LoopAccessAnalysis.cpp 93.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the loop memory dependence that was originally
// developed for the loop vectorizer.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-accesses"

static cl::opt<unsigned, true>
VectorizationFactor("force-vector-width", cl::Hidden,
                    cl::desc("Sets the SIMD width. Zero is autoselect."),
                    cl::location(VectorizerParams::VectorizationFactor));
unsigned VectorizerParams::VectorizationFactor;

static cl::opt<unsigned, true>
VectorizationInterleave("force-vector-interleave", cl::Hidden,
                        cl::desc("Sets the vectorization interleave count. "
                                 "Zero is autoselect."),
                        cl::location(
                            VectorizerParams::VectorizationInterleave));
unsigned VectorizerParams::VectorizationInterleave;

static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
    "runtime-memory-check-threshold", cl::Hidden,
    cl::desc("When performing memory disambiguation checks at runtime do not "
             "generate more than this number of comparisons (default = 8)."),
    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;

/// The maximum iterations used to merge memory checks
static cl::opt<unsigned> MemoryCheckMergeThreshold(
    "memory-check-merge-threshold", cl::Hidden,
    cl::desc("Maximum number of comparisons done when trying to merge "
             "runtime memory checks. (default = 100)"),
    cl::init(100));

/// Maximum SIMD width.
const unsigned VectorizerParams::MaxVectorWidth = 64;

/// We collect dependences up to this threshold.
static cl::opt<unsigned>
    MaxDependences("max-dependences", cl::Hidden,
                   cl::desc("Maximum number of dependences collected by "
                            "loop-access analysis (default = 100)"),
                   cl::init(100));

/// This enables versioning on the strides of symbolically striding memory
/// accesses in code like the following.
///   for (i = 0; i < N; ++i)
///     A[i * Stride1] += B[i * Stride2] ...
///
/// Will be roughly translated to
///    if (Stride1 == 1 && Stride2 == 1) {
///      for (i = 0; i < N; i+=4)
///       A[i:i+3] += ...
///    } else
///      ...
static cl::opt<bool> EnableMemAccessVersioning(
    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    cl::desc("Enable symbolic stride memory access versioning"));

/// Enable store-to-load forwarding conflict detection. This option can
/// be disabled for correctness testing.
static cl::opt<bool> EnableForwardingConflictDetection(
    "store-to-load-forwarding-conflict-detection", cl::Hidden,
    cl::desc("Enable conflict detection in loop-access analysis"),
    cl::init(true));

bool VectorizerParams::isInterleaveForced() {
  return ::VectorizationInterleave.getNumOccurrences() > 0;
}

Value *llvm::stripIntegerCast(Value *V) {
  if (auto *CI = dyn_cast<CastInst>(V))
    if (CI->getOperand(0)->getType()->isIntegerTy())
      return CI->getOperand(0);
  return V;
}

const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
                                            const ValueToValueMap &PtrToStride,
                                            Value *Ptr, Value *OrigPtr) {
  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);

  // If there is an entry in the map return the SCEV of the pointer with the
  // symbolic stride replaced by one.
  ValueToValueMap::const_iterator SI =
      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
  if (SI != PtrToStride.end()) {
    Value *StrideVal = SI->second;

    // Strip casts.
    StrideVal = stripIntegerCast(StrideVal);

    ScalarEvolution *SE = PSE.getSE();
    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
    const auto *CT =
        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));

    PSE.addPredicate(*SE->getEqualPredicate(U, CT));
    auto *Expr = PSE.getSCEV(Ptr);

    LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
                      << " by: " << *Expr << "\n");
    return Expr;
  }

  // Otherwise, just return the SCEV of the original pointer.
  return OrigSCEV;
}

/// Calculate Start and End points of memory access.
/// Let's assume A is the first access and B is a memory access on N-th loop
/// iteration. Then B is calculated as:
///   B = A + Step*N .
/// Step value may be positive or negative.
/// N is a calculated back-edge taken count:
///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
/// Start and End points are calculated in the following way:
/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
/// where SizeOfElt is the size of single memory access in bytes.
///
/// There is no conflict when the intervals are disjoint:
/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
                                    unsigned DepSetId, unsigned ASId,
                                    const ValueToValueMap &Strides,
                                    PredicatedScalarEvolution &PSE) {
  // Get the stride replaced scev.
  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
  ScalarEvolution *SE = PSE.getSE();

  const SCEV *ScStart;
  const SCEV *ScEnd;

  if (SE->isLoopInvariant(Sc, Lp))
    ScStart = ScEnd = Sc;
  else {
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
    assert(AR && "Invalid addrec expression");
    const SCEV *Ex = PSE.getBackedgeTakenCount();

    ScStart = AR->getStart();
    ScEnd = AR->evaluateAtIteration(Ex, *SE);
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // For expressions with negative step, the upper bound is ScStart and the
    // lower bound is ScEnd.
    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
      if (CStep->getValue()->isNegative())
        std::swap(ScStart, ScEnd);
    } else {
      // Fallback case: the step is not constant, but we can still
      // get the upper and lower bounds of the interval by using min/max
      // expressions.
      ScStart = SE->getUMinExpr(ScStart, ScEnd);
      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
    }
    // Add the size of the pointed element to ScEnd.
    unsigned EltSize =
      Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
    const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
    ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
  }

  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
}

SmallVector<RuntimePointerChecking::PointerCheck, 4>
RuntimePointerChecking::generateChecks() const {
  SmallVector<PointerCheck, 4> Checks;

  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];

      if (needsChecking(CGI, CGJ))
        Checks.push_back(std::make_pair(&CGI, &CGJ));
    }
  }
  return Checks;
}

void RuntimePointerChecking::generateChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  assert(Checks.empty() && "Checks is not empty");
  groupChecks(DepCands, UseDependencies);
  Checks = generateChecks();
}

bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
                                           const CheckingPtrGroup &N) const {
  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
      if (needsChecking(M.Members[I], N.Members[J]))
        return true;
  return false;
}

/// Compare \p I and \p J and return the minimum.
/// Return nullptr in case we couldn't find an answer.
static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
                                   ScalarEvolution *SE) {
  const SCEV *Diff = SE->getMinusSCEV(J, I);
  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);

  if (!C)
    return nullptr;
  if (C->getValue()->isNegative())
    return J;
  return I;
}

bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
  const SCEV *Start = RtCheck.Pointers[Index].Start;
  const SCEV *End = RtCheck.Pointers[Index].End;

  // Compare the starts and ends with the known minimum and maximum
  // of this set. We need to know how we compare against the min/max
  // of the set in order to be able to emit memchecks.
  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
  if (!Min0)
    return false;

  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
  if (!Min1)
    return false;

  // Update the low bound  expression if we've found a new min value.
  if (Min0 == Start)
    Low = Start;

  // Update the high bound expression if we've found a new max value.
  if (Min1 != End)
    High = End;

  Members.push_back(Index);
  return true;
}

void RuntimePointerChecking::groupChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  // We build the groups from dependency candidates equivalence classes
  // because:
  //    - We know that pointers in the same equivalence class share
  //      the same underlying object and therefore there is a chance
  //      that we can compare pointers
  //    - We wouldn't be able to merge two pointers for which we need
  //      to emit a memcheck. The classes in DepCands are already
  //      conveniently built such that no two pointers in the same
  //      class need checking against each other.

  // We use the following (greedy) algorithm to construct the groups
  // For every pointer in the equivalence class:
  //   For each existing group:
  //   - if the difference between this pointer and the min/max bounds
  //     of the group is a constant, then make the pointer part of the
  //     group and update the min/max bounds of that group as required.

