ConstantFolding.cpp 94.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic IR ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// DataLayout information. These functions cannot go in IR due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstddef>
#include <cstdint>

using namespace llvm;

namespace {

//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//

static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
                                        Constant *C, Type *SrcEltTy,
                                        unsigned NumSrcElts,
                                        const DataLayout &DL) {
  // Now that we know that the input value is a vector of integers, just shift
  // and insert them into our result.
  unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
  for (unsigned i = 0; i != NumSrcElts; ++i) {
    Constant *Element;
    if (DL.isLittleEndian())
      Element = C->getAggregateElement(NumSrcElts - i - 1);
    else
      Element = C->getAggregateElement(i);

    if (Element && isa<UndefValue>(Element)) {
      Result <<= BitShift;
      continue;
    }

    auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
    if (!ElementCI)
      return ConstantExpr::getBitCast(C, DestTy);

    Result <<= BitShift;
    Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
  }

  return nullptr;
}

/// Constant fold bitcast, symbolically evaluating it with DataLayout.
/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
  assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
         "Invalid constantexpr bitcast!");

  // Catch the obvious splat cases.
  if (C->isNullValue() && !DestTy->isX86_MMXTy())
    return Constant::getNullValue(DestTy);
  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
      !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
    return Constant::getAllOnesValue(DestTy);

  if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
    // Handle a vector->scalar integer/fp cast.
    if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
      unsigned NumSrcElts = VTy->getNumElements();
      Type *SrcEltTy = VTy->getElementType();

      // If the vector is a vector of floating point, convert it to vector of int
      // to simplify things.
      if (SrcEltTy->isFloatingPointTy()) {
        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
        Type *SrcIVTy =
          VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
        // Ask IR to do the conversion now that #elts line up.
        C = ConstantExpr::getBitCast(C, SrcIVTy);
      }

      APInt Result(DL.getTypeSizeInBits(DestTy), 0);
      if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
                                                SrcEltTy, NumSrcElts, DL))
        return CE;

      if (isa<IntegerType>(DestTy))
        return ConstantInt::get(DestTy, Result);

      APFloat FP(DestTy->getFltSemantics(), Result);
      return ConstantFP::get(DestTy->getContext(), FP);
    }
  }

  // The code below only handles casts to vectors currently.
  auto *DestVTy = dyn_cast<VectorType>(DestTy);
  if (!DestVTy)
    return ConstantExpr::getBitCast(C, DestTy);

  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
  // vector so the code below can handle it uniformly.
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    Constant *Ops = C; // don't take the address of C!
    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
  }

  // If this is a bitcast from constant vector -> vector, fold it.
  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    return ConstantExpr::getBitCast(C, DestTy);

  // If the element types match, IR can fold it.
  unsigned NumDstElt = DestVTy->getNumElements();
  unsigned NumSrcElt = C->getType()->getVectorNumElements();
  if (NumDstElt == NumSrcElt)
    return ConstantExpr::getBitCast(C, DestTy);

  Type *SrcEltTy = C->getType()->getVectorElementType();
  Type *DstEltTy = DestVTy->getElementType();

  // Otherwise, we're changing the number of elements in a vector, which
  // requires endianness information to do the right thing.  For example,
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
  // folds to (little endian):
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
  // and to (big endian):
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>

  // First thing is first.  We only want to think about integer here, so if
  // we have something in FP form, recast it as integer.
  if (DstEltTy->isFloatingPointTy()) {
    // Fold to an vector of integers with same size as our FP type.
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    Type *DestIVTy =
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    // Recursively handle this integer conversion, if possible.
    C = FoldBitCast(C, DestIVTy, DL);

    // Finally, IR can handle this now that #elts line up.
    return ConstantExpr::getBitCast(C, DestTy);
  }

  // Okay, we know the destination is integer, if the input is FP, convert
  // it to integer first.
  if (SrcEltTy->isFloatingPointTy()) {
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    Type *SrcIVTy =
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    // Ask IR to do the conversion now that #elts line up.
    C = ConstantExpr::getBitCast(C, SrcIVTy);
    // If IR wasn't able to fold it, bail out.
    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
        !isa<ConstantDataVector>(C))
      return C;
  }

  // Now we know that the input and output vectors are both integer vectors
  // of the same size, and that their #elements is not the same.  Do the
  // conversion here, which depends on whether the input or output has
  // more elements.
  bool isLittleEndian = DL.isLittleEndian();

  SmallVector<Constant*, 32> Result;
  if (NumDstElt < NumSrcElt) {
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    Constant *Zero = Constant::getNullValue(DstEltTy);
    unsigned Ratio = NumSrcElt/NumDstElt;
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    unsigned SrcElt = 0;
    for (unsigned i = 0; i != NumDstElt; ++i) {
      // Build each element of the result.
      Constant *Elt = Zero;
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
      for (unsigned j = 0; j != Ratio; ++j) {
        Constant *Src = C->getAggregateElement(SrcElt++);
        if (Src && isa<UndefValue>(Src))
          Src = Constant::getNullValue(C->getType()->getVectorElementType());
        else
          Src = dyn_cast_or_null<ConstantInt>(Src);
        if (!Src)  // Reject constantexpr elements.
          return ConstantExpr::getBitCast(C, DestTy);

        // Zero extend the element to the right size.
        Src = ConstantExpr::getZExt(Src, Elt->getType());

        // Shift it to the right place, depending on endianness.
        Src = ConstantExpr::getShl(Src,
                                   ConstantInt::get(Src->getType(), ShiftAmt));
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;

        // Mix it in.
        Elt = ConstantExpr::getOr(Elt, Src);
      }
      Result.push_back(Elt);
    }
    return ConstantVector::get(Result);
  }

  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
  unsigned Ratio = NumDstElt/NumSrcElt;
  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);

  // Loop over each source value, expanding into multiple results.
  for (unsigned i = 0; i != NumSrcElt; ++i) {
    auto *Element = C->getAggregateElement(i);

    if (!Element) // Reject constantexpr elements.
      return ConstantExpr::getBitCast(C, DestTy);

    if (isa<UndefValue>(Element)) {
      // Correctly Propagate undef values.
      Result.append(Ratio, UndefValue::get(DstEltTy));
      continue;
    }

    auto *Src = dyn_cast<ConstantInt>(Element);
    if (!Src)
      return ConstantExpr::getBitCast(C, DestTy);

    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    for (unsigned j = 0; j != Ratio; ++j) {
      // Shift the piece of the value into the right place, depending on
      // endianness.
      Constant *Elt = ConstantExpr::getLShr(Src,
                                  ConstantInt::get(Src->getType(), ShiftAmt));
      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;

      // Truncate the element to an integer with the same pointer size and
      // convert the element back to a pointer using a inttoptr.
      if (DstEltTy->isPointerTy()) {
        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
        continue;
      }

      // Truncate and remember this piece.
      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    }
  }

  return ConstantVector::get(Result);
}

} // end anonymous namespace

/// If this constant is a constant offset from a global, return the global and
/// the constant. Because of constantexprs, this function is recursive.
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
                                      APInt &Offset, const DataLayout &DL) {
  // Trivial case, constant is the global.
  if ((GV = dyn_cast<GlobalValue>(C))) {
    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
    Offset = APInt(BitWidth, 0);
    return true;
  }

  // Otherwise, if this isn't a constant expr, bail out.
  auto *CE = dyn_cast<ConstantExpr>(C);
  if (!CE) return false;

  // Look through ptr->int and ptr->ptr casts.
  if (CE->getOpcode() == Instruction::PtrToInt ||
      CE->getOpcode() == Instruction::BitCast)
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);

  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
  auto *GEP = dyn_cast<GEPOperator>(CE);
  if (!GEP)
    return false;

  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
  APInt TmpOffset(BitWidth, 0);

  // If the base isn't a global+constant, we aren't either.
  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
    return false;

  // Otherwise, add any offset that our operands provide.
  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
    return false;

  Offset = TmpOffset;
  return true;
}

Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
                                         const DataLayout &DL) {
  do {
    Type *SrcTy = C->getType();

    // If the type sizes are the same and a cast is legal, just directly
    // cast the constant.
    if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
      Instruction::CastOps Cast = Instruction::BitCast;
      // If we are going from a pointer to int or vice versa, we spell the cast
      // differently.
      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
        Cast = Instruction::IntToPtr;
      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
        Cast = Instruction::PtrToInt;

      if (CastInst::castIsValid(Cast, C, DestTy))
        return ConstantExpr::getCast(Cast, C, DestTy);
    }

    // If this isn't an aggregate type, there is nothing we can do to drill down
    // and find a bitcastable constant.
    if (!SrcTy->isAggregateType())
      return nullptr;

    // We're simulating a load through a pointer that was bitcast to point to
    // a different type, so we can try to walk down through the initial
    // elements of an aggregate to see if some part of the aggregate is
    // castable to implement the "load" semantic model.
    if (SrcTy->isStructTy()) {
      // Struct types might have leading zero-length elements like [0 x i32],
      // which are certainly not what we are looking for, so skip them.
      unsigned Elem = 0;
      Constant *ElemC;
      do {
        ElemC = C->getAggregateElement(Elem++);
      } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
      C = ElemC;
    } else {
      C = C->getAggregateElement(0u);
    }
  } while (C);

  return nullptr;
}

namespace {

/// Recursive helper to read bits out of global. C is the constant being copied
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
/// results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. DL is the DataLayout.
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
                        unsigned BytesLeft, const DataLayout &DL) {
  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
         "Out of range access");

