= 2*B, so D=2 or D=3 */
                    if (!BN_sub(M, A, T))
                        goto err;
                    if (!BN_add(D, T, B))
                        goto err; /* use D (:= 3*B) as temp */
                    if (BN_ucmp(A, D) < 0) {
                        /* A < 3*B, so D=2 */
                        if (!BN_set_word(D, 2))
                            goto err;
                        /*
                         * M (= A - 2*B) already has the correct value
                         */
                    } else {
                        /* only D=3 remains */
                        if (!BN_set_word(D, 3))
                            goto err;
                        /*
                         * currently M = A - 2*B, but we need M = A - 3*B
                         */
                        if (!BN_sub(M, M, B))
                            goto err;
                    }
                }
            } else {
                if (!BN_div(D, M, A, B, ctx))
                    goto err;
            }

            /*-
             * Now
             *      A = D*B + M;
             * thus we have
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
             */

            tmp = A;    /* keep the BIGNUM object, the value does not matter */

            /* (A, B) := (B, A mod B) ... */
            A = B;
            B = M;
            /* ... so we have  0 <= B < A  again */

            /*-
             * Since the former  M  is now  B  and the former  B  is now  A,
             * (**) translates into
             *       sign*Y*a  ==  D*A + B    (mod |n|),
             * i.e.
             *       sign*Y*a - D*A  ==  B    (mod |n|).
             * Similarly, (*) translates into
             *      -sign*X*a  ==  A          (mod |n|).
             *
             * Thus,
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
             * i.e.
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
             *
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
             *      -sign*X*a  ==  B   (mod |n|),
             *       sign*Y*a  ==  A   (mod |n|).
             * Note that  X  and  Y  stay non-negative all the time.
             */

            /*
             * most of the time D is very small, so we can optimize tmp := D*X+Y
             */
            if (BN_is_one(D)) {
                if (!BN_add(tmp, X, Y))
                    goto err;
            } else {
                if (BN_is_word(D, 2)) {
                    if (!BN_lshift1(tmp, X))
                        goto err;
                } else if (BN_is_word(D, 4)) {
                    if (!BN_lshift(tmp, X, 2))
                        goto err;
                } else if (D->top == 1) {
                    if (!BN_copy(tmp, X))
                        goto err;
                    if (!BN_mul_word(tmp, D->d[0]))
                        goto err;
                } else {
                    if (!BN_mul(tmp, D, X, ctx))
                        goto err;
                }
                if (!BN_add(tmp, tmp, Y))
                    goto err;
            }

            M = Y;      /* keep the BIGNUM object, the value does not matter */
            Y = X;
            X = tmp;
            sign = -sign;
        }
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        if (pnoinv)
            *pnoinv = 1;
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return ret;
}

/*
 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
 * not contain branches that may leak sensitive information.
 */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;

    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
         {
            BIGNUM local_B;
            bn_init(&local_B);
            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
            if (!BN_nnmod(B, &local_B, A, ctx))
                goto err;
            /* Ensure local_B goes out of scope before any further use of B */
        }
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    while (!BN_is_zero(B)) {
        BIGNUM *tmp;

        /*-
         *      0 < B < A,
         * (*) -sign*X*a  ==  B   (mod |n|),
         *      sign*Y*a  ==  A   (mod |n|)
         */

        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        {
            BIGNUM local_A;
            bn_init(&local_A);
            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);

            /* (D, M) := (A/B, A%B) ... */
            if (!BN_div(D, M, &local_A, B, ctx))
                goto err;
            /* Ensure local_A goes out of scope before any further use of A */
        }

        /*-
         * Now
         *      A = D*B + M;
         * thus we have
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
         */

        tmp = A;                /* keep the BIGNUM object, the value does not
                                 * matter */

        /* (A, B) := (B, A mod B) ... */
        A = B;
        B = M;
        /* ... so we have  0 <= B < A  again */

        /*-
         * Since the former  M  is now  B  and the former  B  is now  A,
         * (**) translates into
         *       sign*Y*a  ==  D*A + B    (mod |n|),
         * i.e.
         *       sign*Y*a - D*A  ==  B    (mod |n|).
         * Similarly, (*) translates into
         *      -sign*X*a  ==  A          (mod |n|).
         *
         * Thus,
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
         * i.e.
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
         *
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
         *      -sign*X*a  ==  B   (mod |n|),
         *       sign*Y*a  ==  A   (mod |n|).
         * Note that  X  and  Y  stay non-negative all the time.
         */

        if (!BN_mul(tmp, D, X, ctx))
            goto err;
        if (!BN_add(tmp, tmp, Y))
            goto err;

        M = Y;                  /* keep the BIGNUM object, the value does not
                                 * matter */
        Y = X;
        X = tmp;
        sign = -sign;
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return ret;
}