  CheckingGroups.clear();

  // If we need to check two pointers to the same underlying object
  // with a non-constant difference, we shouldn't perform any pointer
  // grouping with those pointers. This is because we can easily get
  // into cases where the resulting check would return false, even when
  // the accesses are safe.
  //
  // The following example shows this:
  // for (i = 0; i < 1000; ++i)
  //   a[5000 + i * m] = a[i] + a[i + 9000]
  //
  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
  // (0, 10000) which is always false. However, if m is 1, there is no
  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
  // us to perform an accurate check in this case.
  //
  // The above case requires that we have an UnknownDependence between
  // accesses to the same underlying object. This cannot happen unless
  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
  // is also false. In this case we will use the fallback path and create
  // separate checking groups for all pointers.

  // If we don't have the dependency partitions, construct a new
  // checking pointer group for each pointer. This is also required
  // for correctness, because in this case we can have checking between
  // pointers to the same underlying object.
  if (!UseDependencies) {
    for (unsigned I = 0; I < Pointers.size(); ++I)
      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
    return;
  }

  unsigned TotalComparisons = 0;

  DenseMap<Value *, unsigned> PositionMap;
  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
    PositionMap[Pointers[Index].PointerValue] = Index;

  // We need to keep track of what pointers we've already seen so we
  // don't process them twice.
  SmallSet<unsigned, 2> Seen;

  // Go through all equivalence classes, get the "pointer check groups"
  // and add them to the overall solution. We use the order in which accesses
  // appear in 'Pointers' to enforce determinism.
  for (unsigned I = 0; I < Pointers.size(); ++I) {
    // We've seen this pointer before, and therefore already processed
    // its equivalence class.
    if (Seen.count(I))
      continue;

    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
                                           Pointers[I].IsWritePtr);

    SmallVector<CheckingPtrGroup, 2> Groups;
    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));

    // Because DepCands is constructed by visiting accesses in the order in
    // which they appear in alias sets (which is deterministic) and the
    // iteration order within an equivalence class member is only dependent on
    // the order in which unions and insertions are performed on the
    // equivalence class, the iteration order is deterministic.
    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
         MI != ME; ++MI) {
      unsigned Pointer = PositionMap[MI->getPointer()];
      bool Merged = false;
      // Mark this pointer as seen.
      Seen.insert(Pointer);

      // Go through all the existing sets and see if we can find one
      // which can include this pointer.
      for (CheckingPtrGroup &Group : Groups) {
        // Don't perform more than a certain amount of comparisons.
        // This should limit the cost of grouping the pointers to something
        // reasonable.  If we do end up hitting this threshold, the algorithm
        // will create separate groups for all remaining pointers.
        if (TotalComparisons > MemoryCheckMergeThreshold)
          break;

        TotalComparisons++;

        if (Group.addPointer(Pointer)) {
          Merged = true;
          break;
        }
      }

      if (!Merged)
        // We couldn't add this pointer to any existing set or the threshold
        // for the number of comparisons has been reached. Create a new group
        // to hold the current pointer.
        Groups.push_back(CheckingPtrGroup(Pointer, *this));
    }

    // We've computed the grouped checks for this partition.
    // Save the results and continue with the next one.
    llvm::copy(Groups, std::back_inserter(CheckingGroups));
  }
}

bool RuntimePointerChecking::arePointersInSamePartition(
    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
    unsigned PtrIdx2) {
  return (PtrToPartition[PtrIdx1] != -1 &&
          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
}

bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
  const PointerInfo &PointerI = Pointers[I];
  const PointerInfo &PointerJ = Pointers[J];

  // No need to check if two readonly pointers intersect.
  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
    return false;

  // Only need to check pointers between two different dependency sets.
  if (PointerI.DependencySetId == PointerJ.DependencySetId)
    return false;

  // Only need to check pointers in the same alias set.
  if (PointerI.AliasSetId != PointerJ.AliasSetId)
    return false;

  return true;
}

void RuntimePointerChecking::printChecks(
    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    unsigned Depth) const {
  unsigned N = 0;
  for (const auto &Check : Checks) {
    const auto &First = Check.first->Members, &Second = Check.second->Members;

    OS.indent(Depth) << "Check " << N++ << ":\n";

    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
    for (unsigned K = 0; K < First.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";

    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
    for (unsigned K = 0; K < Second.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
  }
}

void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {

  OS.indent(Depth) << "Run-time memory checks:\n";
  printChecks(OS, Checks, Depth);

  OS.indent(Depth) << "Grouped accesses:\n";
  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    const auto &CG = CheckingGroups[I];

    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
                         << ")\n";
    for (unsigned J = 0; J < CG.Members.size(); ++J) {
      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
                           << "\n";
    }
  }
}

namespace {

/// Analyses memory accesses in a loop.
///
/// Checks whether run time pointer checks are needed and builds sets for data
/// dependence checking.
class AccessAnalysis {
public:
  /// Read or write access location.
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;

  AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
                 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
                 PredicatedScalarEvolution &PSE)
      : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
        IsRTCheckAnalysisNeeded(false), PSE(PSE) {}

  /// Register a load  and whether it is only read from.
  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
    Accesses.insert(MemAccessInfo(Ptr, false));
    if (IsReadOnly)
      ReadOnlyPtr.insert(Ptr);
  }

  /// Register a store.
  void addStore(MemoryLocation &Loc) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
    Accesses.insert(MemAccessInfo(Ptr, true));
  }

  /// Check if we can emit a run-time no-alias check for \p Access.
  ///
  /// Returns true if we can emit a run-time no alias check for \p Access.
  /// If we can check this access, this also adds it to a dependence set and
  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
  /// we will attempt to use additional run-time checks in order to get
  /// the bounds of the pointer.
  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
                            MemAccessInfo Access,
                            const ValueToValueMap &Strides,
                            DenseMap<Value *, unsigned> &DepSetId,
                            Loop *TheLoop, unsigned &RunningDepId,
                            unsigned ASId, bool ShouldCheckStride,
                            bool Assume);

  /// Check whether we can check the pointers at runtime for
  /// non-intersection.
  ///
  /// Returns true if we need no check or if we do and we can generate them
  /// (i.e. the pointers have computable bounds).
  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
                       Loop *TheLoop, const ValueToValueMap &Strides,
                       bool ShouldCheckWrap = false);

  /// Goes over all memory accesses, checks whether a RT check is needed
  /// and builds sets of dependent accesses.
  void buildDependenceSets() {
    processMemAccesses();
  }

  /// Initial processing of memory accesses determined that we need to
  /// perform dependency checking.
  ///
  /// Note that this can later be cleared if we retry memcheck analysis without
  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }

  /// We decided that no dependence analysis would be used.  Reset the state.
  void resetDepChecks(MemoryDepChecker &DepChecker) {
    CheckDeps.clear();
    DepChecker.clearDependences();
  }

  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }

private:
  typedef SetVector<MemAccessInfo> PtrAccessSet;

  /// Go over all memory access and check whether runtime pointer checks
  /// are needed and build sets of dependency check candidates.
  void processMemAccesses();

  /// Set of all accesses.
  PtrAccessSet Accesses;

  const DataLayout &DL;

  /// The loop being checked.
  const Loop *TheLoop;

  /// List of accesses that need a further dependence check.
  MemAccessInfoList CheckDeps;

  /// Set of pointers that are read only.
  SmallPtrSet<Value*, 16> ReadOnlyPtr;

  /// An alias set tracker to partition the access set by underlying object and
  //intrinsic property (such as TBAA metadata).
  AliasSetTracker AST;

  LoopInfo *LI;

  /// Sets of potentially dependent accesses - members of one set share an
  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
  /// dependence check.
  MemoryDepChecker::DepCandidates &DepCands;