  // If this element is zero or undefined, we can just return since *CurPtr is
  // zero initialized.
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    return true;

  if (auto *CI = dyn_cast<ConstantInt>(C)) {
    if (CI->getBitWidth() > 64 ||
        (CI->getBitWidth() & 7) != 0)
      return false;

    uint64_t Val = CI->getZExtValue();
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);

    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
      int n = ByteOffset;
      if (!DL.isLittleEndian())
        n = IntBytes - n - 1;
      CurPtr[i] = (unsigned char)(Val >> (n * 8));
      ++ByteOffset;
    }
    return true;
  }

  if (auto *CFP = dyn_cast<ConstantFP>(C)) {
    if (CFP->getType()->isDoubleTy()) {
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    }
    if (CFP->getType()->isFloatTy()){
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    }
    if (CFP->getType()->isHalfTy()){
      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    }
    return false;
  }

  if (auto *CS = dyn_cast<ConstantStruct>(C)) {
    const StructLayout *SL = DL.getStructLayout(CS->getType());
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
    uint64_t CurEltOffset = SL->getElementOffset(Index);
    ByteOffset -= CurEltOffset;

    while (true) {
      // If the element access is to the element itself and not to tail padding,
      // read the bytes from the element.
      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());

      if (ByteOffset < EltSize &&
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
                              BytesLeft, DL))
        return false;

      ++Index;

      // Check to see if we read from the last struct element, if so we're done.
      if (Index == CS->getType()->getNumElements())
        return true;

      // If we read all of the bytes we needed from this element we're done.
      uint64_t NextEltOffset = SL->getElementOffset(Index);

      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
        return true;

      // Move to the next element of the struct.
      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
      ByteOffset = 0;
      CurEltOffset = NextEltOffset;
    }
    // not reached.
  }

  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
      isa<ConstantDataSequential>(C)) {
    Type *EltTy = C->getType()->getSequentialElementType();
    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    uint64_t Index = ByteOffset / EltSize;
    uint64_t Offset = ByteOffset - Index * EltSize;
    uint64_t NumElts;
    if (auto *AT = dyn_cast<ArrayType>(C->getType()))
      NumElts = AT->getNumElements();
    else
      NumElts = C->getType()->getVectorNumElements();

    for (; Index != NumElts; ++Index) {
      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
                              BytesLeft, DL))
        return false;

      uint64_t BytesWritten = EltSize - Offset;
      assert(BytesWritten <= EltSize && "Not indexing into this element?");
      if (BytesWritten >= BytesLeft)
        return true;

      Offset = 0;
      BytesLeft -= BytesWritten;
      CurPtr += BytesWritten;
    }
    return true;
  }

  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    if (CE->getOpcode() == Instruction::IntToPtr &&
        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
                                BytesLeft, DL);
    }
  }

  // Otherwise, unknown initializer type.
  return false;
}

Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
                                          const DataLayout &DL) {
  auto *PTy = cast<PointerType>(C->getType());
  auto *IntType = dyn_cast<IntegerType>(LoadTy);

  // If this isn't an integer load we can't fold it directly.
  if (!IntType) {
    unsigned AS = PTy->getAddressSpace();

    // If this is a float/double load, we can try folding it as an int32/64 load
    // and then bitcast the result.  This can be useful for union cases.  Note
    // that address spaces don't matter here since we're not going to result in
    // an actual new load.
    Type *MapTy;
    if (LoadTy->isHalfTy())
      MapTy = Type::getInt16Ty(C->getContext());
    else if (LoadTy->isFloatTy())
      MapTy = Type::getInt32Ty(C->getContext());
    else if (LoadTy->isDoubleTy())
      MapTy = Type::getInt64Ty(C->getContext());
    else if (LoadTy->isVectorTy()) {
      MapTy = PointerType::getIntNTy(C->getContext(),
                                     DL.getTypeSizeInBits(LoadTy));
    } else
      return nullptr;

    C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
      if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
        // Materializing a zero can be done trivially without a bitcast
        return Constant::getNullValue(LoadTy);
      Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
      Res = FoldBitCast(Res, CastTy, DL);
      if (LoadTy->isPtrOrPtrVectorTy()) {
        // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
        if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
          return Constant::getNullValue(LoadTy);
        if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
          // Be careful not to replace a load of an addrspace value with an inttoptr here
          return nullptr;
        Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
      }
      return Res;
    }
    return nullptr;
  }

  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
  if (BytesLoaded > 32 || BytesLoaded == 0)
    return nullptr;

  GlobalValue *GVal;
  APInt OffsetAI;
  if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
    return nullptr;

  auto *GV = dyn_cast<GlobalVariable>(GVal);
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
      !GV->getInitializer()->getType()->isSized())
    return nullptr;

  int64_t Offset = OffsetAI.getSExtValue();
  int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());

  // If we're not accessing anything in this constant, the result is undefined.
  if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
    return UndefValue::get(IntType);

  // If we're not accessing anything in this constant, the result is undefined.
  if (Offset >= InitializerSize)
    return UndefValue::get(IntType);

  unsigned char RawBytes[32] = {0};
  unsigned char *CurPtr = RawBytes;
  unsigned BytesLeft = BytesLoaded;

  // If we're loading off the beginning of the global, some bytes may be valid.
  if (Offset < 0) {
    CurPtr += -Offset;
    BytesLeft += Offset;
    Offset = 0;
  }

  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
    return nullptr;

  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
  if (DL.isLittleEndian()) {
    ResultVal = RawBytes[BytesLoaded - 1];
    for (unsigned i = 1; i != BytesLoaded; ++i) {
      ResultVal <<= 8;
      ResultVal |= RawBytes[BytesLoaded - 1 - i];
    }
  } else {
    ResultVal = RawBytes[0];
    for (unsigned i = 1; i != BytesLoaded; ++i) {
      ResultVal <<= 8;
      ResultVal |= RawBytes[i];
    }
  }

  return ConstantInt::get(IntType->getContext(), ResultVal);
}

Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
                                             const DataLayout &DL) {
  auto *SrcPtr = CE->getOperand(0);
  auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
  if (!SrcPtrTy)
    return nullptr;
  Type *SrcTy = SrcPtrTy->getPointerElementType();

  Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
  if (!C)
    return nullptr;

  return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
}

} // end anonymous namespace

Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
                                             const DataLayout &DL) {
  // First, try the easy cases:
  if (auto *GV = dyn_cast<GlobalVariable>(C))
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
      return GV->getInitializer();

  if (auto *GA = dyn_cast<GlobalAlias>(C))
    if (GA->getAliasee() && !GA->isInterposable())
      return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);

  // If the loaded value isn't a constant expr, we can't handle it.
  auto *CE = dyn_cast<ConstantExpr>(C);
  if (!CE)
    return nullptr;

  if (CE->getOpcode() == Instruction::GetElementPtr) {
    if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
        if (Constant *V =
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
          return V;
      }
    }
  }

  if (CE->getOpcode() == Instruction::BitCast)
    if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
      return LoadedC;

  // Instead of loading constant c string, use corresponding integer value
  // directly if string length is small enough.
  StringRef Str;
  if (getConstantStringInfo(CE, Str) && !Str.empty()) {
    size_t StrLen = Str.size();
    unsigned NumBits = Ty->getPrimitiveSizeInBits();
    // Replace load with immediate integer if the result is an integer or fp
    // value.
    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
      APInt StrVal(NumBits, 0);
      APInt SingleChar(NumBits, 0);
      if (DL.isLittleEndian()) {
        for (unsigned char C : reverse(Str.bytes())) {
          SingleChar = static_cast<uint64_t>(C);
          StrVal = (StrVal << 8) | SingleChar;
        }
      } else {
        for (unsigned char C : Str.bytes()) {
          SingleChar = static_cast<uint64_t>(C);
          StrVal = (StrVal << 8) | SingleChar;
        }
        // Append NULL at the end.
        SingleChar = 0;
        StrVal = (StrVal << 8) | SingleChar;
      }

      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
      if (Ty->isFloatingPointTy())
        Res = ConstantExpr::getBitCast(Res, Ty);
      return Res;
    }
  }

  // If this load comes from anywhere in a constant global, and if the global
  // is all undef or zero, we know what it loads.
  if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
      if (GV->getInitializer()->isNullValue())
        return Constant::getNullValue(Ty);
      if (isa<UndefValue>(GV->getInitializer()))
        return UndefValue::get(Ty);
    }
  }

  // Try hard to fold loads from bitcasted strange and non-type-safe things.
  return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
}

namespace {

Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
  if (LI->isVolatile()) return nullptr;

  if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
    return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);

  return nullptr;
}

/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together.  If target data info is available, it is provided as DL,
/// otherwise DL is null.
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
                                    const DataLayout &DL) {
  // SROA

  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
  // bits.

  if (Opc == Instruction::And) {
    KnownBits Known0 = computeKnownBits(Op0, DL);
    KnownBits Known1 = computeKnownBits(Op1, DL);
    if ((Known1.One | Known0.Zero).isAllOnesValue()) {
      // All the bits of Op0 that the 'and' could be masking are already zero.
      return Op0;
    }
    if ((Known0.One | Known1.Zero).isAllOnesValue()) {
      // All the bits of Op1 that the 'and' could be masking are already zero.
      return Op1;
    }

    Known0.Zero |= Known1.Zero;
    Known0.One &= Known1.One;
    if (Known0.isConstant())
      return ConstantInt::get(Op0->getType(), Known0.getConstant());
  }

