Loads.cpp 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
//===- Loads.cpp - Local load analysis ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines simple local analyses for load instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"

using namespace llvm;

static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
  if (const MaybeAlign PA = Base->getPointerAlignment(DL))
    return *PA;
  Type *const Ty = Base->getType()->getPointerElementType();
  if (!Ty->isSized())
    return None;
  return Align(DL.getABITypeAlignment(Ty));
}

static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
                      const DataLayout &DL) {
  if (MaybeAlign BA = getBaseAlign(Base, DL)) {
    const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
    const APInt APAlign(Offset.getBitWidth(), Alignment.value());
    assert(APAlign.isPowerOf2() && "must be a power of 2!");
    return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
  }
  return false;
}

/// Test if V is always a pointer to allocated and suitably aligned memory for
/// a simple load or store.
static bool isDereferenceableAndAlignedPointer(
    const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
    const Instruction *CtxI, const DominatorTree *DT,
    SmallPtrSetImpl<const Value *> &Visited) {
  // Already visited?  Bail out, we've likely hit unreachable code.
  if (!Visited.insert(V).second)
    return false;

  // Note that it is not safe to speculate into a malloc'd region because
  // malloc may return null.

  // bitcast instructions are no-ops as far as dereferenceability is concerned.
  if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
    return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
                                              Size, DL, CtxI, DT, Visited);

  bool CheckForNonNull = false;
  APInt KnownDerefBytes(Size.getBitWidth(),
                        V->getPointerDereferenceableBytes(DL, CheckForNonNull));
  if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
    if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
      // As we recursed through GEPs to get here, we've incrementally checked
      // that each step advanced by a multiple of the alignment. If our base is
      // properly aligned, then the original offset accessed must also be.  
      Type *Ty = V->getType();
      assert(Ty->isSized() && "must be sized");
      APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
      return isAligned(V, Offset, Alignment, DL);
    }

  // For GEPs, determine if the indexing lands within the allocated object.
  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    const Value *Base = GEP->getPointerOperand();

    APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
    if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
        !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
             .isMinValue())
      return false;

    // If the base pointer is dereferenceable for Offset+Size bytes, then the
    // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
    // pointer is aligned to Align bytes, and the Offset is divisible by Align
    // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
    // aligned to Align bytes.

    // Offset and Size may have different bit widths if we have visited an
    // addrspacecast, so we can't do arithmetic directly on the APInt values.
    return isDereferenceableAndAlignedPointer(
        Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
        CtxI, DT, Visited);
  }

  // For gc.relocate, look through relocations
  if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
    return isDereferenceableAndAlignedPointer(
        RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited);

  if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
    return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
                                              Size, DL, CtxI, DT, Visited);

  if (const auto *Call = dyn_cast<CallBase>(V))
    if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
      return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
                                                DT, Visited);

  // If we don't know, assume the worst.
  return false;
}

bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
                                              const APInt &Size,
                                              const DataLayout &DL,
                                              const Instruction *CtxI,
                                              const DominatorTree *DT) {
  // Note: At the moment, Size can be zero.  This ends up being interpreted as
  // a query of whether [Base, V] is dereferenceable and V is aligned (since
  // that's what the implementation happened to do).  It's unclear if this is
  // the desired semantic, but at least SelectionDAG does exercise this case.  
  
  SmallPtrSet<const Value *, 32> Visited;
  return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
                                              Visited);
}

bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
                                              MaybeAlign MA,
                                              const DataLayout &DL,
                                              const Instruction *CtxI,
                                              const DominatorTree *DT) {
  if (!Ty->isSized())
    return false;
  
  // When dereferenceability information is provided by a dereferenceable
  // attribute, we know exactly how many bytes are dereferenceable. If we can
  // determine the exact offset to the attributed variable, we can use that
  // information here.

