bn_prime.c 12.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include "bn_lcl.h"

/*
 * The quick sieve algorithm approach to weeding out primes is Philip
 * Zimmermann's, as implemented in PGP.  I have had a read of his comments
 * and implemented my own version.
 */
#include "bn_prime.h"

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
                   const BIGNUM *a1_odd, int k, BN_CTX *ctx,
                   BN_MONT_CTX *mont);
static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
                                  const BIGNUM *add, const BIGNUM *rem,
                                  BN_CTX *ctx);

int BN_GENCB_call(BN_GENCB *cb, int a, int b)
{
    /* No callback means continue */
    if (!cb)
        return 1;
    switch (cb->ver) {
    case 1:
        /* Deprecated-style callbacks */
        if (!cb->cb.cb_1)
            return 1;
        cb->cb.cb_1(a, b, cb->arg);
        return 1;
    case 2:
        /* New-style callbacks */
        return cb->cb.cb_2(a, b, cb);
    default:
        break;
    }
    /* Unrecognised callback type */
    return 0;
}

int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
                         const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
{
    BIGNUM *t;
    int found = 0;
    int i, j, c1 = 0;
    BN_CTX *ctx = NULL;
    prime_t *mods = NULL;
    int checks = BN_prime_checks_for_size(bits);

    if (bits < 2) {
        /* There are no prime numbers this small. */
        BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
        return 0;
    } else if (bits == 2 && safe) {
        /* The smallest safe prime (7) is three bits. */
        BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
        return 0;
    }

    mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
    if (mods == NULL)
        goto err;

    ctx = BN_CTX_new();
    if (ctx == NULL)
        goto err;
    BN_CTX_start(ctx);
    t = BN_CTX_get(ctx);
    if (t == NULL)
        goto err;
 loop:
    /* make a random number and set the top and bottom bits */
    if (add == NULL) {
        if (!probable_prime(ret, bits, mods))
            goto err;
    } else {
        if (safe) {
            if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
                goto err;
        } else {
            if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
                goto err;
        }
    }

    if (!BN_GENCB_call(cb, 0, c1++))
        /* aborted */
        goto err;

    if (!safe) {
        i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
        if (i == -1)
            goto err;
        if (i == 0)
            goto loop;
    } else {
        /*
         * for "safe prime" generation, check that (p-1)/2 is prime. Since a
         * prime is odd, We just need to divide by 2
         */
        if (!BN_rshift1(t, ret))
            goto err;

        for (i = 0; i < checks; i++) {
            j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
            if (j == -1)
                goto err;
            if (j == 0)
                goto loop;

            j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
            if (j == -1)
                goto err;
            if (j == 0)
                goto loop;

            if (!BN_GENCB_call(cb, 2, c1 - 1))
                goto err;
            /* We have a safe prime test pass */
        }
    }
    /* we have a prime :-) */
    found = 1;
 err:
    OPENSSL_free(mods);
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    bn_check_top(ret);
    return found;
}

int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
                   BN_GENCB *cb)
{
    return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
}

int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
                            int do_trial_division, BN_GENCB *cb)
{
    int i, j, ret = -1;
    int k;
    BN_CTX *ctx = NULL;
    BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
    BN_MONT_CTX *mont = NULL;

    /* Take care of the really small primes 2 & 3 */
    if (BN_is_word(a, 2) || BN_is_word(a, 3))
        return 1;

    /* Check odd and bigger than 1 */
    if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
        return 0;

    if (checks == BN_prime_checks)
        checks = BN_prime_checks_for_size(BN_num_bits(a));

    /* first look for small factors */
    if (do_trial_division) {
        for (i = 1; i < NUMPRIMES; i++) {
            BN_ULONG mod = BN_mod_word(a, primes[i]);
            if (mod == (BN_ULONG)-1)
                goto err;
            if (mod == 0)
                return BN_is_word(a, primes[i]);
        }
        if (!BN_GENCB_call(cb, 1, -1))
            goto err;
    }

    if (ctx_passed != NULL)
        ctx = ctx_passed;
    else if ((ctx = BN_CTX_new()) == NULL)
        goto err;
    BN_CTX_start(ctx);

    A1 = BN_CTX_get(ctx);
    A3 = BN_CTX_get(ctx);
    A1_odd = BN_CTX_get(ctx);
    check = BN_CTX_get(ctx);
    if (check == NULL)
        goto err;

    /* compute A1 := a - 1 */
    if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
        goto err;
    /* compute A3 := a - 3 */
    if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
        goto err;

    /* write  A1  as  A1_odd * 2^k */
    k = 1;
    while (!BN_is_bit_set(A1, k))
        k++;
    if (!BN_rshift(A1_odd, A1, k))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL)
        goto err;
    if (!BN_MONT_CTX_set(mont, a, ctx))
        goto err;

    for (i = 0; i < checks; i++) {
        /* 1 < check < a-1 */
        if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
            goto err;

        j = witness(check, a, A1, A1_odd, k, ctx, mont);
        if (j == -1)
            goto err;
        if (j) {
            ret = 0;
            goto err;
        }
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    ret = 1;
 err:
    if (ctx != NULL) {
        BN_CTX_end(ctx);
        if (ctx_passed == NULL)
            BN_CTX_free(ctx);
    }
    BN_MONT_CTX_free(mont);