  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
  // constant.  This happens frequently when iterating over a global array.
  if (Opc == Instruction::Sub) {
    GlobalValue *GV1, *GV2;
    APInt Offs1, Offs2;

    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());

        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
        // PtrToInt may change the bitwidth so we have convert to the right size
        // first.
        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
                                                Offs2.zextOrTrunc(OpSize));
      }
  }

  return nullptr;
}

/// If array indices are not pointer-sized integers, explicitly cast them so
/// that they aren't implicitly casted by the getelementptr.
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
                         Type *ResultTy, Optional<unsigned> InRangeIndex,
                         const DataLayout &DL, const TargetLibraryInfo *TLI) {
  Type *IntIdxTy = DL.getIndexType(ResultTy);
  Type *IntIdxScalarTy = IntIdxTy->getScalarType();

  bool Any = false;
  SmallVector<Constant*, 32> NewIdxs;
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    if ((i == 1 ||
         !isa<StructType>(GetElementPtrInst::getIndexedType(
             SrcElemTy, Ops.slice(1, i - 1)))) &&
        Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
      Any = true;
      Type *NewType = Ops[i]->getType()->isVectorTy()
                          ? IntIdxTy
                          : IntIdxScalarTy;
      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
                                                                      true,
                                                                      NewType,
                                                                      true),
                                              Ops[i], NewType));
    } else
      NewIdxs.push_back(Ops[i]);
  }

  if (!Any)
    return nullptr;

  Constant *C = ConstantExpr::getGetElementPtr(
      SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
  if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
    C = Folded;

  return C;
}

/// Strip the pointer casts, but preserve the address space information.
Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
  auto *OldPtrTy = cast<PointerType>(Ptr->getType());
  Ptr = cast<Constant>(Ptr->stripPointerCasts());
  auto *NewPtrTy = cast<PointerType>(Ptr->getType());

  ElemTy = NewPtrTy->getPointerElementType();

  // Preserve the address space number of the pointer.
  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
  }
  return Ptr;
}

/// If we can symbolically evaluate the GEP constant expression, do so.
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
                                  ArrayRef<Constant *> Ops,
                                  const DataLayout &DL,
                                  const TargetLibraryInfo *TLI) {
  const GEPOperator *InnermostGEP = GEP;
  bool InBounds = GEP->isInBounds();

  Type *SrcElemTy = GEP->getSourceElementType();
  Type *ResElemTy = GEP->getResultElementType();
  Type *ResTy = GEP->getType();
  if (!SrcElemTy->isSized())
    return nullptr;

  if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
                                   GEP->getInRangeIndex(), DL, TLI))
    return C;

  Constant *Ptr = Ops[0];
  if (!Ptr->getType()->isPointerTy())
    return nullptr;

  Type *IntIdxTy = DL.getIndexType(Ptr->getType());

  // If this is a constant expr gep that is effectively computing an
  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
      if (!isa<ConstantInt>(Ops[i])) {

        // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
        // "inttoptr (sub (ptrtoint Ptr), V)"
        if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
          auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
          assert((!CE || CE->getType() == IntIdxTy) &&
                 "CastGEPIndices didn't canonicalize index types!");
          if (CE && CE->getOpcode() == Instruction::Sub &&
              CE->getOperand(0)->isNullValue()) {
            Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
            Res = ConstantExpr::getSub(Res, CE->getOperand(1));
            Res = ConstantExpr::getIntToPtr(Res, ResTy);
            if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
              Res = FoldedRes;
            return Res;
          }
        }
        return nullptr;
      }

  unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
  APInt Offset =
      APInt(BitWidth,
            DL.getIndexedOffsetInType(
                SrcElemTy,
                makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
  Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);

  // If this is a GEP of a GEP, fold it all into a single GEP.
  while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
    InnermostGEP = GEP;
    InBounds &= GEP->isInBounds();

    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());

    // Do not try the incorporate the sub-GEP if some index is not a number.
    bool AllConstantInt = true;
    for (Value *NestedOp : NestedOps)
      if (!isa<ConstantInt>(NestedOp)) {
        AllConstantInt = false;
        break;
      }
    if (!AllConstantInt)
      break;

    Ptr = cast<Constant>(GEP->getOperand(0));
    SrcElemTy = GEP->getSourceElementType();
    Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
    Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
  }

  // If the base value for this address is a literal integer value, fold the
  // getelementptr to the resulting integer value casted to the pointer type.
  APInt BasePtr(BitWidth, 0);
  if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
    if (CE->getOpcode() == Instruction::IntToPtr) {
      if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    }
  }

  auto *PTy = cast<PointerType>(Ptr->getType());
  if ((Ptr->isNullValue() || BasePtr != 0) &&
      !DL.isNonIntegralPointerType(PTy)) {
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
    return ConstantExpr::getIntToPtr(C, ResTy);
  }

  // Otherwise form a regular getelementptr. Recompute the indices so that
  // we eliminate over-indexing of the notional static type array bounds.
  // This makes it easy to determine if the getelementptr is "inbounds".
  // Also, this helps GlobalOpt do SROA on GlobalVariables.
  Type *Ty = PTy;
  SmallVector<Constant *, 32> NewIdxs;

  do {
    if (!Ty->isStructTy()) {
      if (Ty->isPointerTy()) {
        // The only pointer indexing we'll do is on the first index of the GEP.
        if (!NewIdxs.empty())
          break;

        Ty = SrcElemTy;

        // Only handle pointers to sized types, not pointers to functions.
        if (!Ty->isSized())
          return nullptr;
      } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
        Ty = ATy->getElementType();
      } else {
        // We've reached some non-indexable type.
        break;
      }

      // Determine which element of the array the offset points into.
      APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
      if (ElemSize == 0) {
        // The element size is 0. This may be [0 x Ty]*, so just use a zero
        // index for this level and proceed to the next level to see if it can
        // accommodate the offset.
        NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
      } else {
        // The element size is non-zero divide the offset by the element
        // size (rounding down), to compute the index at this level.
        bool Overflow;
        APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
        if (Overflow)
          break;
        Offset -= NewIdx * ElemSize;
        NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
      }
    } else {
      auto *STy = cast<StructType>(Ty);
      // If we end up with an offset that isn't valid for this struct type, we
      // can't re-form this GEP in a regular form, so bail out. The pointer
      // operand likely went through casts that are necessary to make the GEP
      // sensible.
      const StructLayout &SL = *DL.getStructLayout(STy);
      if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
        break;

      // Determine which field of the struct the offset points into. The
      // getZExtValue is fine as we've already ensured that the offset is
      // within the range representable by the StructLayout API.
      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                         ElIdx));
      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
      Ty = STy->getTypeAtIndex(ElIdx);
    }
  } while (Ty != ResElemTy);

  // If we haven't used up the entire offset by descending the static
  // type, then the offset is pointing into the middle of an indivisible
  // member, so we can't simplify it.
  if (Offset != 0)
    return nullptr;

  // Preserve the inrange index from the innermost GEP if possible. We must
  // have calculated the same indices up to and including the inrange index.
  Optional<unsigned> InRangeIndex;
  if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
    if (SrcElemTy == InnermostGEP->getSourceElementType() &&
        NewIdxs.size() > *LastIRIndex) {
      InRangeIndex = LastIRIndex;
      for (unsigned I = 0; I <= *LastIRIndex; ++I)
        if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
          return nullptr;
    }

  // Create a GEP.
  Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
                                               InBounds, InRangeIndex);
  assert(C->getType()->getPointerElementType() == Ty &&
         "Computed GetElementPtr has unexpected type!");

  // If we ended up indexing a member with a type that doesn't match
  // the type of what the original indices indexed, add a cast.
  if (Ty != ResElemTy)
    C = FoldBitCast(C, ResTy, DL);

  return C;
}

/// Attempt to constant fold an instruction with the
/// specified opcode and operands.  If successful, the constant result is
/// returned, if not, null is returned.  Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
                                       ArrayRef<Constant *> Ops,
                                       const DataLayout &DL,
                                       const TargetLibraryInfo *TLI) {
  Type *DestTy = InstOrCE->getType();

  if (Instruction::isUnaryOp(Opcode))
    return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);

  if (Instruction::isBinaryOp(Opcode))
    return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);

  if (Instruction::isCast(Opcode))
    return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);

  if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
    if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
      return C;

    return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
                                          Ops.slice(1), GEP->isInBounds(),
                                          GEP->getInRangeIndex());
  }

  if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
    return CE->getWithOperands(Ops);

  switch (Opcode) {
  default: return nullptr;
  case Instruction::ICmp:
  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
  case Instruction::Call:
    if (auto *F = dyn_cast<Function>(Ops.back())) {
      const auto *Call = cast<CallBase>(InstOrCE);
      if (canConstantFoldCallTo(Call, F))
        return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
    }
    return nullptr;
  case Instruction::Select:
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
  case Instruction::ExtractValue:
    return ConstantExpr::getExtractValue(
        Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
  case Instruction::InsertElement:
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
  case Instruction::ShuffleVector:
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
  }
}

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//

namespace {

Constant *
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
                         const TargetLibraryInfo *TLI,
                         SmallDenseMap<Constant *, Constant *> &FoldedOps) {
  if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
    return nullptr;

