bn_mont.c 12.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * Details about Montgomery multiplication algorithms can be found at
 * http://security.ece.orst.edu/publications.html, e.g.
 * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
 * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
 */

#include "internal/cryptlib.h"
#include "bn_lcl.h"

#define MONT_WORD               /* use the faster word-based algorithm */

#ifdef MONT_WORD
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
#endif

int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                          BN_MONT_CTX *mont, BN_CTX *ctx)
{
    int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);

    bn_correct_top(r);
    bn_check_top(r);

    return ret;
}

int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                          BN_MONT_CTX *mont, BN_CTX *ctx)
{
    BIGNUM *tmp;
    int ret = 0;
    int num = mont->N.top;

#if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
    if (num > 1 && a->top == num && b->top == num) {
        if (bn_wexpand(r, num) == NULL)
            return 0;
        if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
            r->neg = a->neg ^ b->neg;
            r->top = num;
            r->flags |= BN_FLG_FIXED_TOP;
            return 1;
        }
    }
#endif

    if ((a->top + b->top) > 2 * num)
        return 0;

    BN_CTX_start(ctx);
    tmp = BN_CTX_get(ctx);
    if (tmp == NULL)
        goto err;

    bn_check_top(tmp);
    if (a == b) {
        if (!bn_sqr_fixed_top(tmp, a, ctx))
            goto err;
    } else {
        if (!bn_mul_fixed_top(tmp, a, b, ctx))
            goto err;
    }
    /* reduce from aRR to aR */
#ifdef MONT_WORD
    if (!bn_from_montgomery_word(r, tmp, mont))
        goto err;
#else
    if (!BN_from_montgomery(r, tmp, mont, ctx))
        goto err;
#endif
    ret = 1;
 err:
    BN_CTX_end(ctx);
    return ret;
}

#ifdef MONT_WORD
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
{
    BIGNUM *n;
    BN_ULONG *ap, *np, *rp, n0, v, carry;
    int nl, max, i;
    unsigned int rtop;

    n = &(mont->N);
    nl = n->top;
    if (nl == 0) {
        ret->top = 0;
        return 1;
    }

    max = (2 * nl);             /* carry is stored separately */
    if (bn_wexpand(r, max) == NULL)
        return 0;

    r->neg ^= n->neg;
    np = n->d;
    rp = r->d;

    /* clear the top words of T */
    for (rtop = r->top, i = 0; i < max; i++) {
        v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
        rp[i] &= v;
    }

    r->top = max;
    r->flags |= BN_FLG_FIXED_TOP;
    n0 = mont->n0[0];

    /*
     * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
     * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
     * includes |carry| which is stored separately.
     */
    for (carry = 0, i = 0; i < nl; i++, rp++) {
        v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
        v = (v + carry + rp[nl]) & BN_MASK2;
        carry |= (v != rp[nl]);
        carry &= (v <= rp[nl]);
        rp[nl] = v;
    }

    if (bn_wexpand(ret, nl) == NULL)
        return 0;
    ret->top = nl;
    ret->flags |= BN_FLG_FIXED_TOP;
    ret->neg = r->neg;

    rp = ret->d;

    /*
     * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
     * includes |carry| which is stored separately.
     */
    ap = &(r->d[nl]);

    carry -= bn_sub_words(rp, ap, np, nl);
    /*
     * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
     * |carry| cannot be 1. That would imply the subtraction did not fit in
     * |nl| words, and we know at most one subtraction is needed.
     */
    for (i = 0; i < nl; i++) {
        rp[i] = (carry & ap[i]) | (~carry & rp[i]);
        ap[i] = 0;
    }

    return 1;
}
#endif                          /* MONT_WORD */

int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
                       BN_CTX *ctx)
{
    int retn;

    retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
    bn_correct_top(ret);
    bn_check_top(ret);

    return retn;
}

int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
                           BN_CTX *ctx)
{
    int retn = 0;
#ifdef MONT_WORD
    BIGNUM *t;

    BN_CTX_start(ctx);
    if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
        retn = bn_from_montgomery_word(ret, t, mont);
    }
    BN_CTX_end(ctx);
#else                           /* !MONT_WORD */
    BIGNUM *t1, *t2;

    BN_CTX_start(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    if (t2 == NULL)
        goto err;

    if (!BN_copy(t1, a))
        goto err;
    BN_mask_bits(t1, mont->ri);

    if (!BN_mul(t2, t1, &mont->Ni, ctx))
        goto err;
    BN_mask_bits(t2, mont->ri);

    if (!BN_mul(t1, t2, &mont->N, ctx))
        goto err;
    if (!BN_add(t2, a, t1))
        goto err;
    if (!BN_rshift(ret, t2, mont->ri))
        goto err;

    if (BN_ucmp(ret, &(mont->N)) >= 0) {
        if (!BN_usub(ret, ret, &(mont->N)))
            goto err;
    }
    retn = 1;
    bn_check_top(ret);
 err:
    BN_CTX_end(ctx);
#endif                          /* MONT_WORD */
    return retn;
}

int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
                         BN_CTX *ctx)
{
    return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
}

BN_MONT_CTX *BN_MONT_CTX_new(void)
{
    BN_MONT_CTX *ret;

    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    BN_MONT_CTX_init(ret);
    ret->flags = BN_FLG_MALLOCED;
    return ret;
}

void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
{
    ctx->ri = 0;
    bn_init(&ctx->RR);
    bn_init(&ctx->N);
    bn_init(&ctx->Ni);
    ctx->n0[0] = ctx->n0[1] = 0;
    ctx->flags = 0;
}

void BN_MONT_CTX_free(BN_MONT_CTX *mont)
{
    if (mont == NULL)
        return;
    BN_clear_free(&mont->RR);
    BN_clear_free(&mont->N);
    BN_clear_free(&mont->Ni);
    if (mont->flags & BN_FLG_MALLOCED)
        OPENSSL_free(mont);
}

int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
{
    int i, ret = 0;
    BIGNUM *Ri, *R;

    if (BN_is_zero(mod))
        return 0;