  // Require ABI alignment for loads without alignment specification
  const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
  APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
                   DL.getTypeStoreSize(Ty));
  return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
                                            DT);
}

bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
                                    const DataLayout &DL,
                                    const Instruction *CtxI,
                                    const DominatorTree *DT) {
  return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT);
}

/// Test if A and B will obviously have the same value.
///
/// This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// \code
///   %t0 = getelementptr \@a, 0, 3
///   store i32 0, i32* %t0
///   %t1 = getelementptr \@a, 0, 3
///   %t2 = load i32* %t1
/// \endcode
///
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
  // Test if the values are trivially equivalent.
  if (A == B)
    return true;

  // Test if the values come from identical arithmetic instructions.
  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
  // this function is only used when one address use dominates the
  // other, which means that they'll always either have the same
  // value or one of them will have an undefined value.
  if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
      isa<GetElementPtrInst>(A))
    if (const Instruction *BI = dyn_cast<Instruction>(B))
      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
        return true;

  // Otherwise they may not be equivalent.
  return false;
}

bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
                                             ScalarEvolution &SE,
                                             DominatorTree &DT) {
  auto &DL = LI->getModule()->getDataLayout();
  Value *Ptr = LI->getPointerOperand();

  APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
                DL.getTypeStoreSize(LI->getType()));
  const Align Alignment = DL.getValueOrABITypeAlignment(
      MaybeAlign(LI->getAlignment()), LI->getType());

  Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();

  // If given a uniform (i.e. non-varying) address, see if we can prove the
  // access is safe within the loop w/o needing predication.
  if (L->isLoopInvariant(Ptr))
    return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
                                              HeaderFirstNonPHI, &DT);

  // Otherwise, check to see if we have a repeating access pattern where we can
  // prove that all accesses are well aligned and dereferenceable.
  auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
  if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
    return false;
  auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
  if (!Step)
    return false;
  // TODO: generalize to access patterns which have gaps
  if (Step->getAPInt() != EltSize)
    return false;

  // TODO: If the symbolic trip count has a small bound (max count), we might
  // be able to prove safety.
  auto TC = SE.getSmallConstantTripCount(L);
  if (!TC)
    return false;

  const APInt AccessSize = TC * EltSize;

  auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
  if (!StartS)
    return false;
  assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
  Value *Base = StartS->getValue();

  // For the moment, restrict ourselves to the case where the access size is a
  // multiple of the requested alignment and the base is aligned.
  // TODO: generalize if a case found which warrants
  if (EltSize.urem(Alignment.value()) != 0)
    return false;
  return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
                                            HeaderFirstNonPHI, &DT);
}

/// Check if executing a load of this pointer value cannot trap.
///
/// If DT and ScanFrom are specified this method performs context-sensitive
/// analysis and returns true if it is safe to load immediately before ScanFrom.
///
/// If it is not obviously safe to load from the specified pointer, we do
/// a quick local scan of the basic block containing \c ScanFrom, to determine
/// if the address is already accessed.
///
/// This uses the pointee type to determine how many bytes need to be safe to
/// load from the pointer.
bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
                                       const DataLayout &DL,
                                       Instruction *ScanFrom,
                                       const DominatorTree *DT) {
  // Zero alignment means that the load has the ABI alignment for the target
  const Align Alignment =
      DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());

  // If DT is not specified we can't make context-sensitive query
  const Instruction* CtxI = DT ? ScanFrom : nullptr;
  if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
    return true;

  if (!ScanFrom)
    return false;

  if (Size.getBitWidth() > 64)
    return false;
  const uint64_t LoadSize = Size.getZExtValue();

  // Otherwise, be a little bit aggressive by scanning the local block where we
  // want to check to see if the pointer is already being loaded or stored
  // from/to.  If so, the previous load or store would have already trapped,
  // so there is no harm doing an extra load (also, CSE will later eliminate
  // the load entirely).
  BasicBlock::iterator BBI = ScanFrom->getIterator(),
                       E = ScanFrom->getParent()->begin();

  // We can at least always strip pointer casts even though we can't use the
  // base here.
  V = V->stripPointerCasts();

  while (BBI != E) {
    --BBI;

    // If we see a free or a call which may write to memory (i.e. which might do
    // a free) the pointer could be marked invalid.
    if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
        !isa<DbgInfoIntrinsic>(BBI))
      return false;

    Value *AccessedPtr;
    MaybeAlign MaybeAccessedAlign;
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
      // Ignore volatile loads. The execution of a volatile load cannot
      // be used to prove an address is backed by regular memory; it can,
      // for example, point to an MMIO register.
      if (LI->isVolatile())
        continue;
      AccessedPtr = LI->getPointerOperand();
      MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
      // Ignore volatile stores (see comment for loads).
      if (SI->isVolatile())
        continue;
      AccessedPtr = SI->getPointerOperand();
      MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
    } else
      continue;

    Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();

    const Align AccessedAlign =
        DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
    if (AccessedAlign < Alignment)
      continue;

