You need to sign in or sign up before continuing.
SimplifyCFG.cpp 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//===- SimplifyCFG.cpp ----------------------------------------------------===//
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the control flow graph (CFG) simplifications
// presented as part of the 'Getting Started With LLVM: Basics' tutorial at the
// US LLVM Developers Meeting 2019. It also contains additional material.
//
// The current file contains three different CFG simplifications. There are
// multiple versions of each implementation (e.g. _v1 and _v2), which implement
// additional functionality (e.g. preserving analysis like the DominatorTree) or
// use additional utilities to simplify the code (e.g. LLVM's PatternMatch.h).
// The available simplifications are:
//  1. Trivially Dead block Removal (removeDeadBlocks_v[1,2]).
//     This simplifications removes all blocks without predecessors in the CFG
//     from a function.
//  2. Conditional Branch Elimination (eliminateCondBranches_v[1,2,3])
//     This simplification replaces conditional branches with constant integer
//     conditions with unconditional branches.
//  3. Single Predecessor Block Merging (mergeIntoSinglePredecessor_v[1,2])
//     This simplification merges blocks with a single predecessor into the
//     predecessor, if that block has a single successor.
//
// TODOs
//  * Hook up pass to the new pass manager.
//  * Preserve LoopInfo.
//  * Add fixed point iteration to delete all dead blocks
//  * Add implementation using reachability to discover dead blocks.
//===----------------------------------------------------------------------===//

#include "SimplifyCFG.h"
#include "InitializePasses.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"

using namespace llvm;
using namespace PatternMatch;

enum TutorialVersion { V1, V2, V3 };
static cl::opt<TutorialVersion>
    Version("tut-simplifycfg-version", cl::desc("Select tutorial version"),
            cl::Hidden, cl::ValueOptional, cl::init(V1),
            cl::values(clEnumValN(V1, "v1", "version 1"),
                       clEnumValN(V2, "v2", "version 2"),
                       clEnumValN(V3, "v3", "version 3"),
                       // Sentinel value for unspecified option.
                       clEnumValN(V3, "", "")));

#define DEBUG_TYPE "tut-simplifycfg"

// Remove trivially dead blocks. First version, not preserving the
// DominatorTree.
static bool removeDeadBlocks_v1(Function &F) {
  bool Changed = false;

  // Remove trivially dead blocks.
  for (BasicBlock &BB : make_early_inc_range(F)) {
    // Skip blocks we know to not be trivially dead. We know a block is
    // guaranteed to be dead, iff it is neither the entry block nor
    // has any predecessors.
    if (&F.getEntryBlock() == &BB || !pred_empty(&BB))
      continue;

    // Notify successors of BB that BB is going to be removed. This removes
    // incoming values from BB from PHIs in the successors. Note that this will
    // not actually remove BB from the predecessor lists of its successors.
    for (BasicBlock *Succ : successors(&BB))
      Succ->removePredecessor(&BB);
    // TODO: Find a better place to put such small variations.
    // Alternatively, we can update the PHI nodes manually:
    // for (PHINode &PN : make_early_inc_range(Succ->phis()))
    //  PN.removeIncomingValue(&BB);

    // Replace all instructions in BB with an undef constant. The block is
    // unreachable, so the results of the instructions should never get used.
    while (!BB.empty()) {
      Instruction &I = BB.back();
      I.replaceAllUsesWith(UndefValue::get(I.getType()));
      I.eraseFromParent();
    }

    // Finally remove the basic block.
    BB.eraseFromParent();
    Changed = true;
  }

  return Changed;
}

// Remove trivially dead blocks. This is the second version and preserves the
// dominator tree.
static bool removeDeadBlocks_v2(Function &F, DominatorTree &DT) {
  bool Changed = false;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  SmallVector<DominatorTree::UpdateType, 8> DTUpdates;

  // Remove trivially dead blocks.
  for (BasicBlock &BB : make_early_inc_range(F)) {
    // Skip blocks we know to not be trivially dead. We know a block is
    // guaranteed to be dead, iff it is neither the entry block nor
    // has any predecessors.
    if (&F.getEntryBlock() == &BB || !pred_empty(&BB))
      continue;

    // Notify successors of BB that BB is going to be removed. This removes
    // incoming values from BB from PHIs in the successors. Note that this will
    // not actually remove BB from the predecessor lists of its successors.
    for (BasicBlock *Succ : successors(&BB)) {
      Succ->removePredecessor(&BB);

      // Collect updates that need to be applied to the dominator tree.
      DTUpdates.push_back({DominatorTree::Delete, &BB, Succ});
    }

    // Remove BB via the DomTreeUpdater. DomTreeUpdater::deleteBB conveniently
    // removes the instructions in BB as well.
    DTU.deleteBB(&BB);
    Changed = true;
  }

  // Apply updates permissively, to remove duplicates.
  DTU.applyUpdatesPermissive(DTUpdates);

  return Changed;
}

// Eliminate branches with constant conditionals. This is the first version,
// which *does not* preserve the dominator tree.
static bool eliminateCondBranches_v1(Function &F) {
  bool Changed = false;

