Showing
7 changed files
with
470 additions
and
2 deletions
... | @@ -26,5 +26,17 @@ test하는 부분만 골라내기 위해 python test 코드를 추가(test.py), simple_convnet | ... | @@ -26,5 +26,17 @@ test하는 부분만 골라내기 위해 python test 코드를 추가(test.py), simple_convnet |
26 | 7. python test 폴더 추가 | 26 | 7. python test 폴더 추가 |
27 | python test 폴더에는 test에 필요하지 않은 train 부분을 삭제함 | 27 | python test 폴더에는 test에 필요하지 않은 train 부분을 삭제함 |
28 | 28 | ||
29 | -8. make_img_py 추가 | ||
30 | -이미지를 불러와 (32,32,3)의 크기로 resize한 후 input.txt에 저장함 | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
29 | + | ||
30 | +8. make_img.py 추가 | ||
31 | +이미지를 불러와 (32,32,3)의 크기로 resize한 후 input.txt에 저장함 | ||
32 | + | ||
33 | + | ||
34 | +9. simple_convnet_cpp 코드 추가 | ||
35 | + 1) layers.hpp : Convolution, ReLu, Normalization, Pooling, DW_Conv등 각 layer가 구현 | ||
36 | + 2) SimpleConvNet.hpp : 딥러닝 모델이 구현 | ||
37 | + 3) input.txt : make_img.py코드로 만든 이미지를 (32,32,3)의 크기로 만들어 txt파일로 저장 | ||
38 | + 4) pred.txt : 1개의 이미지만 넣으면 예측이 되지않아 dummy를 같이 읽어서 처리함. 출력은 되지않음 | ||
39 | + 5) params.txt : 속도향상을 위해 params.pkl파일을 params.txt로 변환 | ||
40 | + 6) main.cpp | ||
41 | + *c++ 컴파일러 버전 11이상 | ||
42 | + *프로젝트 생성 시 sdl 검사 체크 해제 | ||
... | \ No newline at end of file | ... | \ No newline at end of file | ... | ... |
simple_convnet_c++/Layers.hpp
0 → 100644
1 | +#ifndef LAYERS_ | ||
2 | +#define LAYERS_ | ||
3 | +#include<vector> | ||
4 | +#include<cmath> | ||
5 | +// 3D Matrix | ||
6 | +struct Mat { | ||
7 | + int dim, row, col; | ||
8 | + std::vector< double > mat; | ||
9 | + Mat(int dim, int row, int col, std::vector< double > v) : dim(dim), row(row), col(col), mat(v) {}; | ||
10 | +}; | ||
11 | + | ||
12 | +// Mat 일차원으로 계산 + dimension 변수 | ||
13 | +class Layer { | ||
14 | +public: | ||
15 | + virtual std::vector<Mat> forward(std::vector<Mat> &x) { return std::vector<Mat>(); } | ||
16 | +}; | ||
17 | + | ||
18 | +// padding | ||
19 | +class Convolution : public Layer { | ||
20 | +private: | ||
21 | + std::vector<Mat> W; | ||
22 | + int stride, pad; | ||
23 | +public: | ||
24 | + Convolution() {}; | ||
25 | + ~Convolution() {}; | ||
26 | + Convolution(std::vector<Mat> W, int stride=1, int pad=0) : W(W), stride(stride), pad(pad) {}; | ||
27 | + | ||
28 | + // Each image x conv with each w | ||
29 | + virtual std::vector<Mat> forward(std::vector<Mat> &x) { | ||
30 | + std::vector< Mat > out; | ||
31 | + int n, nw; | ||
32 | + for (n = 0; n < x.size(); n++) { | ||
33 | + std::vector<double>rev; | ||
34 | + for (nw = 0; nw < W.size(); nw++) { | ||
35 | + auto e = Convolution_(x[n], W[nw]); | ||
36 | + rev.insert(rev.end(), e.begin(), e.end()); | ||
37 | + } | ||
38 | + int out_r = (x[n].row + 2 * pad - W[0].row) / stride + 1; | ||
39 | + int out_c = (x[n].col + 2 * pad - W[0].col) / stride + 1; | ||
40 | + out.push_back(Mat(nw, out_r, out_c, rev)); | ||
41 | + } | ||
42 | + return out; | ||
43 | + } | ||
44 | + | ||
45 | + // Convolution x and W (both are 3-D Mat) | ||
46 | + std::vector<double> Convolution_(const Mat& x,const Mat& w) { | ||
47 | + std::vector<double> ret; | ||