  /// Initial processing of memory accesses determined that we may need
  /// to add memchecks.  Perform the analysis to determine the necessary checks.
  ///
  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
  /// memcheck analysis without dependency checking
  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
  /// cleared while this remains set if we have potentially dependent accesses.
  bool IsRTCheckAnalysisNeeded;

  /// The SCEV predicate containing all the SCEV-related assumptions.
  PredicatedScalarEvolution &PSE;
};

} // end anonymous namespace

/// Check whether a pointer can participate in a runtime bounds check.
/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
/// by adding run-time checks (overflow checks) if necessary.
static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
                                const ValueToValueMap &Strides, Value *Ptr,
                                Loop *L, bool Assume) {
  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);

  // The bounds for loop-invariant pointer is trivial.
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);

  if (!AR && Assume)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR)
    return false;

  return AR->isAffine();
}

/// Check whether a pointer address cannot wrap.
static bool isNoWrap(PredicatedScalarEvolution &PSE,
                     const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
  const SCEV *PtrScev = PSE.getSCEV(Ptr);
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
    return true;

  return false;
}

bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
                                          MemAccessInfo Access,
                                          const ValueToValueMap &StridesMap,
                                          DenseMap<Value *, unsigned> &DepSetId,
                                          Loop *TheLoop, unsigned &RunningDepId,
                                          unsigned ASId, bool ShouldCheckWrap,
                                          bool Assume) {
  Value *Ptr = Access.getPointer();

  if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
    return false;

  // When we run after a failing dependency check we have to make sure
  // we don't have wrapping pointers.
  if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
    auto *Expr = PSE.getSCEV(Ptr);
    if (!Assume || !isa<SCEVAddRecExpr>(Expr))
      return false;
    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
  }

  // The id of the dependence set.
  unsigned DepId;

  if (isDependencyCheckNeeded()) {
    Value *Leader = DepCands.getLeaderValue(Access).getPointer();
    unsigned &LeaderId = DepSetId[Leader];
    if (!LeaderId)
      LeaderId = RunningDepId++;
    DepId = LeaderId;
  } else
    // Each access has its own dependence set.
    DepId = RunningDepId++;

  bool IsWrite = Access.getInt();
  RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
  LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');

  return true;
 }

bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
                                     ScalarEvolution *SE, Loop *TheLoop,
                                     const ValueToValueMap &StridesMap,
                                     bool ShouldCheckWrap) {
  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRT = true;

  bool NeedRTCheck = false;
  if (!IsRTCheckAnalysisNeeded) return true;

  bool IsDepCheckNeeded = isDependencyCheckNeeded();

  // We assign a consecutive id to access from different alias sets.
  // Accesses between different groups doesn't need to be checked.
  unsigned ASId = 1;
  for (auto &AS : AST) {
    int NumReadPtrChecks = 0;
    int NumWritePtrChecks = 0;
    bool CanDoAliasSetRT = true;

    // We assign consecutive id to access from different dependence sets.
    // Accesses within the same set don't need a runtime check.
    unsigned RunningDepId = 1;
    DenseMap<Value *, unsigned> DepSetId;

    SmallVector<MemAccessInfo, 4> Retries;

    for (auto A : AS) {
      Value *Ptr = A.getValue();
      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
      MemAccessInfo Access(Ptr, IsWrite);

      if (IsWrite)
        ++NumWritePtrChecks;
      else
        ++NumReadPtrChecks;

      if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
                                RunningDepId, ASId, ShouldCheckWrap, false)) {
        LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
        Retries.push_back(Access);
        CanDoAliasSetRT = false;
      }
    }

    // If we have at least two writes or one write and a read then we need to
    // check them.  But there is no need to checks if there is only one
    // dependence set for this alias set.
    //
    // Note that this function computes CanDoRT and NeedRTCheck independently.
    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
    // for which we couldn't find the bounds but we don't actually need to emit
    // any checks so it does not matter.
    bool NeedsAliasSetRTCheck = false;
    if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
      NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
                             (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));

    // We need to perform run-time alias checks, but some pointers had bounds
    // that couldn't be checked.
    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
      // Reset the CanDoSetRt flag and retry all accesses that have failed.
      // We know that we need these checks, so we can now be more aggressive
      // and add further checks if required (overflow checks).
      CanDoAliasSetRT = true;
      for (auto Access : Retries)
        if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
                                  TheLoop, RunningDepId, ASId,
                                  ShouldCheckWrap, /*Assume=*/true)) {
          CanDoAliasSetRT = false;
          break;
        }
    }

    CanDoRT &= CanDoAliasSetRT;
    NeedRTCheck |= NeedsAliasSetRTCheck;
    ++ASId;
  }

  // If the pointers that we would use for the bounds comparison have different
  // address spaces, assume the values aren't directly comparable, so we can't
  // use them for the runtime check. We also have to assume they could
  // overlap. In the future there should be metadata for whether address spaces
  // are disjoint.
  unsigned NumPointers = RtCheck.Pointers.size();
  for (unsigned i = 0; i < NumPointers; ++i) {
    for (unsigned j = i + 1; j < NumPointers; ++j) {
      // Only need to check pointers between two different dependency sets.
      if (RtCheck.Pointers[i].DependencySetId ==
          RtCheck.Pointers[j].DependencySetId)
       continue;
      // Only need to check pointers in the same alias set.
      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
        continue;

      Value *PtrI = RtCheck.Pointers[i].PointerValue;
      Value *PtrJ = RtCheck.Pointers[j].PointerValue;

      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
      if (ASi != ASj) {
        LLVM_DEBUG(
            dbgs() << "LAA: Runtime check would require comparison between"
                      " different address spaces\n");
        return false;
      }
    }
  }

  if (NeedRTCheck && CanDoRT)
    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);

  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
                    << " pointer comparisons.\n");

  RtCheck.Need = NeedRTCheck;

  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
  if (!CanDoRTIfNeeded)
    RtCheck.reset();
  return CanDoRTIfNeeded;
}

void AccessAnalysis::processMemAccesses() {
  // We process the set twice: first we process read-write pointers, last we
  // process read-only pointers. This allows us to skip dependence tests for
  // read-only pointers.

  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
  LLVM_DEBUG({
    for (auto A : Accesses)
      dbgs() << "\t" << *A.getPointer() << " (" <<
                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
                                         "read-only" : "read")) << ")\n";
  });

  // The AliasSetTracker has nicely partitioned our pointers by metadata
  // compatibility and potential for underlying-object overlap. As a result, we
  // only need to check for potential pointer dependencies within each alias
  // set.
  for (auto &AS : AST) {
    // Note that both the alias-set tracker and the alias sets themselves used
    // linked lists internally and so the iteration order here is deterministic
    // (matching the original instruction order within each set).

    bool SetHasWrite = false;

    // Map of pointers to last access encountered.
    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
    UnderlyingObjToAccessMap ObjToLastAccess;

    // Set of access to check after all writes have been processed.
    PtrAccessSet DeferredAccesses;

    // Iterate over each alias set twice, once to process read/write pointers,
    // and then to process read-only pointers.
    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
      bool UseDeferred = SetIteration > 0;
      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;

      for (auto AV : AS) {
        Value *Ptr = AV.getValue();

        // For a single memory access in AliasSetTracker, Accesses may contain
        // both read and write, and they both need to be handled for CheckDeps.
        for (auto AC : S) {
          if (AC.getPointer() != Ptr)
            continue;

          bool IsWrite = AC.getInt();

          // If we're using the deferred access set, then it contains only
          // reads.
          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
          if (UseDeferred && !IsReadOnlyPtr)
            continue;
          // Otherwise, the pointer must be in the PtrAccessSet, either as a
          // read or a write.
          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
                  S.count(MemAccessInfo(Ptr, false))) &&
                 "Alias-set pointer not in the access set?");

          MemAccessInfo Access(Ptr, IsWrite);
          DepCands.insert(Access);