  SmallVector<Constant *, 8> Ops;
  for (const Use &NewU : C->operands()) {
    auto *NewC = cast<Constant>(&NewU);
    // Recursively fold the ConstantExpr's operands. If we have already folded
    // a ConstantExpr, we don't have to process it again.
    if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
      auto It = FoldedOps.find(NewC);
      if (It == FoldedOps.end()) {
        if (auto *FoldedC =
                ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
          FoldedOps.insert({NewC, FoldedC});
          NewC = FoldedC;
        } else {
          FoldedOps.insert({NewC, NewC});
        }
      } else {
        NewC = It->second;
      }
    }
    Ops.push_back(NewC);
  }

  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    if (CE->isCompare())
      return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
                                             DL, TLI);

    return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
  }

  assert(isa<ConstantVector>(C));
  return ConstantVector::get(Ops);
}

} // end anonymous namespace

Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
                                        const TargetLibraryInfo *TLI) {
  // Handle PHI nodes quickly here...
  if (auto *PN = dyn_cast<PHINode>(I)) {
    Constant *CommonValue = nullptr;

    SmallDenseMap<Constant *, Constant *> FoldedOps;
    for (Value *Incoming : PN->incoming_values()) {
      // If the incoming value is undef then skip it.  Note that while we could
      // skip the value if it is equal to the phi node itself we choose not to
      // because that would break the rule that constant folding only applies if
      // all operands are constants.
      if (isa<UndefValue>(Incoming))
        continue;
      // If the incoming value is not a constant, then give up.
      auto *C = dyn_cast<Constant>(Incoming);
      if (!C)
        return nullptr;
      // Fold the PHI's operands.
      if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
        C = FoldedC;
      // If the incoming value is a different constant to
      // the one we saw previously, then give up.
      if (CommonValue && C != CommonValue)
        return nullptr;
      CommonValue = C;
    }

    // If we reach here, all incoming values are the same constant or undef.
    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
  }

  // Scan the operand list, checking to see if they are all constants, if so,
  // hand off to ConstantFoldInstOperandsImpl.
  if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
    return nullptr;

  SmallDenseMap<Constant *, Constant *> FoldedOps;
  SmallVector<Constant *, 8> Ops;
  for (const Use &OpU : I->operands()) {
    auto *Op = cast<Constant>(&OpU);
    // Fold the Instruction's operands.
    if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
      Op = FoldedOp;

    Ops.push_back(Op);
  }

  if (const auto *CI = dyn_cast<CmpInst>(I))
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
                                           DL, TLI);

  if (const auto *LI = dyn_cast<LoadInst>(I))
    return ConstantFoldLoadInst(LI, DL);

  if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
    return ConstantExpr::getInsertValue(
                                cast<Constant>(IVI->getAggregateOperand()),
                                cast<Constant>(IVI->getInsertedValueOperand()),
                                IVI->getIndices());
  }

  if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
    return ConstantExpr::getExtractValue(
                                    cast<Constant>(EVI->getAggregateOperand()),
                                    EVI->getIndices());
  }

  return ConstantFoldInstOperands(I, Ops, DL, TLI);
}

Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
                                     const TargetLibraryInfo *TLI) {
  SmallDenseMap<Constant *, Constant *> FoldedOps;
  return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
}

Constant *llvm::ConstantFoldInstOperands(Instruction *I,
                                         ArrayRef<Constant *> Ops,
                                         const DataLayout &DL,
                                         const TargetLibraryInfo *TLI) {
  return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
}

Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
                                                Constant *Ops0, Constant *Ops1,
                                                const DataLayout &DL,
                                                const TargetLibraryInfo *TLI) {
  // fold: icmp (inttoptr x), null         -> icmp x, 0
  // fold: icmp null, (inttoptr x)         -> icmp 0, x
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
  // fold: icmp 0, (ptrtoint x)            -> icmp null, x
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
  //
  // FIXME: The following comment is out of data and the DataLayout is here now.
  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
  // around to know if bit truncation is happening.
  if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    if (Ops1->isNullValue()) {
      if (CE0->getOpcode() == Instruction::IntToPtr) {
        Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
        // Convert the integer value to the right size to ensure we get the
        // proper extension or truncation.
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
                                                   IntPtrTy, false);
        Constant *Null = Constant::getNullValue(C->getType());
        return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
      }

      // Only do this transformation if the int is intptrty in size, otherwise
      // there is a truncation or extension that we aren't modeling.
      if (CE0->getOpcode() == Instruction::PtrToInt) {
        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
        if (CE0->getType() == IntPtrTy) {
          Constant *C = CE0->getOperand(0);
          Constant *Null = Constant::getNullValue(C->getType());
          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
        }
      }
    }

    if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
      if (CE0->getOpcode() == CE1->getOpcode()) {
        if (CE0->getOpcode() == Instruction::IntToPtr) {
          Type *IntPtrTy = DL.getIntPtrType(CE0->getType());

          // Convert the integer value to the right size to ensure we get the
          // proper extension or truncation.
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
                                                      IntPtrTy, false);
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
                                                      IntPtrTy, false);
          return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
        }

        // Only do this transformation if the int is intptrty in size, otherwise
        // there is a truncation or extension that we aren't modeling.
        if (CE0->getOpcode() == Instruction::PtrToInt) {
          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
          if (CE0->getType() == IntPtrTy &&
              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
            return ConstantFoldCompareInstOperands(
                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
          }
        }
      }
    }

    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
      Constant *LHS = ConstantFoldCompareInstOperands(
          Predicate, CE0->getOperand(0), Ops1, DL, TLI);
      Constant *RHS = ConstantFoldCompareInstOperands(
          Predicate, CE0->getOperand(1), Ops1, DL, TLI);
      unsigned OpC =
        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
      return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
    }
  } else if (isa<ConstantExpr>(Ops1)) {
    // If RHS is a constant expression, but the left side isn't, swap the
    // operands and try again.
    Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
    return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
  }

  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}

Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
                                           const DataLayout &DL) {
  assert(Instruction::isUnaryOp(Opcode));

  return ConstantExpr::get(Opcode, Op);
}

Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
                                             Constant *RHS,
                                             const DataLayout &DL) {
  assert(Instruction::isBinaryOp(Opcode));
  if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
    if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
      return C;

  return ConstantExpr::get(Opcode, LHS, RHS);
}

Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
                                        Type *DestTy, const DataLayout &DL) {
  assert(Instruction::isCast(Opcode));
  switch (Opcode) {
  default:
    llvm_unreachable("Missing case");
  case Instruction::PtrToInt:
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
      if (CE->getOpcode() == Instruction::IntToPtr) {
        Constant *Input = CE->getOperand(0);
        unsigned InWidth = Input->getType()->getScalarSizeInBits();
        unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
        if (PtrWidth < InWidth) {
          Constant *Mask =
            ConstantInt::get(CE->getContext(),
                             APInt::getLowBitsSet(InWidth, PtrWidth));
          Input = ConstantExpr::getAnd(Input, Mask);
        }
        // Do a zext or trunc to get to the dest size.
        return ConstantExpr::getIntegerCast(Input, DestTy, false);
      }
    }
    return ConstantExpr::getCast(Opcode, C, DestTy);
  case Instruction::IntToPtr:
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    // the int size is >= the ptr size and the address spaces are the same.
    // This requires knowing the width of a pointer, so it can't be done in
    // ConstantExpr::getCast.
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
      if (CE->getOpcode() == Instruction::PtrToInt) {
        Constant *SrcPtr = CE->getOperand(0);
        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();

        if (MidIntSize >= SrcPtrSize) {
          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
          if (SrcAS == DestTy->getPointerAddressSpace())
            return FoldBitCast(CE->getOperand(0), DestTy, DL);
        }
      }
    }

    return ConstantExpr::getCast(Opcode, C, DestTy);
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::AddrSpaceCast:
      return ConstantExpr::getCast(Opcode, C, DestTy);
  case Instruction::BitCast:
    return FoldBitCast(C, DestTy, DL);
  }
}

Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
                                                       ConstantExpr *CE) {
  if (!CE->getOperand(1)->isNullValue())
    return nullptr;  // Do not allow stepping over the value!

  // Loop over all of the operands, tracking down which value we are
  // addressing.
  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
    C = C->getAggregateElement(CE->getOperand(i));
    if (!C)
      return nullptr;
  }
  return C;
}

Constant *
llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
                                        ArrayRef<Constant *> Indices) {
  // Loop over all of the operands, tracking down which value we are
  // addressing.
  for (Constant *Index : Indices) {
    C = C->getAggregateElement(Index);
    if (!C)
      return nullptr;
  }
  return C;
}