48 | + int ndim = x.dim - w.dim + 1; | ||
49 | + for (int d = 0; d < x.dim - w.dim + 1; d++) { | ||
50 | + for (int r = -pad; r < x.row - w.row + 1 + pad; r++) { | ||
51 | + for (int c = -pad; c < x.col - w.col +1 +pad; c++) { | ||
52 | + ret.push_back(Convolution_(x, w, d, r, c)); | ||
53 | + } | ||
54 | + } | ||
55 | + } | ||
56 | + return ret; | ||
57 | + } | ||
58 | + | ||
59 | + double Convolution_(const Mat& x, const Mat& w, int d, int r,int c) { | ||
60 | + double ret = 0, xx=0; | ||
61 | + int ds = w.col * w.row, rs = w.col; | ||
62 | + int dxs = x.col * x.row, rxs = x.col; | ||
63 | + for (int dd = 0; dd < w.dim; dd++) { | ||
64 | + for (int rr = 0; rr < w.row; rr++) { | ||
65 | + for (int cc = 0; cc < w.col; cc++) { | ||
66 | + if ((pad > 0) && (r + rr < 0 || c + cc < 0 || r + rr >= x.row || c + cc >= x.col)) | ||
67 | + xx = 0; | ||
68 | + else | ||
69 | + xx = x.mat[(d + dd)*(dxs)+(r + rr)*rxs + (c + cc)]; | ||
70 | + ret += xx * w.mat[dd*(ds)+rr*(rs)+cc]; | ||
71 | + } | ||
72 | + } | ||
73 | + } | ||
74 | + return ret; | ||
75 | + } | ||
76 | +}; | ||
77 | + | ||
78 | +// Depthwise Conv | ||
79 | +class DW_Convolution : public Layer { | ||
80 | +private: | ||
81 | + std::vector<Mat> W; | ||
82 | + int stride, pad; | ||
83 | +public: | ||
84 | + DW_Convolution() {}; | ||
85 | + ~DW_Convolution() {}; | ||
86 | + DW_Convolution(std::vector<Mat> W, int stride=1, int pad=0) : W(W), stride(stride), pad(pad) {}; | ||
87 | + | ||
88 | + virtual std::vector<Mat> forward(std::vector<Mat> &x) { | ||
89 | + std::vector<Mat> out; | ||
90 | + int n, d; | ||
91 | + for (n = 0; n < x.size(); n++) { | ||
92 | + // Each dimension Conv with each filter | ||
93 | + std::vector<double> rev; | ||
94 | + for (d = 0; d < x[n].dim; d++) { | ||
95 | + std::vector<double> e = Convolution_(x[n], W[d], d); | ||
96 | + rev.insert(rev.end(), e.begin(), e.end()); | ||
97 | + } | ||
98 | + int out_r = (x[n].row + 2 * pad - W[0].row) / stride + 1; | ||
99 | + int out_c = (x[n].col + 2 * pad - W[0].col) / stride + 1; | ||
100 | + out.push_back(Mat(d, out_r, out_c, rev)); | ||
101 | + } | ||
102 | + return out; | ||
103 | + } | ||
104 | + | ||
105 | + std::vector<double> Convolution_(const Mat& x, const Mat& w, int d) { | ||
106 | + std::vector<double> out; | ||
107 | + int dd = d * x.col * x.row; | ||
108 | + for (int r = -pad; r < x.row - w.row + 1 + pad; r++) { // r+=stride | ||
109 | + for (int c = -pad; c < x.col - w.col + 1 + pad; c++) { | ||
110 | + out.push_back(Convolution_(x, w, dd, r, c)); | ||
111 | + } | ||
112 | + } | ||
113 | + return out; | ||
114 | + } | ||
115 | + | ||
116 | + double Convolution_(const Mat& x, const Mat& w, int dd, int r, int c) { | ||
117 | + double ret = 0, xx=0; | ||
118 | + for (int rr = 0; rr < w.row; rr++) { | ||
119 | + for (int cc = 0; cc < w.col; cc++) { | ||
120 | + if ((pad > 0) && (r + rr < 0 || c + cc < 0 || r + rr >= x.row || c + cc >= x.col)) | ||
121 | + xx = 0; | ||
122 | + else | ||
123 | + xx = x.mat[dd + (r + rr)*x.col + (c+cc)]; | ||