          // Memorize read-only pointers for later processing and skip them in
          // the first round (they need to be checked after we have seen all
          // write pointers). Note: we also mark pointer that are not
          // consecutive as "read-only" pointers (so that we check
          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
          if (!UseDeferred && IsReadOnlyPtr) {
            DeferredAccesses.insert(Access);
            continue;
          }

          // If this is a write - check other reads and writes for conflicts. If
          // this is a read only check other writes for conflicts (but only if
          // there is no other write to the ptr - this is an optimization to
          // catch "a[i] = a[i] + " without having to do a dependence check).
          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
            CheckDeps.push_back(Access);
            IsRTCheckAnalysisNeeded = true;
          }

          if (IsWrite)
            SetHasWrite = true;

          // Create sets of pointers connected by a shared alias set and
          // underlying object.
          typedef SmallVector<const Value *, 16> ValueVector;
          ValueVector TempObjects;

          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
          LLVM_DEBUG(dbgs()
                     << "Underlying objects for pointer " << *Ptr << "\n");
          for (const Value *UnderlyingObj : TempObjects) {
            // nullptr never alias, don't join sets for pointer that have "null"
            // in their UnderlyingObjects list.
            if (isa<ConstantPointerNull>(UnderlyingObj) &&
                !NullPointerIsDefined(
                    TheLoop->getHeader()->getParent(),
                    UnderlyingObj->getType()->getPointerAddressSpace()))
              continue;

            UnderlyingObjToAccessMap::iterator Prev =
                ObjToLastAccess.find(UnderlyingObj);
            if (Prev != ObjToLastAccess.end())
              DepCands.unionSets(Access, Prev->second);

            ObjToLastAccess[UnderlyingObj] = Access;
            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
          }
        }
      }
    }
  }
}

static bool isInBoundsGep(Value *Ptr) {
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
    return GEP->isInBounds();
  return false;
}

/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
/// i.e. monotonically increasing/decreasing.
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
                           PredicatedScalarEvolution &PSE, const Loop *L) {
  // FIXME: This should probably only return true for NUW.
  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
    return true;

  // Scalar evolution does not propagate the non-wrapping flags to values that
  // are derived from a non-wrapping induction variable because non-wrapping
  // could be flow-sensitive.
  //
  // Look through the potentially overflowing instruction to try to prove
  // non-wrapping for the *specific* value of Ptr.

  // The arithmetic implied by an inbounds GEP can't overflow.
  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP || !GEP->isInBounds())
    return false;

  // Make sure there is only one non-const index and analyze that.
  Value *NonConstIndex = nullptr;
  for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
    if (!isa<ConstantInt>(Index)) {
      if (NonConstIndex)
        return false;
      NonConstIndex = Index;
    }
  if (!NonConstIndex)
    // The recurrence is on the pointer, ignore for now.
    return false;

  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
  // AddRec using a NSW operation.
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
    if (OBO->hasNoSignedWrap() &&
        // Assume constant for other the operand so that the AddRec can be
        // easily found.
        isa<ConstantInt>(OBO->getOperand(1))) {
      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));

      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
    }

  return false;
}

/// Check whether the access through \p Ptr has a constant stride.
int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
                           const Loop *Lp, const ValueToValueMap &StridesMap,
                           bool Assume, bool ShouldCheckWrap) {
  Type *Ty = Ptr->getType();
  assert(Ty->isPointerTy() && "Unexpected non-ptr");

  // Make sure that the pointer does not point to aggregate types.
  auto *PtrTy = cast<PointerType>(Ty);
  if (PtrTy->getElementType()->isAggregateType()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
                      << *Ptr << "\n");
    return 0;
  }

  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
                      << " SCEV: " << *PtrScev << "\n");
    return 0;
  }

  // The access function must stride over the innermost loop.
  if (Lp != AR->getLoop()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
                      << *Ptr << " SCEV: " << *AR << "\n");
    return 0;
  }

  // The address calculation must not wrap. Otherwise, a dependence could be
  // inverted.
  // An inbounds getelementptr that is a AddRec with a unit stride
  // cannot wrap per definition. The unit stride requirement is checked later.
  // An getelementptr without an inbounds attribute and unit stride would have
  // to access the pointer value "0" which is undefined behavior in address
  // space 0, therefore we can also vectorize this case.
  bool IsInBoundsGEP = isInBoundsGep(Ptr);
  bool IsNoWrapAddRec = !ShouldCheckWrap ||
    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
    isNoWrapAddRec(Ptr, AR, PSE, Lp);
  if (!IsNoWrapAddRec && !IsInBoundsGEP &&
      NullPointerIsDefined(Lp->getHeader()->getParent(),
                           PtrTy->getAddressSpace())) {
    if (Assume) {
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
      IsNoWrapAddRec = true;
      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
    } else {
      LLVM_DEBUG(
          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
                 << *Ptr << " SCEV: " << *AR << "\n");
      return 0;
    }
  }

  // Check the step is constant.
  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());

  // Calculate the pointer stride and check if it is constant.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
                      << " SCEV: " << *AR << "\n");
    return 0;
  }

  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
  const APInt &APStepVal = C->getAPInt();

  // Huge step value - give up.
  if (APStepVal.getBitWidth() > 64)
    return 0;

  int64_t StepVal = APStepVal.getSExtValue();

  // Strided access.
  int64_t Stride = StepVal / Size;
  int64_t Rem = StepVal % Size;
  if (Rem)
    return 0;

  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
  // know we can't "wrap around the address space". In case of address space
  // zero we know that this won't happen without triggering undefined behavior.
  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
                                              PtrTy->getAddressSpace()))) {
    if (Assume) {
      // We can avoid this case by adding a run-time check.
      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
                        << "inbounds or in address space 0 may wrap:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    } else
      return 0;
  }

  return Stride;
}

bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
                           ScalarEvolution &SE,
                           SmallVectorImpl<unsigned> &SortedIndices) {
  assert(llvm::all_of(
             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
         "Expected list of pointer operands.");
  SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
  OffValPairs.reserve(VL.size());

  // Walk over the pointers, and map each of them to an offset relative to
  // first pointer in the array.
  Value *Ptr0 = VL[0];
  const SCEV *Scev0 = SE.getSCEV(Ptr0);
  Value *Obj0 = GetUnderlyingObject(Ptr0, DL);

  llvm::SmallSet<int64_t, 4> Offsets;
  for (auto *Ptr : VL) {
    // TODO: Outline this code as a special, more time consuming, version of
    // computeConstantDifference() function.
    if (Ptr->getType()->getPointerAddressSpace() !=
        Ptr0->getType()->getPointerAddressSpace())
      return false;
    // If a pointer refers to a different underlying object, bail - the
    // pointers are by definition incomparable.
    Value *CurrObj = GetUnderlyingObject(Ptr, DL);
    if (CurrObj != Obj0)
      return false;

    const SCEV *Scev = SE.getSCEV(Ptr);
    const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
    // The pointers may not have a constant offset from each other, or SCEV
    // may just not be smart enough to figure out they do. Regardless,
    // there's nothing we can do.
    if (!Diff)
      return false;

    // Check if the pointer with the same offset is found.
    int64_t Offset = Diff->getAPInt().getSExtValue();
    if (!Offsets.insert(Offset).second)
      return false;
    OffValPairs.emplace_back(Offset, Ptr);
  }
  SortedIndices.clear();
  SortedIndices.resize(VL.size());
  std::iota(SortedIndices.begin(), SortedIndices.end(), 0);

  // Sort the memory accesses and keep the order of their uses in UseOrder.
  llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
    return OffValPairs[Left].first < OffValPairs[Right].first;
  });