//===----------------------------------------------------------------------===//
//  Constant Folding for Calls
//

bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
  if (Call->isNoBuiltin() || Call->isStrictFP())
    return false;
  switch (F->getIntrinsicID()) {
  case Intrinsic::fabs:
  case Intrinsic::minnum:
  case Intrinsic::maxnum:
  case Intrinsic::minimum:
  case Intrinsic::maximum:
  case Intrinsic::log:
  case Intrinsic::log2:
  case Intrinsic::log10:
  case Intrinsic::exp:
  case Intrinsic::exp2:
  case Intrinsic::floor:
  case Intrinsic::ceil:
  case Intrinsic::sqrt:
  case Intrinsic::sin:
  case Intrinsic::cos:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::nearbyint:
  case Intrinsic::pow:
  case Intrinsic::powi:
  case Intrinsic::bswap:
  case Intrinsic::ctpop:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::fshl:
  case Intrinsic::fshr:
  case Intrinsic::fma:
  case Intrinsic::fmuladd:
  case Intrinsic::copysign:
  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group:
  case Intrinsic::round:
  case Intrinsic::masked_load:
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
  case Intrinsic::sadd_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::usub_sat:
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::convert_from_fp16:
  case Intrinsic::convert_to_fp16:
  case Intrinsic::bitreverse:
  case Intrinsic::x86_sse_cvtss2si:
  case Intrinsic::x86_sse_cvtss2si64:
  case Intrinsic::x86_sse_cvttss2si:
  case Intrinsic::x86_sse_cvttss2si64:
  case Intrinsic::x86_sse2_cvtsd2si:
  case Intrinsic::x86_sse2_cvtsd2si64:
  case Intrinsic::x86_sse2_cvttsd2si:
  case Intrinsic::x86_sse2_cvttsd2si64:
  case Intrinsic::x86_avx512_vcvtss2si32:
  case Intrinsic::x86_avx512_vcvtss2si64:
  case Intrinsic::x86_avx512_cvttss2si:
  case Intrinsic::x86_avx512_cvttss2si64:
  case Intrinsic::x86_avx512_vcvtsd2si32:
  case Intrinsic::x86_avx512_vcvtsd2si64:
  case Intrinsic::x86_avx512_cvttsd2si:
  case Intrinsic::x86_avx512_cvttsd2si64:
  case Intrinsic::x86_avx512_vcvtss2usi32:
  case Intrinsic::x86_avx512_vcvtss2usi64:
  case Intrinsic::x86_avx512_cvttss2usi:
  case Intrinsic::x86_avx512_cvttss2usi64:
  case Intrinsic::x86_avx512_vcvtsd2usi32:
  case Intrinsic::x86_avx512_vcvtsd2usi64:
  case Intrinsic::x86_avx512_cvttsd2usi:
  case Intrinsic::x86_avx512_cvttsd2usi64:
  case Intrinsic::is_constant:
    return true;
  default:
    return false;
  case Intrinsic::not_intrinsic: break;
  }

  if (!F->hasName())
    return false;

  // In these cases, the check of the length is required.  We don't want to
  // return true for a name like "cos\0blah" which strcmp would return equal to
  // "cos", but has length 8.
  StringRef Name = F->getName();
  switch (Name[0]) {
  default:
    return false;
  case 'a':
    return Name == "acos" || Name == "acosf" ||
           Name == "asin" || Name == "asinf" ||
           Name == "atan" || Name == "atanf" ||
           Name == "atan2" || Name == "atan2f";
  case 'c':
    return Name == "ceil" || Name == "ceilf" ||
           Name == "cos" || Name == "cosf" ||
           Name == "cosh" || Name == "coshf";
  case 'e':
    return Name == "exp" || Name == "expf" ||
           Name == "exp2" || Name == "exp2f";
  case 'f':
    return Name == "fabs" || Name == "fabsf" ||
           Name == "floor" || Name == "floorf" ||
           Name == "fmod" || Name == "fmodf";
  case 'l':
    return Name == "log" || Name == "logf" ||
           Name == "log2" || Name == "log2f" ||
           Name == "log10" || Name == "log10f";
  case 'n':
    return Name == "nearbyint" || Name == "nearbyintf";
  case 'p':
    return Name == "pow" || Name == "powf";
  case 'r':
    return Name == "rint" || Name == "rintf" ||
           Name == "round" || Name == "roundf";
  case 's':
    return Name == "sin" || Name == "sinf" ||
           Name == "sinh" || Name == "sinhf" ||
           Name == "sqrt" || Name == "sqrtf";
  case 't':
    return Name == "tan" || Name == "tanf" ||
           Name == "tanh" || Name == "tanhf" ||
           Name == "trunc" || Name == "truncf";
  case '_':
    // Check for various function names that get used for the math functions
    // when the header files are preprocessed with the macro
    // __FINITE_MATH_ONLY__ enabled.
    // The '12' here is the length of the shortest name that can match.
    // We need to check the size before looking at Name[1] and Name[2]
    // so we may as well check a limit that will eliminate mismatches.
    if (Name.size() < 12 || Name[1] != '_')
      return false;
    switch (Name[2]) {
    default:
      return false;
    case 'a':
      return Name == "__acos_finite" || Name == "__acosf_finite" ||
             Name == "__asin_finite" || Name == "__asinf_finite" ||
             Name == "__atan2_finite" || Name == "__atan2f_finite";
    case 'c':
      return Name == "__cosh_finite" || Name == "__coshf_finite";
    case 'e':
      return Name == "__exp_finite" || Name == "__expf_finite" ||
             Name == "__exp2_finite" || Name == "__exp2f_finite";
    case 'l':
      return Name == "__log_finite" || Name == "__logf_finite" ||
             Name == "__log10_finite" || Name == "__log10f_finite";
    case 'p':
      return Name == "__pow_finite" || Name == "__powf_finite";
    case 's':
      return Name == "__sinh_finite" || Name == "__sinhf_finite";
    }
  }
}

namespace {

Constant *GetConstantFoldFPValue(double V, Type *Ty) {
  if (Ty->isHalfTy() || Ty->isFloatTy()) {
    APFloat APF(V);
    bool unused;
    APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
    return ConstantFP::get(Ty->getContext(), APF);
  }
  if (Ty->isDoubleTy())
    return ConstantFP::get(Ty->getContext(), APFloat(V));
  llvm_unreachable("Can only constant fold half/float/double");
}

/// Clear the floating-point exception state.
inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
  feclearexcept(FE_ALL_EXCEPT);
#endif
  errno = 0;
}

/// Test if a floating-point exception was raised.
inline bool llvm_fenv_testexcept() {
  int errno_val = errno;
  if (errno_val == ERANGE || errno_val == EDOM)
    return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
    return true;
#endif
  return false;
}

Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
  llvm_fenv_clearexcept();
  V = NativeFP(V);
  if (llvm_fenv_testexcept()) {
    llvm_fenv_clearexcept();
    return nullptr;
  }

  return GetConstantFoldFPValue(V, Ty);
}

Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
                               double W, Type *Ty) {
  llvm_fenv_clearexcept();
  V = NativeFP(V, W);
  if (llvm_fenv_testexcept()) {
    llvm_fenv_clearexcept();
    return nullptr;
  }

  return GetConstantFoldFPValue(V, Ty);
}

/// Attempt to fold an SSE floating point to integer conversion of a constant
/// floating point. If roundTowardZero is false, the default IEEE rounding is
/// used (toward nearest, ties to even). This matches the behavior of the
/// non-truncating SSE instructions in the default rounding mode. The desired
/// integer type Ty is used to select how many bits are available for the
/// result. Returns null if the conversion cannot be performed, otherwise
/// returns the Constant value resulting from the conversion.
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
                                      Type *Ty, bool IsSigned) {
  // All of these conversion intrinsics form an integer of at most 64bits.
  unsigned ResultWidth = Ty->getIntegerBitWidth();
  assert(ResultWidth <= 64 &&
         "Can only constant fold conversions to 64 and 32 bit ints");

  uint64_t UIntVal;
  bool isExact = false;
  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
                                              : APFloat::rmNearestTiesToEven;
  APFloat::opStatus status =
      Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
                           IsSigned, mode, &isExact);
  if (status != APFloat::opOK &&
      (!roundTowardZero || status != APFloat::opInexact))
    return nullptr;
  return ConstantInt::get(Ty, UIntVal, IsSigned);
}

double getValueAsDouble(ConstantFP *Op) {
  Type *Ty = Op->getType();

  if (Ty->isFloatTy())
    return Op->getValueAPF().convertToFloat();

  if (Ty->isDoubleTy())
    return Op->getValueAPF().convertToDouble();

  bool unused;
  APFloat APF = Op->getValueAPF();
  APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
  return APF.convertToDouble();
}

static bool isManifestConstant(const Constant *c) {
  if (isa<ConstantData>(c)) {
    return true;
  } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
    for (const Value *subc : c->operand_values()) {
      if (!isManifestConstant(cast<Constant>(subc)))
        return false;
    }
    return true;
  }
  return false;
}

static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
    C = &CI->getValue();
    return true;
  }
  if (isa<UndefValue>(Op)) {
    C = nullptr;
    return true;
  }
  return false;
}

static Constant *ConstantFoldScalarCall1(StringRef Name,
                                         Intrinsic::ID IntrinsicID,
                                         Type *Ty,
                                         ArrayRef<Constant *> Operands,
                                         const TargetLibraryInfo *TLI,
                                         const CallBase *Call) {
  assert(Operands.size() == 1 && "Wrong number of operands.");

  if (IntrinsicID == Intrinsic::is_constant) {
    // We know we have a "Constant" argument. But we want to only
    // return true for manifest constants, not those that depend on
    // constants with unknowable values, e.g. GlobalValue or BlockAddress.
    if (isManifestConstant(Operands[0]))
      return ConstantInt::getTrue(Ty->getContext());
    return nullptr;
  }
  if (isa<UndefValue>(Operands[0])) {
    // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
    // ctpop() is between 0 and bitwidth, pick 0 for undef.
    if (IntrinsicID == Intrinsic::cos ||
        IntrinsicID == Intrinsic::ctpop)
      return Constant::getNullValue(Ty);
    if (IntrinsicID == Intrinsic::bswap ||
        IntrinsicID == Intrinsic::bitreverse ||
        IntrinsicID == Intrinsic::launder_invariant_group ||
        IntrinsicID == Intrinsic::strip_invariant_group)
      return Operands[0];
  }

  if (isa<ConstantPointerNull>(Operands[0])) {
    // launder(null) == null == strip(null) iff in addrspace 0
    if (IntrinsicID == Intrinsic::launder_invariant_group ||
        IntrinsicID == Intrinsic::strip_invariant_group) {
      // If instruction is not yet put in a basic block (e.g. when cloning
      // a function during inlining), Call's caller may not be available.
      // So check Call's BB first before querying Call->getCaller.
      const Function *Caller =
          Call->getParent() ? Call->getCaller() : nullptr;
      if (Caller &&
          !NullPointerIsDefined(
              Caller, Operands[0]->getType()->getPointerAddressSpace())) {
        return Operands[0];
      }
      return nullptr;
    }
  }

  if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
    if (IntrinsicID == Intrinsic::convert_to_fp16) {
      APFloat Val(Op->getValueAPF());

      bool lost = false;
      Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);

      return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
    }

    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
      return nullptr;

