simple_convnet4.py
5.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys, os
sys.path.append(os.pardir)
import pickle
import numpy as cp
import numpy as np
from collections import OrderedDict
from layers import *
class SimpleConvNet:
def __init__(self, input_dim=(3, 32, 32),
conv_param={'filter_num':(32, 32, 64), 'filter_size':3, 'pad':1, 'stride':1},
hidden_size=512, output_size=10, weight_init_std=0.01, pretrained=False):
filter_num = conv_param['filter_num']
filter_size = conv_param['filter_size']
filter_pad = conv_param['pad']
filter_stride = conv_param['stride']
input_size = input_dim[1]
conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
conv_data_size = int(filter_num[0] * conv_output_size * conv_output_size )
pool1_output_size = int(filter_num[1] * (conv_output_size/2) * (conv_output_size/2))
pool2_output_size = int(filter_num[2] * (conv_output_size/4) * (conv_output_size/4))
pool3_output_size = int(filter_num[2] * (conv_output_size/8) * (conv_output_size/8))
self.params = {}
if pretrained:
weights = self.load_weights()
self.params['W1'] = cp.array(weights['W1'], dtype=np.float32)
self.params['W2'] = cp.array(weights['W2'], dtype=np.float32)
self.params['W3'] = cp.array(weights['W3'], dtype=np.float32)
self.params['W4'] = cp.array(weights['W4'], dtype=np.float32)
self.params['W5'] = cp.array(weights['W5'], dtype=np.float32)
self.params['W6'] = cp.array(weights['W6'], dtype=np.float32)
self.params['W7'] = cp.array(weights['W7'], dtype=np.float32)
else:
self.params['W1'] = cp.array( weight_init_std * \
cp.random.randn(filter_num[0], input_dim[0], filter_size, filter_size), dtype=np.float32)
self.params['W2'] = cp.array( weight_init_std * \
cp.random.randn(filter_num[1], filter_num[0], 1, 1), dtype=np.float32)
self.params['W3'] = cp.array( weight_init_std * \
cp.random.randn(filter_num[1], 1, filter_size, filter_size), dtype=np.float32)
self.params['W4'] = cp.array( weight_init_std * \
cp.random.randn(filter_num[2], filter_num[1], 1, 1), dtype=np.float32)
self.params['W5'] = cp.array( weight_init_std * \
cp.random.randn(filter_num[2], 1, filter_size, filter_size), dtype=np.float32)
self.params['W6'] = cp.array( weight_init_std * \
cp.random.randn(pool3_output_size, hidden_size), dtype=np.float32)
self.params['W7'] = cp.array( weight_init_std * \
cp.random.randn(hidden_size, output_size), dtype=np.float32)
self.layers = OrderedDict()
self.layers['Conv1'] = Convolution(self.params['W1'],
conv_param['stride'], conv_param['pad'])
self.layers['LightNorm1'] = LightNormalization()
self.layers['Relu1'] = Relu()
self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
self.layers['Conv2'] = Convolution(self.params['W2'],
1, 0)
self.layers['LightNorm2'] = LightNormalization()
self.layers['Relu2'] = Relu()
self.layers['Conv3'] = DW_Convolution(self.params['W3'],
conv_param['stride'], conv_param['pad'])
self.layers['LightNorm3'] = LightNormalization()
self.layers['Relu3'] = Relu()
self.layers['Pool2'] = Pooling(pool_h=2, pool_w=2, stride=2)
self.layers['Conv4'] = Convolution(self.params['W4'],
1, 0)
self.layers['LightNorm4'] = LightNormalization()
self.layers['Relu4'] = Relu()
self.layers['Conv5'] = DW_Convolution(self.params['W5'],
conv_param['stride'], conv_param['pad'])
self.layers['LightNorm5'] = LightNormalization()
self.layers['Relu5'] = Relu()
self.layers['Pool3'] = Pooling(pool_h=2, pool_w=2, stride=2)
self.layers['Affine4'] = Affine(self.params['W6'])
self.layers['LightNorm6'] = LightNormalization()
self.layers['Relu6'] = Relu()
self.layers['Affine5'] = Affine(self.params['W7'])
self.last_layer = SoftmaxWithLoss()
def predict(self, x):
for layer in self.layers.values():
x = layer.forward(x)
return x
def accuracy(self, x, t, batch_size=100):
if t.ndim != 1 : t = np.argmax(t, axis=1)
acc = 0.0
for i in range(int(x.shape[0] / batch_size)):
tx = x[i*batch_size:(i+1)*batch_size]
tt = t[i*batch_size:(i+1)*batch_size]
y = self.predict(tx)
y = np.argmax(y, axis=1)
print("answer : ", tt)
print("predict : ", y)
acc += np.sum(y == tt) #numpy
return acc / x.shape[0]
def gradient(self, x, t):
self.loss(x, t)
dout = 1
dout = self.last_layer.backward(dout)
layers = list(self.layers.values())
layers.reverse()
for layer in layers:
dout = layer.backward(dout)
grads = {}
grads['W1'] = self.layers['Conv1'].dW
grads['W2'] = self.layers['Conv2'].dW
grads['W3'] = self.layers['Conv3'].dW
grads['W4'] = self.layers['Conv4'].dW
grads['W5'] = self.layers['Conv5'].dW
grads['W6'] = self.layers['Affine4'].dW
grads['W7'] = self.layers['Affine5'].dW
return grads
# ���� ����ġ �ҷ����� / SimpleconvNet�� pretrained ���� �߰��� : True�� ����ġ �о� ����
def load_weights(self, file_name='params.pkl'):
weights = []
with open(file_name, 'rb') as f:
weights = pickle.load(f)
return weights