    BN_CTX_start(ctx);
    if ((Ri = BN_CTX_get(ctx)) == NULL)
        goto err;
    R = &(mont->RR);            /* grab RR as a temp */
    if (!BN_copy(&(mont->N), mod))
        goto err;               /* Set N */
    if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
        BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
    mont->N.neg = 0;

#ifdef MONT_WORD
    {
        BIGNUM tmod;
        BN_ULONG buf[2];

        bn_init(&tmod);
        tmod.d = buf;
        tmod.dmax = 2;
        tmod.neg = 0;

        if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
            BN_set_flags(&tmod, BN_FLG_CONSTTIME);

        mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;

# if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
        /*
         * Only certain BN_BITS2<=32 platforms actually make use of n0[1],
         * and we could use the #else case (with a shorter R value) for the
         * others.  However, currently only the assembler files do know which
         * is which.
         */

        BN_zero(R);
        if (!(BN_set_bit(R, 2 * BN_BITS2)))
            goto err;

        tmod.top = 0;
        if ((buf[0] = mod->d[0]))
            tmod.top = 1;
        if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
            tmod.top = 2;

        if (BN_is_one(&tmod))
            BN_zero(Ri);
        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
            goto err;
        if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
            goto err;           /* R*Ri */
        if (!BN_is_zero(Ri)) {
            if (!BN_sub_word(Ri, 1))
                goto err;
        } else {                /* if N mod word size == 1 */

            if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
                goto err;
            /* Ri-- (mod double word size) */
            Ri->neg = 0;
            Ri->d[0] = BN_MASK2;
            Ri->d[1] = BN_MASK2;
            Ri->top = 2;
        }
        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
            goto err;
        /*
         * Ni = (R*Ri-1)/N, keep only couple of least significant words:
         */
        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
        mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
# else
        BN_zero(R);
        if (!(BN_set_bit(R, BN_BITS2)))
            goto err;           /* R */

        buf[0] = mod->d[0];     /* tmod = N mod word size */
        buf[1] = 0;
        tmod.top = buf[0] != 0 ? 1 : 0;
        /* Ri = R^-1 mod N */
        if (BN_is_one(&tmod))
            BN_zero(Ri);
        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
            goto err;
        if (!BN_lshift(Ri, Ri, BN_BITS2))
            goto err;           /* R*Ri */
        if (!BN_is_zero(Ri)) {
            if (!BN_sub_word(Ri, 1))
                goto err;
        } else {                /* if N mod word size == 1 */

            if (!BN_set_word(Ri, BN_MASK2))
                goto err;       /* Ri-- (mod word size) */
        }
        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
            goto err;
        /*
         * Ni = (R*Ri-1)/N, keep only least significant word:
         */
        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
        mont->n0[1] = 0;
# endif
    }
#else                           /* !MONT_WORD */
    {                           /* bignum version */
        mont->ri = BN_num_bits(&mont->N);
        BN_zero(R);
        if (!BN_set_bit(R, mont->ri))
            goto err;           /* R = 2^ri */
        /* Ri = R^-1 mod N */
        if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
            goto err;
        if (!BN_lshift(Ri, Ri, mont->ri))
            goto err;           /* R*Ri */
        if (!BN_sub_word(Ri, 1))
            goto err;
        /*
         * Ni = (R*Ri-1) / N
         */
        if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
            goto err;
    }
#endif

    /* setup RR for conversions */
    BN_zero(&(mont->RR));
    if (!BN_set_bit(&(mont->RR), mont->ri * 2))
        goto err;
    if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
        goto err;

    for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
        mont->RR.d[i] = 0;
    mont->RR.top = ret;
    mont->RR.flags |= BN_FLG_FIXED_TOP;

    ret = 1;
 err:
    BN_CTX_end(ctx);
    return ret;
}

BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
{
    if (to == from)
        return to;

    if (!BN_copy(&(to->RR), &(from->RR)))
        return NULL;
    if (!BN_copy(&(to->N), &(from->N)))
        return NULL;
    if (!BN_copy(&(to->Ni), &(from->Ni)))
        return NULL;
    to->ri = from->ri;
    to->n0[0] = from->n0[0];
    to->n0[1] = from->n0[1];
    return to;
}

BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
                                    const BIGNUM *mod, BN_CTX *ctx)
{
    BN_MONT_CTX *ret;

    CRYPTO_THREAD_read_lock(lock);
    ret = *pmont;
    CRYPTO_THREAD_unlock(lock);
    if (ret)
        return ret;

    /*
     * We don't want to serialise globally while doing our lazy-init math in
     * BN_MONT_CTX_set. That punishes threads that are doing independent
     * things. Instead, punish the case where more than one thread tries to
     * lazy-init the same 'pmont', by having each do the lazy-init math work
     * independently and only use the one from the thread that wins the race
     * (the losers throw away the work they've done).
     */
    ret = BN_MONT_CTX_new();
    if (ret == NULL)
        return NULL;
    if (!BN_MONT_CTX_set(ret, mod, ctx)) {
        BN_MONT_CTX_free(ret);
        return NULL;
    }

    /* The locked compare-and-set, after the local work is done. */
    CRYPTO_THREAD_write_lock(lock);
    if (*pmont) {
        BN_MONT_CTX_free(ret);
        ret = *pmont;
    } else
        *pmont = ret;
    CRYPTO_THREAD_unlock(lock);
    return ret;
}