    // Use internal versions of these intrinsics.
    APFloat U = Op->getValueAPF();

    if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
      U.roundToIntegral(APFloat::rmNearestTiesToEven);
      return ConstantFP::get(Ty->getContext(), U);
    }

    if (IntrinsicID == Intrinsic::round) {
      U.roundToIntegral(APFloat::rmNearestTiesToAway);
      return ConstantFP::get(Ty->getContext(), U);
    }

    if (IntrinsicID == Intrinsic::ceil) {
      U.roundToIntegral(APFloat::rmTowardPositive);
      return ConstantFP::get(Ty->getContext(), U);
    }

    if (IntrinsicID == Intrinsic::floor) {
      U.roundToIntegral(APFloat::rmTowardNegative);
      return ConstantFP::get(Ty->getContext(), U);
    }

    if (IntrinsicID == Intrinsic::trunc) {
      U.roundToIntegral(APFloat::rmTowardZero);
      return ConstantFP::get(Ty->getContext(), U);
    }

    if (IntrinsicID == Intrinsic::fabs) {
      U.clearSign();
      return ConstantFP::get(Ty->getContext(), U);
    }

    /// We only fold functions with finite arguments. Folding NaN and inf is
    /// likely to be aborted with an exception anyway, and some host libms
    /// have known errors raising exceptions.
    if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
      return nullptr;

    /// Currently APFloat versions of these functions do not exist, so we use
    /// the host native double versions.  Float versions are not called
    /// directly but for all these it is true (float)(f((double)arg)) ==
    /// f(arg).  Long double not supported yet.
    double V = getValueAsDouble(Op);

    switch (IntrinsicID) {
      default: break;
      case Intrinsic::log:
        return ConstantFoldFP(log, V, Ty);
      case Intrinsic::log2:
        // TODO: What about hosts that lack a C99 library?
        return ConstantFoldFP(Log2, V, Ty);
      case Intrinsic::log10:
        // TODO: What about hosts that lack a C99 library?
        return ConstantFoldFP(log10, V, Ty);
      case Intrinsic::exp:
        return ConstantFoldFP(exp, V, Ty);
      case Intrinsic::exp2:
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
        return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
      case Intrinsic::sin:
        return ConstantFoldFP(sin, V, Ty);
      case Intrinsic::cos:
        return ConstantFoldFP(cos, V, Ty);
      case Intrinsic::sqrt:
        return ConstantFoldFP(sqrt, V, Ty);
    }

    if (!TLI)
      return nullptr;

    LibFunc Func = NotLibFunc;
    TLI->getLibFunc(Name, Func);
    switch (Func) {
    default:
      break;
    case LibFunc_acos:
    case LibFunc_acosf:
    case LibFunc_acos_finite:
    case LibFunc_acosf_finite:
      if (TLI->has(Func))
        return ConstantFoldFP(acos, V, Ty);
      break;
    case LibFunc_asin:
    case LibFunc_asinf:
    case LibFunc_asin_finite:
    case LibFunc_asinf_finite:
      if (TLI->has(Func))
        return ConstantFoldFP(asin, V, Ty);
      break;
    case LibFunc_atan:
    case LibFunc_atanf:
      if (TLI->has(Func))
        return ConstantFoldFP(atan, V, Ty);
      break;
    case LibFunc_ceil:
    case LibFunc_ceilf:
      if (TLI->has(Func)) {
        U.roundToIntegral(APFloat::rmTowardPositive);
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    case LibFunc_cos:
    case LibFunc_cosf:
      if (TLI->has(Func))
        return ConstantFoldFP(cos, V, Ty);
      break;
    case LibFunc_cosh:
    case LibFunc_coshf:
    case LibFunc_cosh_finite:
    case LibFunc_coshf_finite:
      if (TLI->has(Func))
        return ConstantFoldFP(cosh, V, Ty);
      break;
    case LibFunc_exp:
    case LibFunc_expf:
    case LibFunc_exp_finite:
    case LibFunc_expf_finite:
      if (TLI->has(Func))
        return ConstantFoldFP(exp, V, Ty);
      break;
    case LibFunc_exp2:
    case LibFunc_exp2f:
    case LibFunc_exp2_finite:
    case LibFunc_exp2f_finite:
      if (TLI->has(Func))
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
        return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
      break;
    case LibFunc_fabs:
    case LibFunc_fabsf:
      if (TLI->has(Func)) {
        U.clearSign();
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    case LibFunc_floor:
    case LibFunc_floorf:
      if (TLI->has(Func)) {
        U.roundToIntegral(APFloat::rmTowardNegative);
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    case LibFunc_log:
    case LibFunc_logf:
    case LibFunc_log_finite:
    case LibFunc_logf_finite:
      if (V > 0.0 && TLI->has(Func))
        return ConstantFoldFP(log, V, Ty);
      break;
    case LibFunc_log2:
    case LibFunc_log2f:
    case LibFunc_log2_finite:
    case LibFunc_log2f_finite:
      if (V > 0.0 && TLI->has(Func))
        // TODO: What about hosts that lack a C99 library?
        return ConstantFoldFP(Log2, V, Ty);
      break;
    case LibFunc_log10:
    case LibFunc_log10f:
    case LibFunc_log10_finite:
    case LibFunc_log10f_finite:
      if (V > 0.0 && TLI->has(Func))
        // TODO: What about hosts that lack a C99 library?
        return ConstantFoldFP(log10, V, Ty);
      break;
    case LibFunc_nearbyint:
    case LibFunc_nearbyintf:
    case LibFunc_rint:
    case LibFunc_rintf:
      if (TLI->has(Func)) {
        U.roundToIntegral(APFloat::rmNearestTiesToEven);
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    case LibFunc_round:
    case LibFunc_roundf:
      if (TLI->has(Func)) {
        U.roundToIntegral(APFloat::rmNearestTiesToAway);
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    case LibFunc_sin:
    case LibFunc_sinf:
      if (TLI->has(Func))
        return ConstantFoldFP(sin, V, Ty);
      break;
    case LibFunc_sinh:
    case LibFunc_sinhf:
    case LibFunc_sinh_finite:
    case LibFunc_sinhf_finite:
      if (TLI->has(Func))
        return ConstantFoldFP(sinh, V, Ty);
      break;
    case LibFunc_sqrt:
    case LibFunc_sqrtf:
      if (V >= 0.0 && TLI->has(Func))
        return ConstantFoldFP(sqrt, V, Ty);
      break;
    case LibFunc_tan:
    case LibFunc_tanf:
      if (TLI->has(Func))
        return ConstantFoldFP(tan, V, Ty);
      break;
    case LibFunc_tanh:
    case LibFunc_tanhf:
      if (TLI->has(Func))
        return ConstantFoldFP(tanh, V, Ty);
      break;
    case LibFunc_trunc:
    case LibFunc_truncf:
      if (TLI->has(Func)) {
        U.roundToIntegral(APFloat::rmTowardZero);
        return ConstantFP::get(Ty->getContext(), U);
      }
      break;
    }
    return nullptr;
  }

  if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
    switch (IntrinsicID) {
    case Intrinsic::bswap:
      return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
    case Intrinsic::ctpop:
      return ConstantInt::get(Ty, Op->getValue().countPopulation());
    case Intrinsic::bitreverse:
      return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
    case Intrinsic::convert_from_fp16: {
      APFloat Val(APFloat::IEEEhalf(), Op->getValue());

      bool lost = false;
      APFloat::opStatus status = Val.convert(
          Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);

      // Conversion is always precise.
      (void)status;
      assert(status == APFloat::opOK && !lost &&
             "Precision lost during fp16 constfolding");

      return ConstantFP::get(Ty->getContext(), Val);
    }
    default:
      return nullptr;
    }
  }

