ScalarEvolutionExpander.cpp 96.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace PatternMatch;

/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one exists, moving an existing
/// cast if a suitable one exists but isn't in the right place, or
/// creating a new one.
Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
                                       Instruction::CastOps Op,
                                       BasicBlock::iterator IP) {
  // This function must be called with the builder having a valid insertion
  // point. It doesn't need to be the actual IP where the uses of the returned
  // cast will be added, but it must dominate such IP.
  // We use this precondition to produce a cast that will dominate all its
  // uses. In particular, this is crucial for the case where the builder's
  // insertion point *is* the point where we were asked to put the cast.
  // Since we don't know the builder's insertion point is actually
  // where the uses will be added (only that it dominates it), we are
  // not allowed to move it.
  BasicBlock::iterator BIP = Builder.GetInsertPoint();

  Instruction *Ret = nullptr;

  // Check to see if there is already a cast!
  for (User *U : V->users())
    if (U->getType() == Ty)
      if (CastInst *CI = dyn_cast<CastInst>(U))
        if (CI->getOpcode() == Op) {
          // If the cast isn't where we want it, create a new cast at IP.
          // Likewise, do not reuse a cast at BIP because it must dominate
          // instructions that might be inserted before BIP.
          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
            // Create a new cast, and leave the old cast in place in case
            // it is being used as an insert point.
            Ret = CastInst::Create(Op, V, Ty, "", &*IP);
            Ret->takeName(CI);
            CI->replaceAllUsesWith(Ret);
            break;
          }
          Ret = CI;
          break;
        }

  // Create a new cast.
  if (!Ret)
    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);

  // We assert at the end of the function since IP might point to an
  // instruction with different dominance properties than a cast
  // (an invoke for example) and not dominate BIP (but the cast does).
  assert(SE.DT.dominates(Ret, &*BIP));

  rememberInstruction(Ret);
  return Ret;
}

static BasicBlock::iterator findInsertPointAfter(Instruction *I,
                                                 BasicBlock *MustDominate) {
  BasicBlock::iterator IP = ++I->getIterator();
  if (auto *II = dyn_cast<InvokeInst>(I))
    IP = II->getNormalDest()->begin();

  while (isa<PHINode>(IP))
    ++IP;

  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
    ++IP;
  } else if (isa<CatchSwitchInst>(IP)) {
    IP = MustDominate->getFirstInsertionPt();
  } else {
    assert(!IP->isEHPad() && "unexpected eh pad!");
  }

  return IP;
}

/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
  assert((Op == Instruction::BitCast ||
          Op == Instruction::PtrToInt ||
          Op == Instruction::IntToPtr) &&
         "InsertNoopCastOfTo cannot perform non-noop casts!");
  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
         "InsertNoopCastOfTo cannot change sizes!");

  // Short-circuit unnecessary bitcasts.
  if (Op == Instruction::BitCast) {
    if (V->getType() == Ty)
      return V;
    if (CastInst *CI = dyn_cast<CastInst>(V)) {
      if (CI->getOperand(0)->getType() == Ty)
        return CI->getOperand(0);
    }
  }
  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    if (CastInst *CI = dyn_cast<CastInst>(V))
      if ((CI->getOpcode() == Instruction::PtrToInt ||
           CI->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CI->getType()) ==
          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
        return CI->getOperand(0);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      if ((CE->getOpcode() == Instruction::PtrToInt ||
           CE->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CE->getType()) ==
          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
        return CE->getOperand(0);
  }

  // Fold a cast of a constant.
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(Op, C, Ty);

  // Cast the argument at the beginning of the entry block, after
  // any bitcasts of other arguments.
  if (Argument *A = dyn_cast<Argument>(V)) {
    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    while ((isa<BitCastInst>(IP) &&
            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
            cast<BitCastInst>(IP)->getOperand(0) != A) ||
           isa<DbgInfoIntrinsic>(IP))
      ++IP;
    return ReuseOrCreateCast(A, Ty, Op, IP);
  }

  // Cast the instruction immediately after the instruction.
  Instruction *I = cast<Instruction>(V);
  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
  return ReuseOrCreateCast(I, Ty, Op, IP);
}

/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation, and hoisting
/// to an outer loop when the opportunity is there and it is safe.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
                                 Value *LHS, Value *RHS,
                                 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
  // Fold a binop with constant operands.
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantExpr::get(Opcode, CLHS, CRHS);