124 | + ret += xx * w.mat[rr*w.col + cc]; | ||
125 | + } | ||
126 | + } | ||
127 | + return ret; | ||
128 | + } | ||
129 | +}; | ||
130 | + | ||
131 | +// n개의 이미지 같은 위치의 Row, col 값을 Normalization | ||
132 | +class LightNormalization : public Layer{ | ||
133 | +public: | ||
134 | + virtual std::vector<Mat> forward(std::vector<Mat>& x) { | ||
135 | + std::vector<Mat> out; | ||
136 | + int dim = x[0].dim, row = x[0].row, col = x[0].col, nx = x.size(); | ||
137 | + int ds = row*col; | ||
138 | + for (int d = 0; d < dim; d++) { | ||
139 | + double mu = 0, var=0, std, tmp; // mu : mean of x img each dim | ||
140 | + for (int r = 0; r < row; r++) | ||
141 | + for (int c = 0; c < col; c++) | ||
142 | + for (int n = 0; n < nx; n++) | ||
143 | + mu += x[n].mat[d*ds + r*col + c]; | ||
144 | + | ||
145 | + mu = mu / (double)(row*col*nx); | ||
146 | + | ||
147 | + for (int r = 0; r < row; r++) | ||
148 | + for (int c = 0; c < col; c++) | ||
149 | + for (int n = 0; n < nx; n++) { | ||
150 | + tmp = x[n].mat[d*ds + r*col + c] - mu; | ||
151 | + var += (tmp*tmp); | ||
152 | + } | ||
153 | + | ||
154 | + var = var / (double)(row*col*nx); | ||
155 | + std = sqrt(var+10e-7); | ||
156 | + for (int r = 0; r < row; r++) | ||
157 | + for (int c = 0; c < col; c++) | ||
158 | + for (int n = 0; n < nx; n++) | ||
159 | + x[n].mat[d*ds + r*col + c] = (x[n].mat[d*ds + r*col + c] - mu) / std; | ||
160 | + } | ||
161 | + return x; | ||
162 | + } | ||
163 | +}; | ||
164 | + | ||
165 | +class Relu : public Layer { | ||
166 | +public: | ||
167 | + virtual std::vector<Mat> forward(std::vector<Mat> &x) { | ||
168 | + int nx = x.size(), nm = x[0].dim * x[0].row * x[0].col; | ||
169 | + for (int n = 0; n < nx; n++) | ||
170 | + for (int i = 0; i < nm; i++) | ||
171 | + if (x[n].mat[i] < 0) | ||
172 | + x[n].mat[i] = 0; | ||
173 | + return x; | ||
174 | + } | ||
175 | +}; | ||
176 | + | ||
177 | +class Pooling : public Layer{ | ||
178 | +private: | ||
179 | + int pool_h, pool_w, stride, pad; | ||
180 | +public: | ||
181 | + Pooling() { pad = 0; }; | ||
182 | + ~Pooling() {}; | ||
183 | + Pooling(int pool_h, int pool_w, int stride=1, int pad=0) :pool_h(pool_h), pool_w(pool_w), stride(stride), pad(pad) {}; | ||
184 | + | ||
185 | + virtual std::vector<Mat> forward(std::vector<Mat>& x) { | ||
186 | + std::vector<Mat> out; | ||
187 | + int n, d, nx = x.size(); | ||
188 | + for (n = 0; n < nx; n++) { | ||
189 | + std::vector<double> rev; | ||
190 | + for (d = 0; d < x[n].dim; d++) { | ||
191 | + std::vector<double> e = MaxPooling_(x[n], d); | ||
192 | + rev.insert(rev.end(), e.begin(), e.end()); | ||
193 | + } | ||
194 | + int out_h = (x[n].row + 2 * pad - pool_h) / stride + 1; | ||
195 | + int out_w = (x[n].col + 2 * pad - pool_w) / stride + 1; | ||
196 | + out.push_back(Mat(d, out_h, out_w, rev)); | ||
197 | + } | ||
198 | + return out; | ||
199 | + } | ||
200 | + | ||
201 | + // Pooling each image | ||
202 | + std::vector<double> MaxPooling_(Mat& x, int d) { | ||
203 | + std::vector<double> out; | ||
204 | + int row = x.row, col = x.col; | ||