  // Support ConstantVector in case we have an Undef in the top.
  if (isa<ConstantVector>(Operands[0]) ||
      isa<ConstantDataVector>(Operands[0])) {
    auto *Op = cast<Constant>(Operands[0]);
    switch (IntrinsicID) {
    default: break;
    case Intrinsic::x86_sse_cvtss2si:
    case Intrinsic::x86_sse_cvtss2si64:
    case Intrinsic::x86_sse2_cvtsd2si:
    case Intrinsic::x86_sse2_cvtsd2si64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/false, Ty,
                                           /*IsSigned*/true);
      break;
    case Intrinsic::x86_sse_cvttss2si:
    case Intrinsic::x86_sse_cvttss2si64:
    case Intrinsic::x86_sse2_cvttsd2si:
    case Intrinsic::x86_sse2_cvttsd2si64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/true, Ty,
                                           /*IsSigned*/true);
      break;
    }
  }

  return nullptr;
}

static Constant *ConstantFoldScalarCall2(StringRef Name,
                                         Intrinsic::ID IntrinsicID,
                                         Type *Ty,
                                         ArrayRef<Constant *> Operands,
                                         const TargetLibraryInfo *TLI,
                                         const CallBase *Call) {
  assert(Operands.size() == 2 && "Wrong number of operands.");

  if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
      return nullptr;
    double Op1V = getValueAsDouble(Op1);

    if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
      if (Op2->getType() != Op1->getType())
        return nullptr;

      double Op2V = getValueAsDouble(Op2);
      if (IntrinsicID == Intrinsic::pow) {
        return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
      }
      if (IntrinsicID == Intrinsic::copysign) {
        APFloat V1 = Op1->getValueAPF();
        const APFloat &V2 = Op2->getValueAPF();
        V1.copySign(V2);
        return ConstantFP::get(Ty->getContext(), V1);
      }

      if (IntrinsicID == Intrinsic::minnum) {
        const APFloat &C1 = Op1->getValueAPF();
        const APFloat &C2 = Op2->getValueAPF();
        return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
      }

      if (IntrinsicID == Intrinsic::maxnum) {
        const APFloat &C1 = Op1->getValueAPF();
        const APFloat &C2 = Op2->getValueAPF();
        return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
      }

      if (IntrinsicID == Intrinsic::minimum) {
        const APFloat &C1 = Op1->getValueAPF();
        const APFloat &C2 = Op2->getValueAPF();
        return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
      }

      if (IntrinsicID == Intrinsic::maximum) {
        const APFloat &C1 = Op1->getValueAPF();
        const APFloat &C2 = Op2->getValueAPF();
        return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
      }

      if (!TLI)
        return nullptr;

      LibFunc Func = NotLibFunc;
      TLI->getLibFunc(Name, Func);
      switch (Func) {
      default:
        break;
      case LibFunc_pow:
      case LibFunc_powf:
      case LibFunc_pow_finite:
      case LibFunc_powf_finite:
        if (TLI->has(Func))
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
        break;
      case LibFunc_fmod:
      case LibFunc_fmodf:
        if (TLI->has(Func)) {
          APFloat V = Op1->getValueAPF();
          if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
            return ConstantFP::get(Ty->getContext(), V);
        }
        break;
      case LibFunc_atan2:
      case LibFunc_atan2f:
      case LibFunc_atan2_finite:
      case LibFunc_atan2f_finite:
        if (TLI->has(Func))
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
        break;
      }
    } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
      if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
        return ConstantFP::get(Ty->getContext(),
                               APFloat((float)std::pow((float)Op1V,
                                               (int)Op2C->getZExtValue())));
      if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
        return ConstantFP::get(Ty->getContext(),
                               APFloat((float)std::pow((float)Op1V,
                                               (int)Op2C->getZExtValue())));
      if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
        return ConstantFP::get(Ty->getContext(),
                               APFloat((double)std::pow((double)Op1V,
                                                 (int)Op2C->getZExtValue())));
    }
    return nullptr;
  }

  if (Operands[0]->getType()->isIntegerTy() &&
      Operands[1]->getType()->isIntegerTy()) {
    const APInt *C0, *C1;
    if (!getConstIntOrUndef(Operands[0], C0) ||
        !getConstIntOrUndef(Operands[1], C1))
      return nullptr;

    switch (IntrinsicID) {
    default: break;
    case Intrinsic::usub_with_overflow:
    case Intrinsic::ssub_with_overflow:
    case Intrinsic::uadd_with_overflow:
    case Intrinsic::sadd_with_overflow:
      // X - undef -> { undef, false }
      // undef - X -> { undef, false }
      // X + undef -> { undef, false }
      // undef + x -> { undef, false }
      if (!C0 || !C1) {
        return ConstantStruct::get(
            cast<StructType>(Ty),
            {UndefValue::get(Ty->getStructElementType(0)),
             Constant::getNullValue(Ty->getStructElementType(1))});
      }
      LLVM_FALLTHROUGH;
    case Intrinsic::smul_with_overflow:
    case Intrinsic::umul_with_overflow: {
      // undef * X -> { 0, false }
      // X * undef -> { 0, false }
      if (!C0 || !C1)
        return Constant::getNullValue(Ty);

      APInt Res;
      bool Overflow;
      switch (IntrinsicID) {
      default: llvm_unreachable("Invalid case");
      case Intrinsic::sadd_with_overflow:
        Res = C0->sadd_ov(*C1, Overflow);
        break;
      case Intrinsic::uadd_with_overflow:
        Res = C0->uadd_ov(*C1, Overflow);
        break;
      case Intrinsic::ssub_with_overflow:
        Res = C0->ssub_ov(*C1, Overflow);
        break;
      case Intrinsic::usub_with_overflow:
        Res = C0->usub_ov(*C1, Overflow);
        break;
      case Intrinsic::smul_with_overflow:
        Res = C0->smul_ov(*C1, Overflow);
        break;
      case Intrinsic::umul_with_overflow:
        Res = C0->umul_ov(*C1, Overflow);
        break;
      }
      Constant *Ops[] = {
        ConstantInt::get(Ty->getContext(), Res),
        ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
      };
      return ConstantStruct::get(cast<StructType>(Ty), Ops);
    }
    case Intrinsic::uadd_sat:
    case Intrinsic::sadd_sat:
      if (!C0 && !C1)
        return UndefValue::get(Ty);
      if (!C0 || !C1)
        return Constant::getAllOnesValue(Ty);
      if (IntrinsicID == Intrinsic::uadd_sat)
        return ConstantInt::get(Ty, C0->uadd_sat(*C1));
      else
        return ConstantInt::get(Ty, C0->sadd_sat(*C1));
    case Intrinsic::usub_sat:
    case Intrinsic::ssub_sat:
      if (!C0 && !C1)
        return UndefValue::get(Ty);
      if (!C0 || !C1)
        return Constant::getNullValue(Ty);
      if (IntrinsicID == Intrinsic::usub_sat)
        return ConstantInt::get(Ty, C0->usub_sat(*C1));
      else
        return ConstantInt::get(Ty, C0->ssub_sat(*C1));
    case Intrinsic::cttz:
    case Intrinsic::ctlz:
      assert(C1 && "Must be constant int");

      // cttz(0, 1) and ctlz(0, 1) are undef.
      if (C1->isOneValue() && (!C0 || C0->isNullValue()))
        return UndefValue::get(Ty);
      if (!C0)
        return Constant::getNullValue(Ty);
      if (IntrinsicID == Intrinsic::cttz)
        return ConstantInt::get(Ty, C0->countTrailingZeros());
      else
        return ConstantInt::get(Ty, C0->countLeadingZeros());
    }

    return nullptr;
  }

  // Support ConstantVector in case we have an Undef in the top.
  if ((isa<ConstantVector>(Operands[0]) ||
       isa<ConstantDataVector>(Operands[0])) &&
      // Check for default rounding mode.
      // FIXME: Support other rounding modes?
      isa<ConstantInt>(Operands[1]) &&
      cast<ConstantInt>(Operands[1])->getValue() == 4) {
    auto *Op = cast<Constant>(Operands[0]);
    switch (IntrinsicID) {
    default: break;
    case Intrinsic::x86_avx512_vcvtss2si32:
    case Intrinsic::x86_avx512_vcvtss2si64:
    case Intrinsic::x86_avx512_vcvtsd2si32:
    case Intrinsic::x86_avx512_vcvtsd2si64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/false, Ty,
                                           /*IsSigned*/true);
      break;
    case Intrinsic::x86_avx512_vcvtss2usi32:
    case Intrinsic::x86_avx512_vcvtss2usi64:
    case Intrinsic::x86_avx512_vcvtsd2usi32:
    case Intrinsic::x86_avx512_vcvtsd2usi64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/false, Ty,
                                           /*IsSigned*/false);
      break;
    case Intrinsic::x86_avx512_cvttss2si:
    case Intrinsic::x86_avx512_cvttss2si64:
    case Intrinsic::x86_avx512_cvttsd2si:
    case Intrinsic::x86_avx512_cvttsd2si64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/true, Ty,
                                           /*IsSigned*/true);
      break;
    case Intrinsic::x86_avx512_cvttss2usi:
    case Intrinsic::x86_avx512_cvttss2usi64:
    case Intrinsic::x86_avx512_cvttsd2usi:
    case Intrinsic::x86_avx512_cvttsd2usi64:
      if (ConstantFP *FPOp =
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
                                           /*roundTowardZero=*/true, Ty,
                                           /*IsSigned*/false);
      break;
    }
  }
  return nullptr;
}

static Constant *ConstantFoldScalarCall3(StringRef Name,
                                         Intrinsic::ID IntrinsicID,
                                         Type *Ty,
                                         ArrayRef<Constant *> Operands,
                                         const TargetLibraryInfo *TLI,
                                         const CallBase *Call) {
  assert(Operands.size() == 3 && "Wrong number of operands.");

