util.py 2.87 KB
# coding: utf-8
#import cupy as cp
import numpy as cp
import numpy as np

def DW_im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    """다수의 이미지를 입력받아 2차원 배열로 변환한다(평탄화).

    Parameters
    ----------
    input_data : 4차원 배열 형태의 입력 데이터(이미지 수, 채널 수, 높이, 너비)
    filter_h : 필터의 높이
    filter_w : 필터의 너비
    stride : 스트라이드
    pad : 패딩

    Returns
    -------
    col : 2차원 배열
    """
    N, C, H, W = input_data.shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1

    img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(1, 0, 4, 5, 2, 3).reshape(C, N * out_h * out_w, -1)
    return col


def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    """

    Parameters
    ----------
    input_data : (データ数, チャンネル, 高さ, 幅)の4次元配列からなる入力データ
    filter_h : フィルターの高さ
    filter_w : フィルターの幅
    stride : ストライド
    pad : パディング

    Returns
    -------
    col : 2次元配列
    """
    N, C, H, W = input_data.shape
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1

    img = cp.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')
    col = cp.zeros((N, C, filter_h, filter_w, out_h, out_w), dtype=np.float32)

    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
    return col


def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    """

    Parameters
    ----------
    col :
    input_shape : 入力データの形状(例:(10, 1, 28, 28))
    filter_h :
    filter_w
    stride
    pad

    Returns
    -------

    """
    N, C, H, W = input_shape
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1
    col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)

    img = cp.zeros((N, C, H + 2*pad + stride - 1, W + 2*pad + stride - 1), dtype=np.float32)
    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]