Lint.cpp 28.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass statically checks for common and easily-identified constructs
// which produce undefined or likely unintended behavior in LLVM IR.
//
// It is not a guarantee of correctness, in two ways. First, it isn't
// comprehensive. There are checks which could be done statically which are
// not yet implemented. Some of these are indicated by TODO comments, but
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
//
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway. This is the main reason why most
// of these checks live here instead of in the Verifier pass.
//
// Optimization passes may make conditions that this pass checks for more or
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
//
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>

using namespace llvm;

namespace {
  namespace MemRef {
    static const unsigned Read     = 1;
    static const unsigned Write    = 2;
    static const unsigned Callee   = 4;
    static const unsigned Branchee = 8;
  } // end namespace MemRef

  class Lint : public FunctionPass, public InstVisitor<Lint> {
    friend class InstVisitor<Lint>;

    void visitFunction(Function &F);

    void visitCallSite(CallSite CS);
    void visitMemoryReference(Instruction &I, Value *Ptr,
                              uint64_t Size, unsigned Align,
                              Type *Ty, unsigned Flags);
    void visitEHBeginCatch(IntrinsicInst *II);
    void visitEHEndCatch(IntrinsicInst *II);

    void visitCallInst(CallInst &I);
    void visitInvokeInst(InvokeInst &I);
    void visitReturnInst(ReturnInst &I);
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitXor(BinaryOperator &I);
    void visitSub(BinaryOperator &I);
    void visitLShr(BinaryOperator &I);
    void visitAShr(BinaryOperator &I);
    void visitShl(BinaryOperator &I);
    void visitSDiv(BinaryOperator &I);
    void visitUDiv(BinaryOperator &I);
    void visitSRem(BinaryOperator &I);
    void visitURem(BinaryOperator &I);
    void visitAllocaInst(AllocaInst &I);
    void visitVAArgInst(VAArgInst &I);
    void visitIndirectBrInst(IndirectBrInst &I);
    void visitExtractElementInst(ExtractElementInst &I);
    void visitInsertElementInst(InsertElementInst &I);
    void visitUnreachableInst(UnreachableInst &I);

    Value *findValue(Value *V, bool OffsetOk) const;
    Value *findValueImpl(Value *V, bool OffsetOk,
                         SmallPtrSetImpl<Value *> &Visited) const;

  public:
    Module *Mod;
    const DataLayout *DL;
    AliasAnalysis *AA;
    AssumptionCache *AC;
    DominatorTree *DT;
    TargetLibraryInfo *TLI;

    std::string Messages;
    raw_string_ostream MessagesStr;

    static char ID; // Pass identification, replacement for typeid
    Lint() : FunctionPass(ID), MessagesStr(Messages) {
      initializeLintPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
    }
    void print(raw_ostream &O, const Module *M) const override {}

    void WriteValues(ArrayRef<const Value *> Vs) {
      for (const Value *V : Vs) {
        if (!V)
          continue;
        if (isa<Instruction>(V)) {
          MessagesStr << *V << '\n';
        } else {
          V->printAsOperand(MessagesStr, true, Mod);
          MessagesStr << '\n';
        }
      }
    }

    /// A check failed, so printout out the condition and the message.
    ///
    /// This provides a nice place to put a breakpoint if you want to see why
    /// something is not correct.
    void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }

    /// A check failed (with values to print).
    ///
    /// This calls the Message-only version so that the above is easier to set
    /// a breakpoint on.
    template <typename T1, typename... Ts>
    void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
      CheckFailed(Message);
      WriteValues({V1, Vs...});
    }
  };
} // end anonymous namespace

char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
                    false, true)

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
    do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)

// Lint::run - This is the main Analysis entry point for a
// function.
//
bool Lint::runOnFunction(Function &F) {
  Mod = F.getParent();
  DL = &F.getParent()->getDataLayout();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  visit(F);
  dbgs() << MessagesStr.str();
  Messages.clear();
  return false;
}

void Lint::visitFunction(Function &F) {
  // This isn't undefined behavior, it's just a little unusual, and it's a
  // fairly common mistake to neglect to name a function.
  Assert(F.hasName() || F.hasLocalLinkage(),
         "Unusual: Unnamed function with non-local linkage", &F);

  // TODO: Check for irreducible control flow.
}

void Lint::visitCallSite(CallSite CS) {
  Instruction &I = *CS.getInstruction();
  Value *Callee = CS.getCalledValue();

  visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
                       MemRef::Callee);

  if (Function *F = dyn_cast<Function>(findValue(Callee,
                                                 /*OffsetOk=*/false))) {
    Assert(CS.getCallingConv() == F->getCallingConv(),
           "Undefined behavior: Caller and callee calling convention differ",
           &I);