205 | + int dd = d * col * row; | ||
206 | + for (int r = -pad; r < row - pool_h + 1 + pad; r+=stride) { | ||
207 | + for (int c = -pad; c < col - pool_w + 1 + pad; c+=stride) { | ||
208 | + out.push_back(MaxPooling_(x, dd, r, c)); | ||
209 | + } | ||
210 | + } | ||
211 | + return out; | ||
212 | + } | ||
213 | + | ||
214 | + // Pooling pool_w * pool_h | ||
215 | + double MaxPooling_(Mat& x, int dd, int r, int c) { | ||
216 | + double ret = 0, xx = 0; | ||
217 | + for (int rr = 0; rr < pool_h; rr++) { | ||
218 | + for (int cc = 0; cc < pool_w; cc++) { | ||
219 | + if ((pad > 0) && (r + rr < 0 || c + cc < 0 || r + rr >= x.row || c + cc >= x.col)) | ||
220 | + xx = 0; | ||
221 | + else | ||
222 | + xx = x.mat[dd + (r + rr)*x.col + (c + cc)]; | ||
223 | + if(ret < xx) | ||
224 | + ret = xx; | ||
225 | + } | ||
226 | + } | ||
227 | + return ret; | ||
228 | + } | ||
229 | +}; | ||
230 | + | ||
231 | +class Affine : public Layer{ | ||
232 | +private: | ||
233 | + std::vector<Mat> W; | ||
234 | +public: | ||
235 | + Affine() {} | ||
236 | + ~Affine() {} | ||
237 | + Affine(std::vector<Mat>& W) : W(W){} | ||
238 | + | ||
239 | + virtual std::vector<Mat> forward(std::vector<Mat>& x) { | ||
240 | + std::vector<Mat> out; | ||
241 | + int nx = x.size(); | ||
242 | + for (int n = 0; n < nx; n++) { | ||
243 | + Mat e = Dot_(x[n]); | ||
244 | + out.push_back(e); | ||
245 | + } | ||
246 | + return out; | ||
247 | + } | ||
248 | + | ||
249 | + Mat Dot_(const Mat& x) { | ||
250 | + int dim = W[0].dim, row = W[0].row, col = W[0].col, nw = W.size(); | ||
251 | + int size = dim*row*col; | ||
252 | + std::vector<double> ret(col); | ||
253 | + | ||
254 | + for (int c = 0; c < col; c++) { | ||
255 | + for (int n = 0; n < nw; n++) { | ||
256 | + ret[c] += W[n].mat[c] * x.mat[n]; | ||
257 | + } | ||
258 | + | ||
259 | + } | ||
260 | + return Mat(col, 1, 1, ret); | ||
261 | + } | ||
262 | +}; | ||
263 | +#endif |
simple_convnet_c++/SimpleConvNet.hpp
0 → 100644
1 | +#ifndef SIMPLECONV_ | ||
2 | +#define SIMPLECONV_ | ||
3 | +#include"Layers.hpp" | ||
4 | +#include<iostream> | ||
5 | +#include<cstdio> | ||
6 | +#include<string.h> | ||
7 | +#include<stdlib.h> | ||
8 | +struct input_dim { | ||
9 | + int d1, d2, d3; | ||
10 | + input_dim(int d1, int d2, int d3) :d1(d1), d2(d2), d3(d3) {}; | ||
11 | +}; | ||
12 | + | ||
13 | +struct conv_param { | ||
14 | + int fn1, fn2, fn3; | ||
15 | + int filtersize, pad, stride; | ||
16 | + conv_param(int ftnum1, int ftnum2, int ftnum3, int ftsize, int pad, int stride) :fn1(ftnum1), | ||
17 | + fn2(ftnum2), fn3(ftnum3), filtersize(ftsize), pad(pad), stride(stride) {}; | ||
18 | +}; | ||
19 | + | ||
20 | +class SimpleConvNet { | ||
21 | +private: | ||
22 | + std::vector< Layer* > layers; | ||
23 | + | ||
24 | + std::vector<Mat> W[7]; // weights | ||
25 | + std::vector<int> shape[7]; // shape of each weights | ||
26 | +public: | ||
27 | + SimpleConvNet() {} | ||
28 | + ~SimpleConvNet() {} | ||
29 | + SimpleConvNet(input_dim id, conv_param cp, int hidden_size=512, int output_size=10, bool pretrained=true) { | ||