    // Handle trivial cases.
    if (AccessedPtr == V &&
        LoadSize <= DL.getTypeStoreSize(AccessedTy))
      return true;

    if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
        LoadSize <= DL.getTypeStoreSize(AccessedTy))
      return true;
  }
  return false;
}

bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
                                       const DataLayout &DL,
                                       Instruction *ScanFrom,
                                       const DominatorTree *DT) {
  APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
  return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
}

  /// DefMaxInstsToScan - the default number of maximum instructions
/// to scan in the block, used by FindAvailableLoadedValue().
/// FindAvailableLoadedValue() was introduced in r60148, to improve jump
/// threading in part by eliminating partially redundant loads.
/// At that point, the value of MaxInstsToScan was already set to '6'
/// without documented explanation.
cl::opt<unsigned>
llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
  cl::desc("Use this to specify the default maximum number of instructions "
           "to scan backward from a given instruction, when searching for "
           "available loaded value"));

Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
                                      BasicBlock *ScanBB,
                                      BasicBlock::iterator &ScanFrom,
                                      unsigned MaxInstsToScan,
                                      AliasAnalysis *AA, bool *IsLoad,
                                      unsigned *NumScanedInst) {
  // Don't CSE load that is volatile or anything stronger than unordered.
  if (!Load->isUnordered())
    return nullptr;

  return FindAvailablePtrLoadStore(
      Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
      ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
}

Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
                                       bool AtLeastAtomic, BasicBlock *ScanBB,
                                       BasicBlock::iterator &ScanFrom,
                                       unsigned MaxInstsToScan,
                                       AliasAnalysis *AA, bool *IsLoadCSE,
                                       unsigned *NumScanedInst) {
  if (MaxInstsToScan == 0)
    MaxInstsToScan = ~0U;

  const DataLayout &DL = ScanBB->getModule()->getDataLayout();
  Value *StrippedPtr = Ptr->stripPointerCasts();

  while (ScanFrom != ScanBB->begin()) {
    // We must ignore debug info directives when counting (otherwise they
    // would affect codegen).
    Instruction *Inst = &*--ScanFrom;
    if (isa<DbgInfoIntrinsic>(Inst))
      continue;

    // Restore ScanFrom to expected value in case next test succeeds
    ScanFrom++;

    if (NumScanedInst)
      ++(*NumScanedInst);

    // Don't scan huge blocks.
    if (MaxInstsToScan-- == 0)
      return nullptr;

    --ScanFrom;
    // If this is a load of Ptr, the loaded value is available.
    // (This is true even if the load is volatile or atomic, although
    // those cases are unlikely.)
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
      if (AreEquivalentAddressValues(
              LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
          CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {

        // We can value forward from an atomic to a non-atomic, but not the
        // other way around.
        if (LI->isAtomic() < AtLeastAtomic)
          return nullptr;

        if (IsLoadCSE)
            *IsLoadCSE = true;
        return LI;
      }

    // Try to get the store size for the type.
    auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));

    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
      // If this is a store through Ptr, the value is available!
      // (This is true even if the store is volatile or atomic, although
      // those cases are unlikely.)
      if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
          CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
                                               AccessTy, DL)) {

        // We can value forward from an atomic to a non-atomic, but not the
        // other way around.
        if (SI->isAtomic() < AtLeastAtomic)
          return nullptr;

        if (IsLoadCSE)
          *IsLoadCSE = false;
        return SI->getOperand(0);
      }

      // If both StrippedPtr and StorePtr reach all the way to an alloca or
      // global and they are different, ignore the store. This is a trivial form
      // of alias analysis that is important for reg2mem'd code.
      if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
          (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
          StrippedPtr != StorePtr)
        continue;

      // If we have alias analysis and it says the store won't modify the loaded
      // value, ignore the store.
      if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
        continue;

      // Otherwise the store that may or may not alias the pointer, bail out.
      ++ScanFrom;
      return nullptr;
    }

    // If this is some other instruction that may clobber Ptr, bail out.
    if (Inst->mayWriteToMemory()) {
      // If alias analysis claims that it really won't modify the load,
      // ignore it.
      if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
        continue;

      // May modify the pointer, bail out.
      ++ScanFrom;
      return nullptr;
    }
  }

  // Got to the start of the block, we didn't find it, but are done for this
  // block.
  return nullptr;
}