    FunctionType *FT = F->getFunctionType();
    unsigned NumActualArgs = CS.arg_size();

    Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
                          : FT->getNumParams() == NumActualArgs,
           "Undefined behavior: Call argument count mismatches callee "
           "argument count",
           &I);

    Assert(FT->getReturnType() == I.getType(),
           "Undefined behavior: Call return type mismatches "
           "callee return type",
           &I);

    // Check argument types (in case the callee was casted) and attributes.
    // TODO: Verify that caller and callee attributes are compatible.
    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    for (; AI != AE; ++AI) {
      Value *Actual = *AI;
      if (PI != PE) {
        Argument *Formal = &*PI++;
        Assert(Formal->getType() == Actual->getType(),
               "Undefined behavior: Call argument type mismatches "
               "callee parameter type",
               &I);

        // Check that noalias arguments don't alias other arguments. This is
        // not fully precise because we don't know the sizes of the dereferenced
        // memory regions.
        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
          AttributeList PAL = CS.getAttributes();
          unsigned ArgNo = 0;
          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE;
               ++BI, ++ArgNo) {
            // Skip ByVal arguments since they will be memcpy'd to the callee's
            // stack so we're not really passing the pointer anyway.
            if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
              continue;
            // If both arguments are readonly, they have no dependence.
            if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo))
              continue;
            if (AI != BI && (*BI)->getType()->isPointerTy()) {
              AliasResult Result = AA->alias(*AI, *BI);
              Assert(Result != MustAlias && Result != PartialAlias,
                     "Unusual: noalias argument aliases another argument", &I);
            }
          }
        }

        // Check that an sret argument points to valid memory.
        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
          Type *Ty =
            cast<PointerType>(Formal->getType())->getElementType();
          visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
                               DL->getABITypeAlignment(Ty), Ty,
                               MemRef::Read | MemRef::Write);
        }
      }
    }
  }

  if (CS.isCall()) {
    const CallInst *CI = cast<CallInst>(CS.getInstruction());
    if (CI->isTailCall()) {
      const AttributeList &PAL = CI->getAttributes();
      unsigned ArgNo = 0;
      for (Value *Arg : CS.args()) {
        // Skip ByVal arguments since they will be memcpy'd to the callee's
        // stack anyway.
        if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
          continue;
        Value *Obj = findValue(Arg, /*OffsetOk=*/true);
        Assert(!isa<AllocaInst>(Obj),
               "Undefined behavior: Call with \"tail\" keyword references "
               "alloca",
               &I);
      }
    }
  }


  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    switch (II->getIntrinsicID()) {
    default: break;

    // TODO: Check more intrinsics

    case Intrinsic::memcpy: {
      MemCpyInst *MCI = cast<MemCpyInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
                           MCI->getDestAlignment(), nullptr, MemRef::Write);
      visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
                           MCI->getSourceAlignment(), nullptr, MemRef::Read);

      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
      // isn't expressive enough for what we really want to do. Known partial
      // overlap is not distinguished from the case where nothing is known.
      auto Size = LocationSize::unknown();
      if (const ConstantInt *Len =
              dyn_cast<ConstantInt>(findValue(MCI->getLength(),
                                              /*OffsetOk=*/false)))
        if (Len->getValue().isIntN(32))
          Size = LocationSize::precise(Len->getValue().getZExtValue());
      Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
                 MustAlias,
             "Undefined behavior: memcpy source and destination overlap", &I);
      break;
    }
    case Intrinsic::memmove: {
      MemMoveInst *MMI = cast<MemMoveInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
                           MMI->getDestAlignment(), nullptr, MemRef::Write);
      visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
                           MMI->getSourceAlignment(), nullptr, MemRef::Read);
      break;
    }
    case Intrinsic::memset: {
      MemSetInst *MSI = cast<MemSetInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
                           MSI->getDestAlignment(), nullptr, MemRef::Write);
      break;
    }

    case Intrinsic::vastart:
      Assert(I.getParent()->getParent()->isVarArg(),
             "Undefined behavior: va_start called in a non-varargs function",
             &I);