30 | + if (pretrained) | ||
31 | + load_trained("params.txt"); | ||
32 | + | ||
33 | + layers.push_back(new Convolution(W[0], 1, 1)); | ||
34 | + layers.push_back(new LightNormalization()); | ||
35 | + layers.push_back(new Relu()); | ||
36 | + layers.push_back(new Pooling(2, 2, 2)); | ||
37 | + | ||
38 | + layers.push_back(new Convolution(W[1], 1, 0)); | ||
39 | + layers.push_back(new LightNormalization()); | ||
40 | + layers.push_back(new Relu()); | ||
41 | + | ||
42 | + layers.push_back(new DW_Convolution(W[2], 1, 1)); | ||
43 | + layers.push_back(new LightNormalization()); | ||
44 | + layers.push_back(new Relu()); | ||
45 | + layers.push_back(new Pooling(2, 2, 2)); | ||
46 | + | ||
47 | + layers.push_back(new Convolution(W[3], 1, 0)); | ||
48 | + layers.push_back(new LightNormalization()); | ||
49 | + layers.push_back(new Relu()); | ||
50 | + | ||
51 | + layers.push_back(new DW_Convolution(W[4], 1, 1)); | ||
52 | + layers.push_back(new LightNormalization()); | ||
53 | + layers.push_back(new Relu()); | ||
54 | + layers.push_back(new Pooling(2, 2, 2)); | ||
55 | + | ||
56 | + layers.push_back(new Affine(W[5])); | ||
57 | + layers.push_back(new LightNormalization()); | ||
58 | + layers.push_back(new Relu()); | ||
59 | + | ||
60 | + layers.push_back(new Affine(W[6])); | ||
61 | + } | ||
62 | + | ||
63 | + std::vector< Mat > predict(std::vector<Mat>& x) { | ||
64 | + for (int i = 0; i < layers.size(); i++) { | ||
65 | + x = layers[i]->forward(x); | ||
66 | + } | ||
67 | + return x; | ||
68 | + } | ||
69 | + | ||
70 | + double accuracy(std::vector< std::vector< unsigned char > > x, std::vector< int > ans, int batch_size=100) { | ||
71 | + return 1.0; | ||
72 | + } | ||
73 | + | ||
74 | + std::vector<int> argmax(std::vector< Mat >& x) { | ||
75 | + std::vector<int> pred; | ||
76 | + for (int n = 0; n < x.size(); n++) { | ||
77 | + int pid = 0, pos; | ||
78 | + double pval = -1e9; | ||
79 | + for (int i = 0; i < x[n].mat.size(); i++) { | ||
80 | + if (pval < x[n].mat[i]) { | ||
81 | + pval = x[n].mat[i]; | ||
82 | + pid = i; | ||
83 | + } | ||
84 | + } | ||
85 | + pred.push_back(pid); | ||
86 | + } | ||
87 | + return pred; | ||
88 | + } | ||
89 | + | ||
90 | + void load_trained(const char* filename="params.txt") { | ||
91 | + FILE *f = fopen(filename, "r"); | ||
92 | + if (f == NULL) { | ||
93 | + printf("File not found\n"); | ||
94 | + exit(1); | ||
95 | + } | ||
96 | + char line[10] = { 0 }; | ||
97 | + int keynum; | ||
98 | + while (fscanf(f, "%s", line)==1) { | ||
99 | + char s[4][10] = { 0 }; | ||
100 | + keynum = line[1] - '0' - 1; | ||
101 | + | ||
102 | + // get shape | ||
103 | + fscanf(f, "%s", s[0]); | ||
104 | + fscanf(f, "%s", s[1]); | ||
105 | + if (s[1][strlen(s[1]) - 1] != '\"') { | ||
106 | + fscanf(f, "%s", s[2]); | ||
107 | + fscanf(f, "%s", s[3]); | ||
108 | + } | ||
109 | + | ||
110 | + // nw = number of weights : shape[0] | ||
111 | + // size = input size of W[key] | ||
112 | + int size = 1, nw=0; | ||