    return ret;
}

static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
                   const BIGNUM *a1_odd, int k, BN_CTX *ctx,
                   BN_MONT_CTX *mont)
{
    if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
        return -1;
    if (BN_is_one(w))
        return 0;               /* probably prime */
    if (BN_cmp(w, a1) == 0)
        return 0;               /* w == -1 (mod a), 'a' is probably prime */
    while (--k) {
        if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
            return -1;
        if (BN_is_one(w))
            return 1;           /* 'a' is composite, otherwise a previous 'w'
                                 * would have been == -1 (mod 'a') */
        if (BN_cmp(w, a1) == 0)
            return 0;           /* w == -1 (mod a), 'a' is probably prime */
    }
    /*
     * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
     * it is neither -1 nor +1 -- so 'a' cannot be prime
     */
    bn_check_top(w);
    return 1;
}

static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
{
    int i;
    BN_ULONG delta;
    BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
    char is_single_word = bits <= BN_BITS2;

 again:
    /* TODO: Not all primes are private */
    if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
        return 0;
    /* we now have a random number 'rnd' to test. */
    for (i = 1; i < NUMPRIMES; i++) {
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
        if (mod == (BN_ULONG)-1)
            return 0;
        mods[i] = (prime_t) mod;
    }
    /*
     * If bits is so small that it fits into a single word then we
     * additionally don't want to exceed that many bits.
     */
    if (is_single_word) {
        BN_ULONG size_limit;

        if (bits == BN_BITS2) {
            /*
             * Shifting by this much has undefined behaviour so we do it a
             * different way
             */
            size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
        } else {
            size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
        }
        if (size_limit < maxdelta)
            maxdelta = size_limit;
    }
    delta = 0;
 loop:
    if (is_single_word) {
        BN_ULONG rnd_word = BN_get_word(rnd);

        /*-
         * In the case that the candidate prime is a single word then
         * we check that:
         *   1) It's greater than primes[i] because we shouldn't reject
         *      3 as being a prime number because it's a multiple of
         *      three.
         *   2) That it's not a multiple of a known prime. We don't
         *      check that rnd-1 is also coprime to all the known
         *      primes because there aren't many small primes where
         *      that's true.
         */
        for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
            if ((mods[i] + delta) % primes[i] == 0) {
                delta += 2;
                if (delta > maxdelta)
                    goto again;
                goto loop;
            }
        }
    } else {
        for (i = 1; i < NUMPRIMES; i++) {
            /*
             * check that rnd is not a prime and also that gcd(rnd-1,primes)
             * == 1 (except for 2)
             */
            if (((mods[i] + delta) % primes[i]) <= 1) {
                delta += 2;
                if (delta > maxdelta)
                    goto again;
                goto loop;
            }
        }
    }
    if (!BN_add_word(rnd, delta))
        return 0;
    if (BN_num_bits(rnd) != bits)
        goto again;
    bn_check_top(rnd);
    return 1;
}

int bn_probable_prime_dh(BIGNUM *rnd, int bits,
                         const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
{
    int i, ret = 0;
    BIGNUM *t1;

    BN_CTX_start(ctx);
    if ((t1 = BN_CTX_get(ctx)) == NULL)
        goto err;

    if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
        goto err;

    /* we need ((rnd-rem) % add) == 0 */

    if (!BN_mod(t1, rnd, add, ctx))
        goto err;
    if (!BN_sub(rnd, rnd, t1))
        goto err;
    if (rem == NULL) {
        if (!BN_add_word(rnd, 1))
            goto err;
    } else {
        if (!BN_add(rnd, rnd, rem))
            goto err;
    }

    /* we now have a random number 'rand' to test. */

 loop:
    for (i = 1; i < NUMPRIMES; i++) {
        /* check that rnd is a prime */
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
        if (mod == (BN_ULONG)-1)
            goto err;
        if (mod <= 1) {
            if (!BN_add(rnd, rnd, add))
                goto err;
            goto loop;
        }
    }
    ret = 1;

 err:
    BN_CTX_end(ctx);
    bn_check_top(rnd);
    return ret;
}

static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
                                  const BIGNUM *rem, BN_CTX *ctx)
{
    int i, ret = 0;
    BIGNUM *t1, *qadd, *q;

    bits--;
    BN_CTX_start(ctx);
    t1 = BN_CTX_get(ctx);
    q = BN_CTX_get(ctx);
    qadd = BN_CTX_get(ctx);
    if (qadd == NULL)
        goto err;

    if (!BN_rshift1(qadd, padd))
        goto err;

    if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
        goto err;

    /* we need ((rnd-rem) % add) == 0 */
    if (!BN_mod(t1, q, qadd, ctx))
        goto err;
    if (!BN_sub(q, q, t1))
        goto err;
    if (rem == NULL) {
        if (!BN_add_word(q, 1))
            goto err;
    } else {
        if (!BN_rshift1(t1, rem))
            goto err;
        if (!BN_add(q, q, t1))
            goto err;
    }

    /* we now have a random number 'rand' to test. */
    if (!BN_lshift1(p, q))
        goto err;
    if (!BN_add_word(p, 1))
        goto err;

 loop:
    for (i = 1; i < NUMPRIMES; i++) {
        /* check that p and q are prime */
        /*
         * check that for p and q gcd(p-1,primes) == 1 (except for 2)
         */
        BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]);
        BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]);
        if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1)
            goto err;
        if (pmod == 0 || qmod == 0) {
            if (!BN_add(p, p, padd))
                goto err;
            if (!BN_add(q, q, qadd))
                goto err;
            goto loop;
        }
    }
    ret = 1;

 err:
    BN_CTX_end(ctx);
    bn_check_top(p);
    return ret;
}