  // Check if the order is consecutive already.
  if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
        return I == SortedIndices[I];
      }))
    SortedIndices.clear();

  return true;
}

/// Take the address space operand from the Load/Store instruction.
/// Returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I) {
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    return L->getPointerAddressSpace();
  if (StoreInst *S = dyn_cast<StoreInst>(I))
    return S->getPointerAddressSpace();
  return -1;
}

/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                               ScalarEvolution &SE, bool CheckType) {
  Value *PtrA = getLoadStorePointerOperand(A);
  Value *PtrB = getLoadStorePointerOperand(B);
  unsigned ASA = getAddressSpaceOperand(A);
  unsigned ASB = getAddressSpaceOperand(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB))
    return false;

  // Make sure that A and B are different pointers.
  if (PtrA == PtrB)
    return false;

  // Make sure that A and B have the same type if required.
  if (CheckType && PtrA->getType() != PtrB->getType())
    return false;

  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();

  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);

  // Retrieve the address space again as pointer stripping now tracks through
  // `addrspacecast`.
  ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
  ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
  // Check that the address spaces match and that the pointers are valid.
  if (ASA != ASB)
    return false;

  IdxWidth = DL.getIndexSizeInBits(ASA);
  OffsetA = OffsetA.sextOrTrunc(IdxWidth);
  OffsetB = OffsetB.sextOrTrunc(IdxWidth);

  APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));

  //  OffsetDelta = OffsetB - OffsetA;
  const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
  const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
  const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
  const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();

  // Check if they are based on the same pointer. That makes the offsets
  // sufficient.
  if (PtrA == PtrB)
    return OffsetDelta == Size;

  // Compute the necessary base pointer delta to have the necessary final delta
  // equal to the size.
  // BaseDelta = Size - OffsetDelta;
  const SCEV *SizeSCEV = SE.getConstant(Size);
  const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);

  // Otherwise compute the distance with SCEV between the base pointers.
  const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
  const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
  return X == PtrSCEVB;
}

MemoryDepChecker::VectorizationSafetyStatus
MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
  switch (Type) {
  case NoDep:
  case Forward:
  case BackwardVectorizable:
    return VectorizationSafetyStatus::Safe;

  case Unknown:
    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
  case ForwardButPreventsForwarding:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return VectorizationSafetyStatus::Unsafe;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isBackward() const {
  switch (Type) {
  case NoDep:
  case Forward:
  case ForwardButPreventsForwarding:
  case Unknown:
    return false;

  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return true;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
  return isBackward() || Type == Unknown;
}

bool MemoryDepChecker::Dependence::isForward() const {
  switch (Type) {
  case Forward:
  case ForwardButPreventsForwarding:
    return true;

  case NoDep:
  case Unknown:
  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return false;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
                                                    uint64_t TypeByteSize) {
  // If loads occur at a distance that is not a multiple of a feasible vector
  // factor store-load forwarding does not take place.
  // Positive dependences might cause troubles because vectorizing them might
  // prevent store-load forwarding making vectorized code run a lot slower.
  //   a[i] = a[i-3] ^ a[i-8];
  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
  //   hence on your typical architecture store-load forwarding does not take
  //   place. Vectorizing in such cases does not make sense.
  // Store-load forwarding distance.

  // After this many iterations store-to-load forwarding conflicts should not
  // cause any slowdowns.
  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
  // Maximum vector factor.
  uint64_t MaxVFWithoutSLForwardIssues = std::min(
      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);

  // Compute the smallest VF at which the store and load would be misaligned.
  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
       VF *= 2) {
    // If the number of vector iteration between the store and the load are
    // small we could incur conflicts.
    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
      MaxVFWithoutSLForwardIssues = (VF >>= 1);
      break;
    }
  }

  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
    LLVM_DEBUG(
        dbgs() << "LAA: Distance " << Distance
               << " that could cause a store-load forwarding conflict\n");
    return true;
  }

  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
      MaxVFWithoutSLForwardIssues !=
          VectorizerParams::MaxVectorWidth * TypeByteSize)
    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
  return false;
}

void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
  if (Status < S)
    Status = S;
}

/// Given a non-constant (unknown) dependence-distance \p Dist between two
/// memory accesses, that have the same stride whose absolute value is given
/// in \p Stride, and that have the same type size \p TypeByteSize,
/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
/// possible to prove statically that the dependence distance is larger
/// than the range that the accesses will travel through the execution of
/// the loop. If so, return true; false otherwise. This is useful for
/// example in loops such as the following (PR31098):
///     for (i = 0; i < D; ++i) {
///                = out[i];
///       out[i+D] =
///     }
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
                                     const SCEV &BackedgeTakenCount,
                                     const SCEV &Dist, uint64_t Stride,
                                     uint64_t TypeByteSize) {

  // If we can prove that
  //      (**) |Dist| > BackedgeTakenCount * Step
  // where Step is the absolute stride of the memory accesses in bytes,
  // then there is no dependence.
  //
  // Rationale:
  // We basically want to check if the absolute distance (|Dist/Step|)
  // is >= the loop iteration count (or > BackedgeTakenCount).
  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
  // that the dependence distance is >= VF; This is checked elsewhere.
  // But in some cases we can prune unknown dependence distances early, and
  // even before selecting the VF, and without a runtime test, by comparing
  // the distance against the loop iteration count. Since the vectorized code
  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
  // also guarantees that distance >= VF.
  //
  const uint64_t ByteStride = Stride * TypeByteSize;
  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);

  const SCEV *CastedDist = &Dist;
  const SCEV *CastedProduct = Product;
  uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
  uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());

  // The dependence distance can be positive/negative, so we sign extend Dist;
  // The multiplication of the absolute stride in bytes and the
  // backedgeTakenCount is non-negative, so we zero extend Product.
  if (DistTypeSize > ProductTypeSize)
    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
  else
    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());

  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= Dist)
  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  return false;
}

/// Check the dependence for two accesses with the same stride \p Stride.
/// \p Distance is the positive distance and \p TypeByteSize is type size in
/// bytes.
///
/// \returns true if they are independent.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
                                          uint64_t TypeByteSize) {
  assert(Stride > 1 && "The stride must be greater than 1");
  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
  assert(Distance > 0 && "The distance must be non-zero");

  // Skip if the distance is not multiple of type byte size.
  if (Distance % TypeByteSize)
    return false;

  uint64_t ScaledDist = Distance / TypeByteSize;

  // No dependence if the scaled distance is not multiple of the stride.
  // E.g.
  //      for (i = 0; i < 1024 ; i += 4)
  //        A[i+2] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 2, stride is 4):
  //     | A[0] |      |      |      | A[4] |      |      |      |
  //     |      |      | A[2] |      |      |      | A[6] |      |
  //
  // E.g.
  //      for (i = 0; i < 1024 ; i += 3)
  //        A[i+4] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 4, stride is 3):
  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
  //     |      |      |      |      | A[4] |      |      | A[7] |      |
  return ScaledDist % Stride;
}

MemoryDepChecker::Dependence::DepType
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
                              const MemAccessInfo &B, unsigned BIdx,
                              const ValueToValueMap &Strides) {
  assert (AIdx < BIdx && "Must pass arguments in program order");

  Value *APtr = A.getPointer();
  Value *BPtr = B.getPointer();
  bool AIsWrite = A.getInt();
  bool BIsWrite = B.getInt();

  // Two reads are independent.
  if (!AIsWrite && !BIsWrite)
    return Dependence::NoDep;

  // We cannot check pointers in different address spaces.
  if (APtr->getType()->getPointerAddressSpace() !=
      BPtr->getType()->getPointerAddressSpace())
    return Dependence::Unknown;

  int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
  int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);

  const SCEV *Src = PSE.getSCEV(APtr);
  const SCEV *Sink = PSE.getSCEV(BPtr);