      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;
    case Intrinsic::vacopy:
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Write);
      visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read);
      break;
    case Intrinsic::vaend:
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;

    case Intrinsic::stackrestore:
      // Stackrestore doesn't read or write memory, but it sets the
      // stack pointer, which the compiler may read from or write to
      // at any time, so check it for both readability and writeability.
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;
    }
}

void Lint::visitCallInst(CallInst &I) {
  return visitCallSite(&I);
}

void Lint::visitInvokeInst(InvokeInst &I) {
  return visitCallSite(&I);
}

void Lint::visitReturnInst(ReturnInst &I) {
  Function *F = I.getParent()->getParent();
  Assert(!F->doesNotReturn(),
         "Unusual: Return statement in function with noreturn attribute", &I);

  if (Value *V = I.getReturnValue()) {
    Value *Obj = findValue(V, /*OffsetOk=*/true);
    Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
  }
}

// TODO: Check that the reference is in bounds.
// TODO: Check readnone/readonly function attributes.
void Lint::visitMemoryReference(Instruction &I,
                                Value *Ptr, uint64_t Size, unsigned Align,
                                Type *Ty, unsigned Flags) {
  // If no memory is being referenced, it doesn't matter if the pointer
  // is valid.
  if (Size == 0)
    return;

  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
  Assert(!isa<ConstantPointerNull>(UnderlyingObject),
         "Undefined behavior: Null pointer dereference", &I);
  Assert(!isa<UndefValue>(UnderlyingObject),
         "Undefined behavior: Undef pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
         "Unusual: All-ones pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isOne(),
         "Unusual: Address one pointer dereference", &I);

  if (Flags & MemRef::Write) {
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
      Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
             &I);
    Assert(!isa<Function>(UnderlyingObject) &&
               !isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Write to text section", &I);
  }
  if (Flags & MemRef::Read) {
    Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
           &I);
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Load from block address", &I);
  }
  if (Flags & MemRef::Callee) {
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Call to block address", &I);
  }
  if (Flags & MemRef::Branchee) {
    Assert(!isa<Constant>(UnderlyingObject) ||
               isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Branch to non-blockaddress", &I);
  }

  // Check for buffer overflows and misalignment.
  // Only handles memory references that read/write something simple like an
  // alloca instruction or a global variable.
  int64_t Offset = 0;
  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    // something we can handle and if so extract the size of this base object
    // along with its alignment.
    uint64_t BaseSize = MemoryLocation::UnknownSize;
    unsigned BaseAlign = 0;

    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
      Type *ATy = AI->getAllocatedType();
      if (!AI->isArrayAllocation() && ATy->isSized())
        BaseSize = DL->getTypeAllocSize(ATy);
      BaseAlign = AI->getAlignment();
      if (BaseAlign == 0 && ATy->isSized())
        BaseAlign = DL->getABITypeAlignment(ATy);
    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
      // If the global may be defined differently in another compilation unit
      // then don't warn about funky memory accesses.
      if (GV->hasDefinitiveInitializer()) {
        Type *GTy = GV->getValueType();
        if (GTy->isSized())
          BaseSize = DL->getTypeAllocSize(GTy);
        BaseAlign = GV->getAlignment();
        if (BaseAlign == 0 && GTy->isSized())
          BaseAlign = DL->getABITypeAlignment(GTy);
      }
    }

    // Accesses from before the start or after the end of the object are not
    // defined.
    Assert(Size == MemoryLocation::UnknownSize ||
               BaseSize == MemoryLocation::UnknownSize ||
               (Offset >= 0 && Offset + Size <= BaseSize),
           "Undefined behavior: Buffer overflow", &I);

    // Accesses that say that the memory is more aligned than it is are not
    // defined.
    if (Align == 0 && Ty && Ty->isSized())
      Align = DL->getABITypeAlignment(Ty);
    Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
           "Undefined behavior: Memory reference address is misaligned", &I);
  }
}

void Lint::visitLoadInst(LoadInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       DL->getTypeStoreSize(I.getType()), I.getAlignment(),
                       I.getType(), MemRef::Read);
}

void Lint::visitStoreInst(StoreInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       DL->getTypeStoreSize(I.getOperand(0)->getType()),
                       I.getAlignment(),
                       I.getOperand(0)->getType(), MemRef::Write);
}

void Lint::visitXor(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: xor(undef, undef)", &I);
}

void Lint::visitSub(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: sub(undef, undef)", &I);
}

void Lint::visitLShr(BinaryOperator &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitAShr(BinaryOperator &I) {
  if (ConstantInt *CI =
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitShl(BinaryOperator &I) {
  if (ConstantInt *CI =
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
                   AssumptionCache *AC) {
  // Assume undef could be zero.
  if (isa<UndefValue>(V))
    return true;

  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
  if (!VecTy) {
    KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
    return Known.isZero();
  }

  // Per-component check doesn't work with zeroinitializer
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (C->isZeroValue())
    return true;

  // For a vector, KnownZero will only be true if all values are zero, so check
  // this per component
  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    Constant *Elem = C->getAggregateElement(I);
    if (isa<UndefValue>(Elem))
      return true;

