DivergenceAnalysis.cpp 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
//   Improving Performance of OpenCL on CPUs
//   Ralf Karrenberg and Sebastian Hack
//   CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
//   %cond = icmp slt i32 %tid, 10
//   br i1 %cond, label %then, label %else
// then:
//   br label %merge
// else:
//   br label %merge
// merge:
//   %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
//    non-kernel-entry function and the return value of a function call as
//    divergent.
// 2. memory as black box. It conservatively considers values loaded from
//    generic or local address as divergent. This can be improved by leveraging
//    pointer analysis and/or by modelling non-escaping memory objects in SSA
//    as done in RV.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "divergence-analysis"

// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
    const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
    const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
    : F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
      IsLCSSAForm(IsLCSSAForm) {}

void DivergenceAnalysis::markDivergent(const Value &DivVal) {
  assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
  assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
  DivergentValues.insert(&DivVal);
}

void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
  UniformOverrides.insert(&UniVal);
}

bool DivergenceAnalysis::updateTerminator(const Instruction &Term) const {
  if (Term.getNumSuccessors() <= 1)
    return false;
  if (auto *BranchTerm = dyn_cast<BranchInst>(&Term)) {
    assert(BranchTerm->isConditional());
    return isDivergent(*BranchTerm->getCondition());
  }
  if (auto *SwitchTerm = dyn_cast<SwitchInst>(&Term)) {
    return isDivergent(*SwitchTerm->getCondition());
  }
  if (isa<InvokeInst>(Term)) {
    return false; // ignore abnormal executions through landingpad
  }

  llvm_unreachable("unexpected terminator");
}

bool DivergenceAnalysis::updateNormalInstruction(const Instruction &I) const {
  // TODO function calls with side effects, etc
  for (const auto &Op : I.operands()) {
    if (isDivergent(*Op))
      return true;
  }
  return false;
}

bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
                                             const Value &Val) const {
  const auto *Inst = dyn_cast<const Instruction>(&Val);
  if (!Inst)
    return false;
  // check whether any divergent loop carrying Val terminates before control
  // proceeds to ObservingBlock
  for (const auto *Loop = LI.getLoopFor(Inst->getParent());
       Loop != RegionLoop && !Loop->contains(&ObservingBlock);
       Loop = Loop->getParentLoop()) {
    if (DivergentLoops.find(Loop) != DivergentLoops.end())
      return true;
  }

  return false;
}

bool DivergenceAnalysis::updatePHINode(const PHINode &Phi) const {
  // joining divergent disjoint path in Phi parent block
  if (!Phi.hasConstantOrUndefValue() && isJoinDivergent(*Phi.getParent())) {
    return true;
  }

  // An incoming value could be divergent by itself.
  // Otherwise, an incoming value could be uniform within the loop
  // that carries its definition but it may appear divergent
  // from outside the loop. This happens when divergent loop exits
  // drop definitions of that uniform value in different iterations.
  //
  // for (int i = 0; i < n; ++i) { // 'i' is uniform inside the loop
  //   if (i % thread_id == 0) break;    // divergent loop exit
  // }
  // int divI = i;                 // divI is divergent
  for (size_t i = 0; i < Phi.getNumIncomingValues(); ++i) {
    const auto *InVal = Phi.getIncomingValue(i);
    if (isDivergent(*Phi.getIncomingValue(i)) ||
        isTemporalDivergent(*Phi.getParent(), *InVal)) {
      return true;
    }
  }
  return false;
}

bool DivergenceAnalysis::inRegion(const Instruction &I) const {
  return I.getParent() && inRegion(*I.getParent());
}

bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
  return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}

// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::taintLoopLiveOuts(const BasicBlock &LoopHeader) {
  auto *DivLoop = LI.getLoopFor(&LoopHeader);
  assert(DivLoop && "loopHeader is not actually part of a loop");

  SmallVector<BasicBlock *, 8> TaintStack;
  DivLoop->getExitBlocks(TaintStack);