  // Eliminate branches with constant conditionals.
  for (BasicBlock &BB : F) {
    // Skip blocks without conditional branches as terminators.
    BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator());
    if (!BI || !BI->isConditional())
      continue;

    // Skip blocks with conditional branches without ConstantInt conditions.
    ConstantInt *CI = dyn_cast<ConstantInt>(BI->getCondition());
    if (!CI)
      continue;

    // We use the branch condition (CI), to select the successor we remove:
    // if CI == 1 (true), we remove the second successor, otherwise the first.
    BasicBlock *RemovedSucc = BI->getSuccessor(CI->isOne());
    // Tell RemovedSucc we will remove BB from its predecessors.
    RemovedSucc->removePredecessor(&BB);

    // Replace the conditional branch with an unconditional one, by creating
    // a new unconditional branch to the selected successor and removing the
    // conditional one.
    BranchInst::Create(BI->getSuccessor(CI->isZero()), BI);
    BI->eraseFromParent();
    Changed = true;
  }

  return Changed;
}

// Eliminate branches with constant conditionals. This is the second
// version, which *does* preserve the dominator tree.
static bool eliminateCondBranches_v2(Function &F, DominatorTree &DT) {
  bool Changed = false;

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
  // Eliminate branches with constant conditionals.
  for (BasicBlock &BB : F) {
    // Skip blocks without conditional branches as terminators.
    BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator());
    if (!BI || !BI->isConditional())
      continue;

    // Skip blocks with conditional branches without ConstantInt conditions.
    ConstantInt *CI = dyn_cast<ConstantInt>(BI->getCondition());
    if (!CI)
      continue;

    // We use the branch condition (CI), to select the successor we remove:
    // if CI == 1 (true), we remove the second successor, otherwise the first.
    BasicBlock *RemovedSucc = BI->getSuccessor(CI->isOne());
    // Tell RemovedSucc we will remove BB from its predecessors.
    RemovedSucc->removePredecessor(&BB);

    // Replace the conditional branch with an unconditional one, by creating
    // a new unconditional branch to the selected successor and removing the
    // conditional one.
    BranchInst *NewBranch =
        BranchInst::Create(BI->getSuccessor(CI->isZero()), BI);
    BI->eraseFromParent();

    // Delete the edge between BB and RemovedSucc in the DominatorTree, iff
    // the conditional branch did not use RemovedSucc as both the true and false
    // branches.
    if (NewBranch->getSuccessor(0) != RemovedSucc)
      DTUpdates.push_back({DominatorTree::Delete, &BB, RemovedSucc});
    Changed = true;
  }

  // Apply updates permissively, to remove duplicates.
  DTU.applyUpdatesPermissive(DTUpdates);

  return Changed;
}

// Eliminate branches with constant conditionals. This is the third
// version, which uses PatternMatch.h.
static bool eliminateCondBranches_v3(Function &F, DominatorTree &DT) {
  bool Changed = false;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  SmallVector<DominatorTree::UpdateType, 8> DTUpdates;

  // Eliminate branches with constant conditionals.
  for (BasicBlock &BB : F) {
    ConstantInt *CI = nullptr;
    BasicBlock *TakenSucc, *RemovedSucc;
    // Check if the terminator is a conditional branch, with constant integer
    // condition and also capture the successor blocks as TakenSucc and
    // RemovedSucc.
    if (!match(BB.getTerminator(),
               m_Br(m_ConstantInt(CI), m_BasicBlock(TakenSucc),
                    m_BasicBlock(RemovedSucc))))
      continue;

    // If the condition is false, swap TakenSucc and RemovedSucc.
    if (CI->isZero())
      std::swap(TakenSucc, RemovedSucc);

    // Tell RemovedSucc we will remove BB from its predecessors.
    RemovedSucc->removePredecessor(&BB);

    // Replace the conditional branch with an unconditional one, by creating
    // a new unconditional branch to the selected successor and removing the
    // conditional one.

    BranchInst *NewBranch = BranchInst::Create(TakenSucc, BB.getTerminator());
    BB.getTerminator()->eraseFromParent();

    // Delete the edge between BB and RemovedSucc in the DominatorTree, iff
    // the conditional branch did not use RemovedSucc as both the true and false
    // branches.
    if (NewBranch->getSuccessor(0) != RemovedSucc)
      DTUpdates.push_back({DominatorTree::Delete, &BB, RemovedSucc});
    Changed = true;
  }

  // Apply updates permissively, to remove duplicates.
  DTU.applyUpdatesPermissive(DTUpdates);
  return Changed;
}

// Merge basic blocks into their single predecessor, if their predecessor has a
// single successor. This is the first version and does not preserve the
// DominatorTree.
static bool mergeIntoSinglePredecessor_v1(Function &F) {
  bool Changed = false;