  // If the induction step is negative we have to invert source and sink of the
  // dependence.
  if (StrideAPtr < 0) {
    std::swap(APtr, BPtr);
    std::swap(Src, Sink);
    std::swap(AIsWrite, BIsWrite);
    std::swap(AIdx, BIdx);
    std::swap(StrideAPtr, StrideBPtr);
  }

  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);

  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
                    << "(Induction step: " << StrideAPtr << ")\n");
  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
                    << *InstMap[BIdx] << ": " << *Dist << "\n");

  // Need accesses with constant stride. We don't want to vectorize
  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
  // the address space.
  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
    return Dependence::Unknown;
  }

  Type *ATy = APtr->getType()->getPointerElementType();
  Type *BTy = BPtr->getType()->getPointerElementType();
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
  uint64_t Stride = std::abs(StrideAPtr);
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
  if (!C) {
    if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
        isSafeDependenceDistance(DL, *(PSE.getSE()),
                                 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
                                 TypeByteSize))
      return Dependence::NoDep;

    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
    FoundNonConstantDistanceDependence = true;
    return Dependence::Unknown;
  }

  const APInt &Val = C->getAPInt();
  int64_t Distance = Val.getSExtValue();

  // Attempt to prove strided accesses independent.
  if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
    return Dependence::NoDep;
  }

  // Negative distances are not plausible dependencies.
  if (Val.isNegative()) {
    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
         ATy != BTy)) {
      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
      return Dependence::ForwardButPreventsForwarding;
    }

    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
    return Dependence::Forward;
  }

  // Write to the same location with the same size.
  // Could be improved to assert type sizes are the same (i32 == float, etc).
  if (Val == 0) {
    if (ATy == BTy)
      return Dependence::Forward;
    LLVM_DEBUG(
        dbgs() << "LAA: Zero dependence difference but different types\n");
    return Dependence::Unknown;
  }

  assert(Val.isStrictlyPositive() && "Expect a positive value");

  if (ATy != BTy) {
    LLVM_DEBUG(
        dbgs()
        << "LAA: ReadWrite-Write positive dependency with different types\n");
    return Dependence::Unknown;
  }

  // Bail out early if passed-in parameters make vectorization not feasible.
  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
                           VectorizerParams::VectorizationFactor : 1);
  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
                           VectorizerParams::VectorizationInterleave : 1);
  // The minimum number of iterations for a vectorized/unrolled version.
  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);

  // It's not vectorizable if the distance is smaller than the minimum distance
  // needed for a vectroized/unrolled version. Vectorizing one iteration in
  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
  // TypeByteSize (No need to plus the last gap distance).
  //
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      foo(int *A) {
  //        int *B = (int *)((char *)A + 14);
  //        for (i = 0 ; i < 1024 ; i += 2)
  //          B[i] = A[i] + 1;
  //      }
  //
  // Two accesses in memory (stride is 2):
  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
  //                              | B[0] |      | B[2] |      | B[4] |
  //
  // Distance needs for vectorizing iterations except the last iteration:
  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
  //
  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
  // 12, which is less than distance.
  //
  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
  // the minimum distance needed is 28, which is greater than distance. It is
  // not safe to do vectorization.
  uint64_t MinDistanceNeeded =
      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
                      << Distance << '\n');
    return Dependence::Backward;
  }

  // Unsafe if the minimum distance needed is greater than max safe distance.
  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
                      << MinDistanceNeeded << " size in bytes");
    return Dependence::Backward;
  }

  // Positive distance bigger than max vectorization factor.
  // FIXME: Should use max factor instead of max distance in bytes, which could
  // not handle different types.
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      void foo (int *A, char *B) {
  //        for (unsigned i = 0; i < 1024; i++) {
  //          A[i+2] = A[i] + 1;
  //          B[i+2] = B[i] + 1;
  //        }
  //      }
  //
  // This case is currently unsafe according to the max safe distance. If we
  // analyze the two accesses on array B, the max safe dependence distance
  // is 2. Then we analyze the accesses on array A, the minimum distance needed
  // is 8, which is less than 2 and forbidden vectorization, But actually
  // both A and B could be vectorized by 2 iterations.
  MaxSafeDepDistBytes =
      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);

  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
      couldPreventStoreLoadForward(Distance, TypeByteSize))
    return Dependence::BackwardVectorizableButPreventsForwarding;

  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
                    << " with max VF = " << MaxVF << '\n');
  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
  MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
  return Dependence::BackwardVectorizable;
}

bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
                                   MemAccessInfoList &CheckDeps,
                                   const ValueToValueMap &Strides) {

  MaxSafeDepDistBytes = -1;
  SmallPtrSet<MemAccessInfo, 8> Visited;
  for (MemAccessInfo CurAccess : CheckDeps) {
    if (Visited.count(CurAccess))
      continue;

    // Get the relevant memory access set.
    EquivalenceClasses<MemAccessInfo>::iterator I =
      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));

    // Check accesses within this set.
    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
        AccessSets.member_begin(I);
    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
        AccessSets.member_end();

    // Check every access pair.
    while (AI != AE) {
      Visited.insert(*AI);
      bool AIIsWrite = AI->getInt();
      // Check loads only against next equivalent class, but stores also against
      // other stores in the same equivalence class - to the same address.
      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
          (AIIsWrite ? AI : std::next(AI));
      while (OI != AE) {
        // Check every accessing instruction pair in program order.
        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
          // Scan all accesses of another equivalence class, but only the next
          // accesses of the same equivalent class.
          for (std::vector<unsigned>::iterator
                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
               I2 != I2E; ++I2) {
            auto A = std::make_pair(&*AI, *I1);
            auto B = std::make_pair(&*OI, *I2);

            assert(*I1 != *I2);
            if (*I1 > *I2)
              std::swap(A, B);

            Dependence::DepType Type =
                isDependent(*A.first, A.second, *B.first, B.second, Strides);
            mergeInStatus(Dependence::isSafeForVectorization(Type));

            // Gather dependences unless we accumulated MaxDependences
            // dependences.  In that case return as soon as we find the first
            // unsafe dependence.  This puts a limit on this quadratic
            // algorithm.
            if (RecordDependences) {
              if (Type != Dependence::NoDep)
                Dependences.push_back(Dependence(A.second, B.second, Type));

              if (Dependences.size() >= MaxDependences) {
                RecordDependences = false;
                Dependences.clear();
                LLVM_DEBUG(dbgs()
                           << "Too many dependences, stopped recording\n");
              }
            }
            if (!RecordDependences && !isSafeForVectorization())
              return false;
          }
        ++OI;
      }
      AI++;
    }
  }

  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
  return isSafeForVectorization();
}

SmallVector<Instruction *, 4>
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
  MemAccessInfo Access(Ptr, isWrite);
  auto &IndexVector = Accesses.find(Access)->second;

  SmallVector<Instruction *, 4> Insts;
  transform(IndexVector,
                 std::back_inserter(Insts),
                 [&](unsigned Idx) { return this->InstMap[Idx]; });
  return Insts;
}

const char *MemoryDepChecker::Dependence::DepName[] = {
    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};

void MemoryDepChecker::Dependence::print(
    raw_ostream &OS, unsigned Depth,
    const SmallVectorImpl<Instruction *> &Instrs) const {
  OS.indent(Depth) << DepName[Type] << ":\n";
  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
}

bool LoopAccessInfo::canAnalyzeLoop() {
  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
                    << TheLoop->getHeader()->getParent()->getName() << ": "
                    << TheLoop->getHeader()->getName() << '\n');

  // We can only analyze innermost loops.
  if (!TheLoop->empty()) {
    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
    return false;
  }