    KnownBits Known = computeKnownBits(Elem, DL);
    if (Known.isZero())
      return true;
  }

  return false;
}

void Lint::visitSDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitUDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitSRem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitURem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitAllocaInst(AllocaInst &I) {
  if (isa<ConstantInt>(I.getArraySize()))
    // This isn't undefined behavior, it's just an obvious pessimization.
    Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
           "Pessimization: Static alloca outside of entry block", &I);

  // TODO: Check for an unusual size (MSB set?)
}

void Lint::visitVAArgInst(VAArgInst &I) {
  visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
                       nullptr, MemRef::Read | MemRef::Write);
}

void Lint::visitIndirectBrInst(IndirectBrInst &I) {
  visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
                       nullptr, MemRef::Branchee);

  Assert(I.getNumDestinations() != 0,
         "Undefined behavior: indirectbr with no destinations", &I);
}

void Lint::visitExtractElementInst(ExtractElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
           "Undefined result: extractelement index out of range", &I);
}

void Lint::visitInsertElementInst(InsertElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getType()->getNumElements()),
           "Undefined result: insertelement index out of range", &I);
}

void Lint::visitUnreachableInst(UnreachableInst &I) {
  // This isn't undefined behavior, it's merely suspicious.
  Assert(&I == &I.getParent()->front() ||
             std::prev(I.getIterator())->mayHaveSideEffects(),
         "Unusual: unreachable immediately preceded by instruction without "
         "side effects",
         &I);
}

/// findValue - Look through bitcasts and simple memory reference patterns
/// to identify an equivalent, but more informative, value.  If OffsetOk
/// is true, look through getelementptrs with non-zero offsets too.
///
/// Most analysis passes don't require this logic, because instcombine
/// will simplify most of these kinds of things away. But it's a goal of
/// this Lint pass to be useful even on non-optimized IR.
Value *Lint::findValue(Value *V, bool OffsetOk) const {
  SmallPtrSet<Value *, 4> Visited;
  return findValueImpl(V, OffsetOk, Visited);
}

/// findValueImpl - Implementation helper for findValue.
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
                           SmallPtrSetImpl<Value *> &Visited) const {
  // Detect self-referential values.
  if (!Visited.insert(V).second)
    return UndefValue::get(V->getType());

  // TODO: Look through sext or zext cast, when the result is known to
  // be interpreted as signed or unsigned, respectively.
  // TODO: Look through eliminable cast pairs.
  // TODO: Look through calls with unique return values.
  // TODO: Look through vector insert/extract/shuffle.
  V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    BasicBlock::iterator BBI = L->getIterator();
    BasicBlock *BB = L->getParent();
    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    for (;;) {
      if (!VisitedBlocks.insert(BB).second)
        break;
      if (Value *U =
          FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
        return findValueImpl(U, OffsetOk, Visited);
      if (BBI != BB->begin()) break;
      BB = BB->getUniquePredecessor();
      if (!BB) break;
      BBI = BB->end();
    }
  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (Value *W = PN->hasConstantValue())
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    if (CI->isNoopCast(*DL))
      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
                                     Ex->getIndices()))
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    // Same as above, but for ConstantExpr instead of Instruction.
    if (Instruction::isCast(CE->getOpcode())) {
      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                               CE->getOperand(0)->getType(), CE->getType(),
                               *DL))
        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    } else if (CE->getOpcode() == Instruction::ExtractValue) {
      ArrayRef<unsigned> Indices = CE->getIndices();
      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
        if (W != V)
          return findValueImpl(W, OffsetOk, Visited);
    }
  }

  // As a last resort, try SimplifyInstruction or constant folding.
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
      return findValueImpl(W, OffsetOk, Visited);
  } else if (auto *C = dyn_cast<Constant>(V)) {
    if (Value *W = ConstantFoldConstant(C, *DL, TLI))
      if (W && W != V)
        return findValueImpl(W, OffsetOk, Visited);
  }

  return V;
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createLintPass() {
  return new Lint();
}

/// lintFunction - Check a function for errors, printing messages on stderr.
///
void llvm::lintFunction(const Function &f) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot lint external functions");

  legacy::FunctionPassManager FPM(F.getParent());
  Lint *V = new Lint();
  FPM.add(V);
  FPM.run(F);
}

/// lintModule - Check a module for errors, printing messages on stderr.
///
void llvm::lintModule(const Module &M) {
  legacy::PassManager PM;
  Lint *V = new Lint();
  PM.add(V);
  PM.run(const_cast<Module&>(M));
}