  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
  unsigned ScanLimit = 6;
  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
  // Scanning starts from the last instruction before the insertion point.
  BasicBlock::iterator IP = Builder.GetInsertPoint();
  if (IP != BlockBegin) {
    --IP;
    for (; ScanLimit; --IP, --ScanLimit) {
      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
      // generated code.
      if (isa<DbgInfoIntrinsic>(IP))
        ScanLimit++;

      auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
        // Ensure that no-wrap flags match.
        if (isa<OverflowingBinaryOperator>(I)) {
          if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
            return true;
          if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
            return true;
        }
        // Conservatively, do not use any instruction which has any of exact
        // flags installed.
        if (isa<PossiblyExactOperator>(I) && I->isExact())
          return true;
        return false;
      };
      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
          IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
        return &*IP;
      if (IP == BlockBegin) break;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
  SCEVInsertPointGuard Guard(Builder, this);

  if (IsSafeToHoist) {
    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader->getTerminator());
    }
  }

  // If we haven't found this binop, insert it.
  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
  BO->setDebugLoc(Loc);
  if (Flags & SCEV::FlagNUW)
    BO->setHasNoUnsignedWrap();
  if (Flags & SCEV::FlagNSW)
    BO->setHasNoSignedWrap();
  rememberInstruction(BO);

  return BO;
}

/// FactorOutConstant - Test if S is divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// S need not be evenly divisible if a reasonable remainder can be
/// computed.
static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
                              const SCEV *Factor, ScalarEvolution &SE,
                              const DataLayout &DL) {
  // Everything is divisible by one.
  if (Factor->isOne())
    return true;

  // x/x == 1.
  if (S == Factor) {
    S = SE.getConstant(S->getType(), 1);
    return true;
  }

  // For a Constant, check for a multiple of the given factor.
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    // 0/x == 0.
    if (C->isZero())
      return true;
    // Check for divisibility.
    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
      ConstantInt *CI =
          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
      // If the quotient is zero and the remainder is non-zero, reject
      // the value at this scale. It will be considered for subsequent
      // smaller scales.
      if (!CI->isZero()) {
        const SCEV *Div = SE.getConstant(CI);
        S = Div;
        Remainder = SE.getAddExpr(
            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
        return true;
      }
    }
  }

  // In a Mul, check if there is a constant operand which is a multiple
  // of the given factor.
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    // Size is known, check if there is a constant operand which is a multiple
    // of the given factor. If so, we can factor it.
    const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
      if (!C->getAPInt().srem(FC->getAPInt())) {
        SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
        NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
        S = SE.getMulExpr(NewMulOps);
        return true;
      }
  }

  // In an AddRec, check if both start and step are divisible.
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    const SCEV *Step = A->getStepRecurrence(SE);
    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
      return false;
    if (!StepRem->isZero())
      return false;
    const SCEV *Start = A->getStart();
    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
      return false;
    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
                         A->getNoWrapFlags(SCEV::FlagNW));
    return true;
  }

  return false;
}

/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
/// is the number of SCEVAddRecExprs present, which are kept at the end of
/// the list.
///
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
                                Type *Ty,
                                ScalarEvolution &SE) {
  unsigned NumAddRecs = 0;
  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    ++NumAddRecs;
  // Group Ops into non-addrecs and addrecs.
  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
  // Let ScalarEvolution sort and simplify the non-addrecs list.
  const SCEV *Sum = NoAddRecs.empty() ?
                    SE.getConstant(Ty, 0) :
                    SE.getAddExpr(NoAddRecs);
  // If it returned an add, use the operands. Otherwise it simplified
  // the sum into a single value, so just use that.
  Ops.clear();
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    Ops.append(Add->op_begin(), Add->op_end());
  else if (!Sum->isZero())
    Ops.push_back(Sum);
  // Then append the addrecs.
  Ops.append(AddRecs.begin(), AddRecs.end());
}

/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
/// This helps expose more opportunities for folding parts of the expressions
/// into GEP indices.
///
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
                         Type *Ty,
                         ScalarEvolution &SE) {
  // Find the addrecs.
  SmallVector<const SCEV *, 8> AddRecs;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
      const SCEV *Start = A->getStart();
      if (Start->isZero()) break;
      const SCEV *Zero = SE.getConstant(Ty, 0);
      AddRecs.push_back(SE.getAddRecExpr(Zero,
                                         A->getStepRecurrence(SE),
                                         A->getLoop(),
                                         A->getNoWrapFlags(SCEV::FlagNW)));
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
        Ops[i] = Zero;
        Ops.append(Add->op_begin(), Add->op_end());
        e += Add->getNumOperands();
      } else {
        Ops[i] = Start;
      }
    }
  if (!AddRecs.empty()) {
    // Add the addrecs onto the end of the list.
    Ops.append(AddRecs.begin(), AddRecs.end());
    // Resort the operand list, moving any constants to the front.
    SimplifyAddOperands(Ops, Ty, SE);
  }
}