  // We must have a single backedge.
  if (TheLoop->getNumBackEdges() != 1) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // We must have a single exiting block.
  if (!TheLoop->getExitingBlock()) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // We only handle bottom-tested loops, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
  if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
    recordAnalysis("CantComputeNumberOfIterations")
        << "could not determine number of loop iterations";
    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
    return false;
  }

  return true;
}

void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
                                 const TargetLibraryInfo *TLI,
                                 DominatorTree *DT) {
  typedef SmallPtrSet<Value*, 16> ValueSet;

  // Holds the Load and Store instructions.
  SmallVector<LoadInst *, 16> Loads;
  SmallVector<StoreInst *, 16> Stores;

  // Holds all the different accesses in the loop.
  unsigned NumReads = 0;
  unsigned NumReadWrites = 0;

  bool HasComplexMemInst = false;

  // A runtime check is only legal to insert if there are no convergent calls.
  HasConvergentOp = false;

  PtrRtChecking->Pointers.clear();
  PtrRtChecking->Need = false;

  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the BB and collect legal loads and stores. Also detect any
    // convergent instructions.
    for (Instruction &I : *BB) {
      if (auto *Call = dyn_cast<CallBase>(&I)) {
        if (Call->isConvergent())
          HasConvergentOp = true;
      }

      // With both a non-vectorizable memory instruction and a convergent
      // operation, found in this loop, no reason to continue the search.
      if (HasComplexMemInst && HasConvergentOp) {
        CanVecMem = false;
        return;
      }

      // Avoid hitting recordAnalysis multiple times.
      if (HasComplexMemInst)
        continue;

      // If this is a load, save it. If this instruction can read from memory
      // but is not a load, then we quit. Notice that we don't handle function
      // calls that read or write.
      if (I.mayReadFromMemory()) {
        // Many math library functions read the rounding mode. We will only
        // vectorize a loop if it contains known function calls that don't set
        // the flag. Therefore, it is safe to ignore this read from memory.
        auto *Call = dyn_cast<CallInst>(&I);
        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
          continue;

        // If the function has an explicit vectorized counterpart, we can safely
        // assume that it can be vectorized.
        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
          continue;

        auto *Ld = dyn_cast<LoadInst>(&I);
        if (!Ld) {
          recordAnalysis("CantVectorizeInstruction", Ld)
            << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!Ld->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleLoad", Ld)
              << "read with atomic ordering or volatile read";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumLoads++;
        Loads.push_back(Ld);
        DepChecker->addAccess(Ld);
        if (EnableMemAccessVersioning)
          collectStridedAccess(Ld);
        continue;
      }

      // Save 'store' instructions. Abort if other instructions write to memory.
      if (I.mayWriteToMemory()) {
        auto *St = dyn_cast<StoreInst>(&I);
        if (!St) {
          recordAnalysis("CantVectorizeInstruction", St)
              << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!St->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleStore", St)
              << "write with atomic ordering or volatile write";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumStores++;
        Stores.push_back(St);
        DepChecker->addAccess(St);
        if (EnableMemAccessVersioning)
          collectStridedAccess(St);
      }
    } // Next instr.
  } // Next block.

  if (HasComplexMemInst) {
    CanVecMem = false;
    return;
  }

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
    CanVecMem = true;
    return;
  }

  MemoryDepChecker::DepCandidates DependentAccesses;
  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
                          TheLoop, AA, LI, DependentAccesses, *PSE);

  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  ValueSet Seen;

  // Record uniform store addresses to identify if we have multiple stores
  // to the same address.
  ValueSet UniformStores;

  for (StoreInst *ST : Stores) {
    Value *Ptr = ST->getPointerOperand();

    if (isUniform(Ptr))
      HasDependenceInvolvingLoopInvariantAddress |=
          !UniformStores.insert(Ptr).second;

    // If we did *not* see this pointer before, insert it to  the read-write
    // list. At this phase it is only a 'write' list.
    if (Seen.insert(Ptr).second) {
      ++NumReadWrites;

      MemoryLocation Loc = MemoryLocation::get(ST);
      // The TBAA metadata could have a control dependency on the predication
      // condition, so we cannot rely on it when determining whether or not we
      // need runtime pointer checks.
      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
        Loc.AATags.TBAA = nullptr;

      Accesses.addStore(Loc);
    }
  }

  if (IsAnnotatedParallel) {
    LLVM_DEBUG(
        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
               << "checks.\n");
    CanVecMem = true;
    return;
  }

  for (LoadInst *LD : Loads) {
    Value *Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    bool IsReadOnlyPtr = false;
    if (Seen.insert(Ptr).second ||
        !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
      ++NumReads;
      IsReadOnlyPtr = true;
    }

    // See if there is an unsafe dependency between a load to a uniform address and
    // store to the same uniform address.
    if (UniformStores.count(Ptr)) {
      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
                           "load and uniform store to the same address!\n");
      HasDependenceInvolvingLoopInvariantAddress = true;
    }

    MemoryLocation Loc = MemoryLocation::get(LD);
    // The TBAA metadata could have a control dependency on the predication
    // condition, so we cannot rely on it when determining whether or not we
    // need runtime pointer checks.
    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
      Loc.AATags.TBAA = nullptr;

    Accesses.addLoad(Loc, IsReadOnlyPtr);
  }

  // If we write (or read-write) to a single destination and there are no
  // other reads in this loop then is it safe to vectorize.
  if (NumReadWrites == 1 && NumReads == 0) {
    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
    CanVecMem = true;
    return;
  }

  // Build dependence sets and check whether we need a runtime pointer bounds
  // check.
  Accesses.buildDependenceSets();

  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
                                                  TheLoop, SymbolicStrides);
  if (!CanDoRTIfNeeded) {
    recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
                      << "the array bounds.\n");
    CanVecMem = false;
    return;
  }

  LLVM_DEBUG(
    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");

  CanVecMem = true;
  if (Accesses.isDependencyCheckNeeded()) {
    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
    CanVecMem = DepChecker->areDepsSafe(
        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();

    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");

      // Clear the dependency checks. We assume they are not needed.
      Accesses.resetDepChecks(*DepChecker);

      PtrRtChecking->reset();
      PtrRtChecking->Need = true;

      auto *SE = PSE->getSE();
      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
                                                 SymbolicStrides, true);

      // Check that we found the bounds for the pointer.
      if (!CanDoRTIfNeeded) {
        recordAnalysis("CantCheckMemDepsAtRunTime")
            << "cannot check memory dependencies at runtime";
        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
        CanVecMem = false;
        return;
      }

      CanVecMem = true;
    }
  }

  if (HasConvergentOp) {
    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
      << "cannot add control dependency to convergent operation";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
                         "would be needed with a convergent operation\n");
    CanVecMem = false;
    return;
  }

  if (CanVecMem)
    LLVM_DEBUG(
        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
               << (PtrRtChecking->Need ? "" : " don't")
               << " need runtime memory checks.\n");
  else {
    recordAnalysis("UnsafeMemDep")
        << "unsafe dependent memory operations in loop. Use "
           "#pragma loop distribute(enable) to allow loop distribution "
           "to attempt to isolate the offending operations into a separate "
           "loop";
    LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
  }
}

bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
                                           DominatorTree *DT)  {
  assert(TheLoop->contains(BB) && "Unknown block used");

  // Blocks that do not dominate the latch need predication.
  BasicBlock* Latch = TheLoop->getLoopLatch();
  return !DT->dominates(BB, Latch);
}

OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
                                                           Instruction *I) {
  assert(!Report && "Multiple reports generated");

  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
                                                   CodeRegion);
  return *Report;
}

bool LoopAccessInfo::isUniform(Value *V) const {
  auto *SE = PSE->getSE();
  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
  // never considered uniform.
  // TODO: Is this really what we want? Even without FP SCEV, we may want some
  // trivially loop-invariant FP values to be considered uniform.
  if (!SE->isSCEVable(V->getType()))
    return false;
  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}