113 | + for (int i = 0; i < 4; i++) { | ||
114 | + int val = 0; | ||
115 | + for (int j = 0; j < strlen(s[i]); j++) { | ||
116 | + if ('0' <= s[i][j] && s[i][j] <= '9') { | ||
117 | + val = 10 * val + (s[i][j] - '0'); | ||
118 | + } | ||
119 | + } | ||
120 | + if (val) { | ||
121 | + shape[keynum].push_back(val); | ||
122 | + size *= val; | ||
123 | + if (nw == 0) | ||
124 | + nw = val; | ||
125 | + } | ||
126 | + } | ||
127 | + // Read data of W[key] | ||
128 | + int fsize = size / nw; | ||
129 | + double *mm = new double[fsize]; | ||
130 | + for (int i = 0; i < size; i++) { | ||
131 | + fscanf(f, "%lf", &mm[i%fsize]); | ||
132 | + if (i%fsize == fsize - 1) { | ||
133 | + if(shape[keynum].size() == 2) | ||
134 | + W[keynum].push_back(Mat(1, 1, shape[keynum][1], std::vector<double>(mm, mm + fsize))); | ||
135 | + else if(shape[keynum].size() == 4) | ||
136 | + W[keynum].push_back(Mat(shape[keynum][1], shape[keynum][2], | ||
137 | + shape[keynum][3], std::vector<double>(mm, mm + fsize))); | ||
138 | + } | ||
139 | + } | ||
140 | + } | ||
141 | + printf("Trained weights loading done\n"); | ||
142 | + } | ||
143 | +}; | ||
144 | +#endif |
simple_convnet_c++/input.txt
0 → 100644
This diff is collapsed. Click to expand it.
simple_convnet_c++/main.cpp
0 → 100644
1 | +#include"Layers.hpp" | ||
2 | +#include"SimpleConvNet.hpp" | ||
3 | +using namespace std; | ||
4 | +int main() { | ||
5 | + | ||
6 | + input_dim id = { 3, 32, 32 }; | ||
7 | + conv_param cp = { 32,32,64, 3,1,1 }; | ||
8 | + SimpleConvNet SCN(id, cp); | ||
9 | + | ||
10 | + freopen("input.txt", "r", stdin); | ||
11 | + vector<Mat> X; | ||
12 | + int nx = 1, dim = 3, row = 32, col = 32; | ||
13 | + double tmp; | ||
14 | + for (int i = 0; i < nx; i++) { | ||
15 | + vector<double> rev; | ||
16 | + for (int d = 0; d < dim; d++) { | ||
17 | + for (int r = 0; r < row; r++) { | ||
18 | + for (int c = 0; c < col; c++) { | ||
19 | + scanf("%lf", &tmp); | ||
20 | + rev.push_back(tmp); | ||
21 | + } | ||
22 | + } | ||
23 | + } | ||
24 | + X.push_back(Mat(dim, row, col, rev)); | ||
25 | + } | ||
26 | + freopen("pred.txt", "r", stdin); | ||
27 | + nx = 2, dim = 3, row = 32, col = 32; | ||
28 | + for (int i = 0; i < nx; i++) { | ||
29 | + vector<double> rev; | ||
30 | + for (int d = 0; d < dim; d++) { | ||
31 | + for (int r = 0; r < row; r++) { | ||
32 | + for (int c = 0; c < col; c++) { | ||
33 | + scanf("%lf", &tmp); | ||
34 | + rev.push_back(tmp); | ||
35 | + } | ||
36 | + } | ||
37 | + } | ||
38 | + X.push_back(Mat(dim, row, col, rev)); | ||
39 | + } | ||
40 | + | ||
41 | + auto x = SCN.predict(X); | ||
42 | + | ||
43 | + auto pred = SCN.argmax(x); | ||
44 | + | ||
45 | + int num = 0, pd; | ||
46 | + | ||
47 | + printf("predict : %d ", pred[0]); | ||
48 | + return 0; | ||
49 | +} | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
simple_convnet_c++/params.txt
0 → 100644
This diff could not be displayed because it is too large.
simple_convnet_c++/pred.txt
0 → 100644
This diff is collapsed. Click to expand it.
-
Please register or login to post a comment