  // Otherwise potential users of loop-carried values could be anywhere in the
  // dominance region of DivLoop (including its fringes for phi nodes)
  DenseSet<const BasicBlock *> Visited;
  for (auto *Block : TaintStack) {
    Visited.insert(Block);
  }
  Visited.insert(&LoopHeader);

  while (!TaintStack.empty()) {
    auto *UserBlock = TaintStack.back();
    TaintStack.pop_back();

    // don't spread divergence beyond the region
    if (!inRegion(*UserBlock))
      continue;

    assert(!DivLoop->contains(UserBlock) &&
           "irreducible control flow detected");

    // phi nodes at the fringes of the dominance region
    if (!DT.dominates(&LoopHeader, UserBlock)) {
      // all PHI nodes of UserBlock become divergent
      for (auto &Phi : UserBlock->phis()) {
        Worklist.push_back(&Phi);
      }
      continue;
    }

    // taint outside users of values carried by DivLoop
    for (auto &I : *UserBlock) {
      if (isAlwaysUniform(I))
        continue;
      if (isDivergent(I))
        continue;

      for (auto &Op : I.operands()) {
        auto *OpInst = dyn_cast<Instruction>(&Op);
        if (!OpInst)
          continue;
        if (DivLoop->contains(OpInst->getParent())) {
          markDivergent(I);
          pushUsers(I);
          break;
        }
      }
    }

    // visit all blocks in the dominance region
    for (auto *SuccBlock : successors(UserBlock)) {
      if (!Visited.insert(SuccBlock).second) {
        continue;
      }
      TaintStack.push_back(SuccBlock);
    }
  }
}

void DivergenceAnalysis::pushPHINodes(const BasicBlock &Block) {
  for (const auto &Phi : Block.phis()) {
    if (isDivergent(Phi))
      continue;
    Worklist.push_back(&Phi);
  }
}

void DivergenceAnalysis::pushUsers(const Value &V) {
  for (const auto *User : V.users()) {
    const auto *UserInst = dyn_cast<const Instruction>(User);
    if (!UserInst)
      continue;

    if (isDivergent(*UserInst))
      continue;

    // only compute divergent inside loop
    if (!inRegion(*UserInst))
      continue;
    Worklist.push_back(UserInst);
  }
}

bool DivergenceAnalysis::propagateJoinDivergence(const BasicBlock &JoinBlock,
                                                 const Loop *BranchLoop) {
  LLVM_DEBUG(dbgs() << "\tpropJoinDiv " << JoinBlock.getName() << "\n");

  // ignore divergence outside the region
  if (!inRegion(JoinBlock)) {
    return false;
  }

  // push non-divergent phi nodes in JoinBlock to the worklist
  pushPHINodes(JoinBlock);

  // JoinBlock is a divergent loop exit
  if (BranchLoop && !BranchLoop->contains(&JoinBlock)) {
    return true;
  }

  // disjoint-paths divergent at JoinBlock
  markBlockJoinDivergent(JoinBlock);
  return false;
}

void DivergenceAnalysis::propagateBranchDivergence(const Instruction &Term) {
  LLVM_DEBUG(dbgs() << "propBranchDiv " << Term.getParent()->getName() << "\n");

  markDivergent(Term);

  const auto *BranchLoop = LI.getLoopFor(Term.getParent());

  // whether there is a divergent loop exit from BranchLoop (if any)
  bool IsBranchLoopDivergent = false;

  // iterate over all blocks reachable by disjoint from Term within the loop
  // also iterates over loop exits that become divergent due to Term.
  for (const auto *JoinBlock : SDA.join_blocks(Term)) {
    IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
  }

  // Branch loop is a divergent loop due to the divergent branch in Term
  if (IsBranchLoopDivergent) {
    assert(BranchLoop);
    if (!DivergentLoops.insert(BranchLoop).second) {
      return;
    }
    propagateLoopDivergence(*BranchLoop);
  }
}

void DivergenceAnalysis::propagateLoopDivergence(const Loop &ExitingLoop) {
  LLVM_DEBUG(dbgs() << "propLoopDiv " << ExitingLoop.getName() << "\n");