/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
///
/// Design note: The correctness of using getelementptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
                                    const SCEV *const *op_end,
                                    PointerType *PTy,
                                    Type *Ty,
                                    Value *V) {
  Type *OriginalElTy = PTy->getElementType();
  Type *ElTy = OriginalElTy;
  SmallVector<Value *, 4> GepIndices;
  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
  bool AnyNonZeroIndices = false;

  // Split AddRecs up into parts as either of the parts may be usable
  // without the other.
  SplitAddRecs(Ops, Ty, SE);

  Type *IntIdxTy = DL.getIndexType(PTy);

  // Descend down the pointer's type and attempt to convert the other
  // operands into GEP indices, at each level. The first index in a GEP
  // indexes into the array implied by the pointer operand; the rest of
  // the indices index into the element or field type selected by the
  // preceding index.
  for (;;) {
    // If the scale size is not 0, attempt to factor out a scale for
    // array indexing.
    SmallVector<const SCEV *, 8> ScaledOps;
    if (ElTy->isSized()) {
      const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
      if (!ElSize->isZero()) {
        SmallVector<const SCEV *, 8> NewOps;
        for (const SCEV *Op : Ops) {
          const SCEV *Remainder = SE.getConstant(Ty, 0);
          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
            // Op now has ElSize factored out.
            ScaledOps.push_back(Op);
            if (!Remainder->isZero())
              NewOps.push_back(Remainder);
            AnyNonZeroIndices = true;
          } else {
            // The operand was not divisible, so add it to the list of operands
            // we'll scan next iteration.
            NewOps.push_back(Op);
          }
        }
        // If we made any changes, update Ops.
        if (!ScaledOps.empty()) {
          Ops = NewOps;
          SimplifyAddOperands(Ops, Ty, SE);
        }
      }
    }

    // Record the scaled array index for this level of the type. If
    // we didn't find any operands that could be factored, tentatively
    // assume that element zero was selected (since the zero offset
    // would obviously be folded away).
    Value *Scaled = ScaledOps.empty() ?
                    Constant::getNullValue(Ty) :
                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    GepIndices.push_back(Scaled);

    // Collect struct field index operands.
    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
      bool FoundFieldNo = false;
      // An empty struct has no fields.
      if (STy->getNumElements() == 0) break;
      // Field offsets are known. See if a constant offset falls within any of
      // the struct fields.
      if (Ops.empty())
        break;
      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
        if (SE.getTypeSizeInBits(C->getType()) <= 64) {
          const StructLayout &SL = *DL.getStructLayout(STy);
          uint64_t FullOffset = C->getValue()->getZExtValue();
          if (FullOffset < SL.getSizeInBytes()) {
            unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
            GepIndices.push_back(
                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
            ElTy = STy->getTypeAtIndex(ElIdx);
            Ops[0] =
                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
            AnyNonZeroIndices = true;
            FoundFieldNo = true;
          }
        }
      // If no struct field offsets were found, tentatively assume that
      // field zero was selected (since the zero offset would obviously
      // be folded away).
      if (!FoundFieldNo) {
        ElTy = STy->getTypeAtIndex(0u);
        GepIndices.push_back(
          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
      }
    }

    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
      ElTy = ATy->getElementType();
    else
      break;
  }

  // If none of the operands were convertible to proper GEP indices, cast
  // the base to i8* and do an ugly getelementptr with that. It's still
  // better than ptrtoint+arithmetic+inttoptr at least.
  if (!AnyNonZeroIndices) {
    // Cast the base to i8*.
    V = InsertNoopCastOfTo(V,
       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));

    assert(!isa<Instruction>(V) ||
           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));

    // Expand the operands for a plain byte offset.
    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);

    // Fold a GEP with constant operands.
    if (Constant *CLHS = dyn_cast<Constant>(V))
      if (Constant *CRHS = dyn_cast<Constant>(Idx))
        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
                                              CLHS, CRHS);