  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
      if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
        switch (IntrinsicID) {
        default: break;
        case Intrinsic::fma:
        case Intrinsic::fmuladd: {
          APFloat V = Op1->getValueAPF();
          V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
                             APFloat::rmNearestTiesToEven);
          return ConstantFP::get(Ty->getContext(), V);
        }
        }
      }
    }
  }

  if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
    if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
      if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
        switch (IntrinsicID) {
        default: break;
        case Intrinsic::smul_fix:
        case Intrinsic::smul_fix_sat: {
          // This code performs rounding towards negative infinity in case the
          // result cannot be represented exactly for the given scale. Targets
          // that do care about rounding should use a target hook for specifying
          // how rounding should be done, and provide their own folding to be
          // consistent with rounding. This is the same approach as used by
          // DAGTypeLegalizer::ExpandIntRes_MULFIX.
          APInt Lhs = Op1->getValue();
          APInt Rhs = Op2->getValue();
          unsigned Scale = Op3->getValue().getZExtValue();
          unsigned Width = Lhs.getBitWidth();
          assert(Scale < Width && "Illegal scale.");
          unsigned ExtendedWidth = Width * 2;
          APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
                           Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
          if (IntrinsicID == Intrinsic::smul_fix_sat) {
            APInt MaxValue =
              APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
            APInt MinValue =
              APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
            Product = APIntOps::smin(Product, MaxValue);
            Product = APIntOps::smax(Product, MinValue);
          }
          return ConstantInt::get(Ty->getContext(),
                                  Product.sextOrTrunc(Width));
        }
        }
      }
    }
  }

  if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
    const APInt *C0, *C1, *C2;
    if (!getConstIntOrUndef(Operands[0], C0) ||
        !getConstIntOrUndef(Operands[1], C1) ||
        !getConstIntOrUndef(Operands[2], C2))
      return nullptr;

    bool IsRight = IntrinsicID == Intrinsic::fshr;
    if (!C2)
      return Operands[IsRight ? 1 : 0];
    if (!C0 && !C1)
      return UndefValue::get(Ty);

    // The shift amount is interpreted as modulo the bitwidth. If the shift
    // amount is effectively 0, avoid UB due to oversized inverse shift below.
    unsigned BitWidth = C2->getBitWidth();
    unsigned ShAmt = C2->urem(BitWidth);
    if (!ShAmt)
      return Operands[IsRight ? 1 : 0];

    // (C0 << ShlAmt) | (C1 >> LshrAmt)
    unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
    unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
    if (!C0)
      return ConstantInt::get(Ty, C1->lshr(LshrAmt));
    if (!C1)
      return ConstantInt::get(Ty, C0->shl(ShlAmt));
    return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
  }

  return nullptr;
}

static Constant *ConstantFoldScalarCall(StringRef Name,
                                        Intrinsic::ID IntrinsicID,
                                        Type *Ty,
                                        ArrayRef<Constant *> Operands,
                                        const TargetLibraryInfo *TLI,
                                        const CallBase *Call) {
  if (Operands.size() == 1)
    return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);

  if (Operands.size() == 2)
    return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);

  if (Operands.size() == 3)
    return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);

  return nullptr;
}

static Constant *ConstantFoldVectorCall(StringRef Name,
                                        Intrinsic::ID IntrinsicID,
                                        VectorType *VTy,
                                        ArrayRef<Constant *> Operands,
                                        const DataLayout &DL,
                                        const TargetLibraryInfo *TLI,
                                        const CallBase *Call) {
  SmallVector<Constant *, 4> Result(VTy->getNumElements());
  SmallVector<Constant *, 4> Lane(Operands.size());
  Type *Ty = VTy->getElementType();

  if (IntrinsicID == Intrinsic::masked_load) {
    auto *SrcPtr = Operands[0];
    auto *Mask = Operands[2];
    auto *Passthru = Operands[3];

    Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);

    SmallVector<Constant *, 32> NewElements;
    for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
      auto *MaskElt = Mask->getAggregateElement(I);
      if (!MaskElt)
        break;
      auto *PassthruElt = Passthru->getAggregateElement(I);
      auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
      if (isa<UndefValue>(MaskElt)) {
        if (PassthruElt)
          NewElements.push_back(PassthruElt);
        else if (VecElt)
          NewElements.push_back(VecElt);
        else
          return nullptr;
      }
      if (MaskElt->isNullValue()) {
        if (!PassthruElt)
          return nullptr;
        NewElements.push_back(PassthruElt);
      } else if (MaskElt->isOneValue()) {
        if (!VecElt)
          return nullptr;
        NewElements.push_back(VecElt);
      } else {
        return nullptr;
      }
    }
    if (NewElements.size() != VTy->getNumElements())
      return nullptr;
    return ConstantVector::get(NewElements);
  }

  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
    // Gather a column of constants.
    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
      // Some intrinsics use a scalar type for certain arguments.
      if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
        Lane[J] = Operands[J];
        continue;
      }

      Constant *Agg = Operands[J]->getAggregateElement(I);
      if (!Agg)
        return nullptr;

      Lane[J] = Agg;
    }

    // Use the regular scalar folding to simplify this column.
    Constant *Folded =
        ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
    if (!Folded)
      return nullptr;
    Result[I] = Folded;
  }

  return ConstantVector::get(Result);
}

} // end anonymous namespace

Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
                                 ArrayRef<Constant *> Operands,
                                 const TargetLibraryInfo *TLI) {
  if (Call->isNoBuiltin() || Call->isStrictFP())
    return nullptr;
  if (!F->hasName())
    return nullptr;
  StringRef Name = F->getName();

  Type *Ty = F->getReturnType();

  if (auto *VTy = dyn_cast<VectorType>(Ty))
    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
                                  F->getParent()->getDataLayout(), TLI, Call);

  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
                                Call);
}

bool llvm::isMathLibCallNoop(const CallBase *Call,
                             const TargetLibraryInfo *TLI) {
  // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
  // (and to some extent ConstantFoldScalarCall).
  if (Call->isNoBuiltin() || Call->isStrictFP())
    return false;
  Function *F = Call->getCalledFunction();
  if (!F)
    return false;

  LibFunc Func;
  if (!TLI || !TLI->getLibFunc(*F, Func))
    return false;

  if (Call->getNumArgOperands() == 1) {
    if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
      const APFloat &Op = OpC->getValueAPF();
      switch (Func) {
      case LibFunc_logl:
      case LibFunc_log:
      case LibFunc_logf:
      case LibFunc_log2l:
      case LibFunc_log2:
      case LibFunc_log2f:
      case LibFunc_log10l:
      case LibFunc_log10:
      case LibFunc_log10f:
        return Op.isNaN() || (!Op.isZero() && !Op.isNegative());

      case LibFunc_expl:
      case LibFunc_exp:
      case LibFunc_expf:
        // FIXME: These boundaries are slightly conservative.
        if (OpC->getType()->isDoubleTy())
          return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
        if (OpC->getType()->isFloatTy())
          return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
        break;

      case LibFunc_exp2l:
      case LibFunc_exp2:
      case LibFunc_exp2f:
        // FIXME: These boundaries are slightly conservative.
        if (OpC->getType()->isDoubleTy())
          return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
        if (OpC->getType()->isFloatTy())
          return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
        break;

      case LibFunc_sinl:
      case LibFunc_sin:
      case LibFunc_sinf:
      case LibFunc_cosl:
      case LibFunc_cos:
      case LibFunc_cosf:
        return !Op.isInfinity();

      case LibFunc_tanl:
      case LibFunc_tan:
      case LibFunc_tanf: {
        // FIXME: Stop using the host math library.
        // FIXME: The computation isn't done in the right precision.
        Type *Ty = OpC->getType();
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
          double OpV = getValueAsDouble(OpC);
          return ConstantFoldFP(tan, OpV, Ty) != nullptr;
        }
        break;
      }

      case LibFunc_asinl:
      case LibFunc_asin:
      case LibFunc_asinf:
      case LibFunc_acosl:
      case LibFunc_acos:
      case LibFunc_acosf:
        return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
                   APFloat::cmpLessThan &&
               Op.compare(APFloat(Op.getSemantics(), "1")) !=
                   APFloat::cmpGreaterThan;

      case LibFunc_sinh:
      case LibFunc_cosh:
      case LibFunc_sinhf:
      case LibFunc_coshf:
      case LibFunc_sinhl:
      case LibFunc_coshl:
        // FIXME: These boundaries are slightly conservative.
        if (OpC->getType()->isDoubleTy())
          return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
        if (OpC->getType()->isFloatTy())
          return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
                 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
        break;

      case LibFunc_sqrtl:
      case LibFunc_sqrt:
      case LibFunc_sqrtf:
        return Op.isNaN() || Op.isZero() || !Op.isNegative();

      // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
      // maybe others?
      default:
        break;
      }
    }
  }

  if (Call->getNumArgOperands() == 2) {
    ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
    ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
    if (Op0C && Op1C) {
      const APFloat &Op0 = Op0C->getValueAPF();
      const APFloat &Op1 = Op1C->getValueAPF();

      switch (Func) {
      case LibFunc_powl:
      case LibFunc_pow:
      case LibFunc_powf: {
        // FIXME: Stop using the host math library.
        // FIXME: The computation isn't done in the right precision.
        Type *Ty = Op0C->getType();
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
          if (Ty == Op1C->getType()) {
            double Op0V = getValueAsDouble(Op0C);
            double Op1V = getValueAsDouble(Op1C);
            return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
          }
        }
        break;
      }

      case LibFunc_fmodl:
      case LibFunc_fmod:
      case LibFunc_fmodf:
        return Op0.isNaN() || Op1.isNaN() ||
               (!Op0.isInfinity() && !Op1.isZero());

      default:
        break;
      }
    }
  }

  return false;
}