  // don't propagate beyond region
  if (!inRegion(*ExitingLoop.getHeader()))
    return;

  const auto *BranchLoop = ExitingLoop.getParentLoop();

  // Uses of loop-carried values could occur anywhere
  // within the dominance region of the definition. All loop-carried
  // definitions are dominated by the loop header (reducible control).
  // Thus all users have to be in the dominance region of the loop header,
  // except PHI nodes that can also live at the fringes of the dom region
  // (incoming defining value).
  if (!IsLCSSAForm)
    taintLoopLiveOuts(*ExitingLoop.getHeader());

  // whether there is a divergent loop exit from BranchLoop (if any)
  bool IsBranchLoopDivergent = false;

  // iterate over all blocks reachable by disjoint paths from exits of
  // ExitingLoop also iterates over loop exits (of BranchLoop) that in turn
  // become divergent.
  for (const auto *JoinBlock : SDA.join_blocks(ExitingLoop)) {
    IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
  }

  // Branch loop is a divergent due to divergent loop exit in ExitingLoop
  if (IsBranchLoopDivergent) {
    assert(BranchLoop);
    if (!DivergentLoops.insert(BranchLoop).second) {
      return;
    }
    propagateLoopDivergence(*BranchLoop);
  }
}

void DivergenceAnalysis::compute() {
  for (auto *DivVal : DivergentValues) {
    pushUsers(*DivVal);
  }

  // propagate divergence
  while (!Worklist.empty()) {
    const Instruction &I = *Worklist.back();
    Worklist.pop_back();

    // maintain uniformity of overrides
    if (isAlwaysUniform(I))
      continue;

    bool WasDivergent = isDivergent(I);
    if (WasDivergent)
      continue;

    // propagate divergence caused by terminator
    if (I.isTerminator()) {
      if (updateTerminator(I)) {
        // propagate control divergence to affected instructions
        propagateBranchDivergence(I);
        continue;
      }
    }

    // update divergence of I due to divergent operands
    bool DivergentUpd = false;
    const auto *Phi = dyn_cast<const PHINode>(&I);
    if (Phi) {
      DivergentUpd = updatePHINode(*Phi);
    } else {
      DivergentUpd = updateNormalInstruction(I);
    }

    // propagate value divergence to users
    if (DivergentUpd) {
      markDivergent(I);
      pushUsers(I);
    }
  }
}

bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
  return UniformOverrides.find(&V) != UniformOverrides.end();
}

bool DivergenceAnalysis::isDivergent(const Value &V) const {
  return DivergentValues.find(&V) != DivergentValues.end();
}

bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
  Value &V = *U.get();
  Instruction &I = *cast<Instruction>(U.getUser());
  return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}

void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
  if (DivergentValues.empty())
    return;
  // iterate instructions using instructions() to ensure a deterministic order.
  for (auto &I : instructions(F)) {
    if (isDivergent(I))
      OS << "DIVERGENT:" << I << '\n';
  }
}

// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
                                             const DominatorTree &DT,
                                             const PostDominatorTree &PDT,
                                             const LoopInfo &LI,
                                             const TargetTransformInfo &TTI)
    : SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, false) {
  for (auto &I : instructions(F)) {
    if (TTI.isSourceOfDivergence(&I)) {
      DA.markDivergent(I);
    } else if (TTI.isAlwaysUniform(&I)) {
      DA.addUniformOverride(I);
    }
  }
  for (auto &Arg : F.args()) {
    if (TTI.isSourceOfDivergence(&Arg)) {
      DA.markDivergent(Arg);
    }
  }

  DA.compute();
}

bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
  return DA.isDivergent(val);
}

bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
  return DA.isDivergentUse(use);
}

void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
  OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
  DA.print(OS, mod);
  OS << "}\n";
}