  // Merge blocks with single predecessors.
  for (BasicBlock &BB : make_early_inc_range(F)) {
    BasicBlock *Pred = BB.getSinglePredecessor();
    // Make sure  BB has a single predecessor Pred and BB is the single
    // successor of Pred.
    if (!Pred || Pred->getSingleSuccessor() != &BB)
      continue;

    // Do not try to merge self loops. That can happen in dead blocks.
    if (Pred == &BB)
      continue;

    // Need to replace it before nuking the branch.
    BB.replaceAllUsesWith(Pred);
    // PHI nodes in BB can only have a single incoming value. Remove them.
    for (PHINode &PN : make_early_inc_range(BB.phis())) {
      PN.replaceAllUsesWith(PN.getIncomingValue(0));
      PN.eraseFromParent();
    }
    // Move all instructions from BB to Pred.
    for (Instruction &I : make_early_inc_range(BB))
      I.moveBefore(Pred->getTerminator());

    // Remove the Pred's terminator (which jumped to BB). BB's terminator
    // will become Pred's terminator.
    Pred->getTerminator()->eraseFromParent();
    BB.eraseFromParent();

    Changed = true;
  }

  return Changed;
}

// Merge basic blocks into their single predecessor, if their predecessor has a
// single successor. This is the second version and does preserve the
// DominatorTree.
static bool mergeIntoSinglePredecessor_v2(Function &F, DominatorTree &DT) {
  bool Changed = false;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  SmallVector<DominatorTree::UpdateType, 8> DTUpdates;

  // Merge blocks with single predecessors.
  for (BasicBlock &BB : make_early_inc_range(F)) {
    BasicBlock *Pred = BB.getSinglePredecessor();
    // Make sure  BB has a single predecessor Pred and BB is the single
    // successor of Pred.
    if (!Pred || Pred->getSingleSuccessor() != &BB)
      continue;

    // Do not try to merge self loops. That can happen in dead blocks.
    if (Pred == &BB)
      continue;

    // Tell DTU about the changes to the CFG: All edges from BB to its
    // successors get removed and we add edges between Pred and BB's successors.
    for (BasicBlock *Succ : successors(&BB)) {
      DTUpdates.push_back({DominatorTree::Delete, &BB, Succ});
      DTUpdates.push_back({DominatorTree::Insert, Pred, Succ});
    }
    // Also remove the edge between Pred and BB.
    DTUpdates.push_back({DominatorTree::Delete, Pred, &BB});

    // Need to replace it before nuking the branch.
    BB.replaceAllUsesWith(Pred);
    // PHI nodes in BB can only have a single incoming value. Remove them.
    for (PHINode &PN : make_early_inc_range(BB.phis())) {
      PN.replaceAllUsesWith(PN.getIncomingValue(0));
      PN.eraseFromParent();
    }
    // Move all instructions from BB to Pred.
    for (Instruction &I : make_early_inc_range(BB))
      I.moveBefore(Pred->getTerminator());

    // Remove the Pred's terminator (which jumped to BB). BB's terminator
    // will become Pred's terminator.
    Pred->getTerminator()->eraseFromParent();
    DTU.deleteBB(&BB);

    Changed = true;
  }

  // Apply updates permissively, to remove duplicates.
  DTU.applyUpdatesPermissive(DTUpdates);
  return Changed;
}

static bool doSimplify_v1(Function &F) {
  return eliminateCondBranches_v1(F) & mergeIntoSinglePredecessor_v1(F) &
         removeDeadBlocks_v1(F);
}

static bool doSimplify_v2(Function &F, DominatorTree &DT) {
  return eliminateCondBranches_v2(F, DT) &
         mergeIntoSinglePredecessor_v2(F, DT) & removeDeadBlocks_v2(F, DT);
}

static bool doSimplify_v3(Function &F, DominatorTree &DT) {
  return eliminateCondBranches_v3(F, DT) &
         mergeIntoSinglePredecessor_v2(F, DT) & removeDeadBlocks_v2(F, DT);
}

namespace {
struct SimplifyCFGLegacyPass : public FunctionPass {
  static char ID;
  SimplifyCFGLegacyPass() : FunctionPass(ID) {
    initializeSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    // Version 1 of the implementation does not preserve the dominator tree.
    if (Version != V1)
      AU.addPreserved<DominatorTreeWrapperPass>();

    FunctionPass::getAnalysisUsage(AU);
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    switch (Version) {
    case V1:
      return doSimplify_v1(F);
    case V2: {
      auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
      return doSimplify_v2(F, DT);
    }
    case V3: {
      auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
      return doSimplify_v3(F, DT);
    }
    }

    llvm_unreachable("Unsupported version");
  }
};
} // namespace

char SimplifyCFGLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SimplifyCFGLegacyPass, DEBUG_TYPE,
                      "Tutorial CFG simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SimplifyCFGLegacyPass, DEBUG_TYPE,
                    "Tutorial CFG simplifications", false, false)