// FIXME: this function is currently a duplicate of the one in
// LoopVectorize.cpp.
static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
                                 Instruction *Loc) {
  if (FirstInst)
    return FirstInst;
  if (Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() == Loc->getParent() ? I : nullptr;
  return nullptr;
}

namespace {

/// IR Values for the lower and upper bounds of a pointer evolution.  We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
  TrackingVH<Value> Start;
  TrackingVH<Value> End;
};

} // end anonymous namespace

/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop.  \return the values for the bounds.
static PointerBounds
expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
             const RuntimePointerChecking &PtrRtChecking) {
  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
  const SCEV *Sc = SE->getSCEV(Ptr);

  unsigned AS = Ptr->getType()->getPointerAddressSpace();
  LLVMContext &Ctx = Loc->getContext();

  // Use this type for pointer arithmetic.
  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);

  if (SE->isLoopInvariant(Sc, TheLoop)) {
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
                      << *Ptr << "\n");
    // Ptr could be in the loop body. If so, expand a new one at the correct
    // location.
    Instruction *Inst = dyn_cast<Instruction>(Ptr);
    Value *NewPtr = (Inst && TheLoop->contains(Inst))
                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
                        : Ptr;
    // We must return a half-open range, which means incrementing Sc.
    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
    return {NewPtr, NewPtrPlusOne};
  } else {
    Value *Start = nullptr, *End = nullptr;
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
                      << "\n");
    return {Start, End};
  }
}

/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
    const RuntimePointerChecking &PtrRtChecking) {
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;

  // Here we're relying on the SCEV Expander's cache to only emit code for the
  // same bounds once.
  transform(
      PointerChecks, std::back_inserter(ChecksWithBounds),
      [&](const RuntimePointerChecking::PointerCheck &Check) {
        PointerBounds
          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
        return std::make_pair(First, Second);
      });

  return ChecksWithBounds;
}

std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
    Instruction *Loc,
    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
    const {
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  auto *SE = PSE->getSE();
  SCEVExpander Exp(*SE, DL, "induction");
  auto ExpandedChecks =
      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);

  LLVMContext &Ctx = Loc->getContext();
  Instruction *FirstInst = nullptr;
  IRBuilder<> ChkBuilder(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  for (const auto &Check : ExpandedChecks) {
    const PointerBounds &A = Check.first, &B = Check.second;
    // Check if two pointers (A and B) conflict where conflict is computed as:
    // start(A) <= end(B) && start(B) <= end(A)
    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();

    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
           "Trying to bounds check pointers with different address spaces");

    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);

    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");

    // [A|B].Start points to the first accessed byte under base [A|B].
    // [A|B].End points to the last accessed byte, plus one.
    // There is no conflict when the intervals are disjoint:
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
    //
    // bound0 = (B.Start < A.End)
    // bound1 = (A.Start < B.End)
    //  IsConflict = bound0 & bound1
    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
    FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
    FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
    FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
    }
    MemoryRuntimeCheck = IsConflict;
  }

  if (!MemoryRuntimeCheck)
    return std::make_pair(nullptr, nullptr);

  // We have to do this trickery because the IRBuilder might fold the check to a
  // constant expression in which case there is no Instruction anchored in a
  // the block.
  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
                                                 ConstantInt::getTrue(Ctx));
  ChkBuilder.Insert(Check, "memcheck.conflict");
  FirstInst = getFirstInst(FirstInst, Check, Loc);
  return std::make_pair(FirstInst, Check);
}

std::pair<Instruction *, Instruction *>
LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
  if (!PtrRtChecking->Need)
    return std::make_pair(nullptr, nullptr);

  return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
}

void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
  Value *Ptr = nullptr;
  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
    Ptr = LI->getPointerOperand();
  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
    Ptr = SI->getPointerOperand();
  else
    return;

  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
  if (!Stride)
    return;

  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
                       "versioning:");
  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");

  // Avoid adding the "Stride == 1" predicate when we know that
  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
  // or zero iteration loop, as Trip-Count <= Stride == 1.
  //
  // TODO: We are currently not making a very informed decision on when it is
  // beneficial to apply stride versioning. It might make more sense that the
  // users of this analysis (such as the vectorizer) will trigger it, based on
  // their specific cost considerations; For example, in cases where stride
  // versioning does  not help resolving memory accesses/dependences, the
  // vectorizer should evaluate the cost of the runtime test, and the benefit
  // of various possible stride specializations, considering the alternatives
  // of using gather/scatters (if available).

  const SCEV *StrideExpr = PSE->getSCEV(Stride);
  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();

  // Match the types so we can compare the stride and the BETakenCount.
  // The Stride can be positive/negative, so we sign extend Stride;
  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
  uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
  const SCEV *CastedStride = StrideExpr;
  const SCEV *CastedBECount = BETakenCount;
  ScalarEvolution *SE = PSE->getSE();
  if (BETypeSize >= StrideTypeSize)
    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
  else
    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
  // Since TripCount == BackEdgeTakenCount + 1, checking:
  // "Stride >= TripCount" is equivalent to checking:
  // Stride - BETakenCount > 0
  if (SE->isKnownPositive(StrideMinusBETaken)) {
    LLVM_DEBUG(
        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
                  "Stride==1 predicate will imply that the loop executes "
                  "at most once.\n");
    return;
  }
  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");

  SymbolicStrides[Ptr] = Stride;
  StrideSet.insert(Stride);
}

LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
                               DominatorTree *DT, LoopInfo *LI)
    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
      PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
      HasConvergentOp(false),
      HasDependenceInvolvingLoopInvariantAddress(false) {
  if (canAnalyzeLoop())
    analyzeLoop(AA, LI, TLI, DT);
}

void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
  if (CanVecMem) {
    OS.indent(Depth) << "Memory dependences are safe";
    if (MaxSafeDepDistBytes != -1ULL)
      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
         << " bytes";
    if (PtrRtChecking->Need)
      OS << " with run-time checks";
    OS << "\n";
  }

  if (HasConvergentOp)
    OS.indent(Depth) << "Has convergent operation in loop\n";

  if (Report)
    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";

  if (auto *Dependences = DepChecker->getDependences()) {
    OS.indent(Depth) << "Dependences:\n";
    for (auto &Dep : *Dependences) {
      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
      OS << "\n";
    }
  } else
    OS.indent(Depth) << "Too many dependences, not recorded\n";

  // List the pair of accesses need run-time checks to prove independence.
  PtrRtChecking->print(OS, Depth);
  OS << "\n";

  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
                   << "found in loop.\n";

  OS.indent(Depth) << "SCEV assumptions:\n";
  PSE->getUnionPredicate().print(OS, Depth);

  OS << "\n";

  OS.indent(Depth) << "Expressions re-written:\n";
  PSE->print(OS, Depth);
}

LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
  initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
}

const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
  auto &LAI = LoopAccessInfoMap[L];

  if (!LAI)
    LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);

  return *LAI.get();
}

void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
  LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop)) {
      OS.indent(2) << L->getHeader()->getName() << ":\n";
      auto &LAI = LAA.getInfo(L);
      LAI.print(OS, 4);
    }
}

bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
  TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  return false;
}

void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();

    AU.setPreservesAll();
}

char LoopAccessLegacyAnalysis::ID = 0;
static const char laa_name[] = "Loop Access Analysis";
#define LAA_NAME "loop-accesses"

INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)

AnalysisKey LoopAccessAnalysis::Key;

LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
                                       LoopStandardAnalysisResults &AR) {
  return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
}

namespace llvm {

  Pass *createLAAPass() {
    return new LoopAccessLegacyAnalysis();
  }

} // end namespace llvm