    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    unsigned ScanLimit = 6;
    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    // Scanning starts from the last instruction before the insertion point.
    BasicBlock::iterator IP = Builder.GetInsertPoint();
    if (IP != BlockBegin) {
      --IP;
      for (; ScanLimit; --IP, --ScanLimit) {
        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
        // generated code.
        if (isa<DbgInfoIntrinsic>(IP))
          ScanLimit++;
        if (IP->getOpcode() == Instruction::GetElementPtr &&
            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
          return &*IP;
        if (IP == BlockBegin) break;
      }
    }

    // Save the original insertion point so we can restore it when we're done.
    SCEVInsertPointGuard Guard(Builder, this);

    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader->getTerminator());
    }

    // Emit a GEP.
    Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
    rememberInstruction(GEP);

    return GEP;
  }

  {
    SCEVInsertPointGuard Guard(Builder, this);

    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(V)) break;

      bool AnyIndexNotLoopInvariant = any_of(
          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });

      if (AnyIndexNotLoopInvariant)
        break;

      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader->getTerminator());
    }

    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    // because ScalarEvolution may have changed the address arithmetic to
    // compute a value which is beyond the end of the allocated object.
    Value *Casted = V;
    if (V->getType() != PTy)
      Casted = InsertNoopCastOfTo(Casted, PTy);
    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
    Ops.push_back(SE.getUnknown(GEP));
    rememberInstruction(GEP);
  }

  return expand(SE.getAddExpr(Ops));
}

Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
                                    Value *V) {
  const SCEV *const Ops[1] = {Op};
  return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
}

/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
/// SCEV expansion. If they are nested, this is the most nested. If they are
/// neighboring, pick the later.
static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
                                        DominatorTree &DT) {
  if (!A) return B;
  if (!B) return A;
  if (A->contains(B)) return B;
  if (B->contains(A)) return A;
  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
  return A; // Arbitrarily break the tie.
}

/// getRelevantLoop - Get the most relevant loop associated with the given
/// expression, according to PickMostRelevantLoop.
const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
  // Test whether we've already computed the most relevant loop for this SCEV.
  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
  if (!Pair.second)
    return Pair.first->second;

  if (isa<SCEVConstant>(S))
    // A constant has no relevant loops.
    return nullptr;
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
      return Pair.first->second = SE.LI.getLoopFor(I->getParent());
    // A non-instruction has no relevant loops.
    return nullptr;
  }
  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    const Loop *L = nullptr;
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
      L = AR->getLoop();
    for (const SCEV *Op : N->operands())
      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
    return RelevantLoops[N] = L;
  }
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    const Loop *Result = getRelevantLoop(C->getOperand());
    return RelevantLoops[C] = Result;
  }
  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    const Loop *Result = PickMostRelevantLoop(
        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
    return RelevantLoops[D] = Result;
  }
  llvm_unreachable("Unexpected SCEV type!");
}

namespace {

/// LoopCompare - Compare loops by PickMostRelevantLoop.
class LoopCompare {
  DominatorTree &DT;
public:
  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}

  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
                  std::pair<const Loop *, const SCEV *> RHS) const {
    // Keep pointer operands sorted at the end.
    if (LHS.second->getType()->isPointerTy() !=
        RHS.second->getType()->isPointerTy())
      return LHS.second->getType()->isPointerTy();

    // Compare loops with PickMostRelevantLoop.
    if (LHS.first != RHS.first)
      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;

    // If one operand is a non-constant negative and the other is not,
    // put the non-constant negative on the right so that a sub can
    // be used instead of a negate and add.
    if (LHS.second->isNonConstantNegative()) {
      if (!RHS.second->isNonConstantNegative())
        return false;
    } else if (RHS.second->isNonConstantNegative())
      return true;

    // Otherwise they are equivalent according to this comparison.
    return false;
  }
};

}

Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the add operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal, and
  // so that pointer operands are inserted first, which the code below relies on
  // to form more involved GEPs.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants and
  // pointer operands precede non-pointer operands.
  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));

  // Emit instructions to add all the operands. Hoist as much as possible
  // out of loops, and form meaningful getelementptrs where possible.
  Value *Sum = nullptr;
  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
    const Loop *CurLoop = I->first;
    const SCEV *Op = I->second;
    if (!Sum) {
      // This is the first operand. Just expand it.
      Sum = expand(Op);
      ++I;
    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
      // The running sum expression is a pointer. Try to form a getelementptr
      // at this level with that as the base.
      SmallVector<const SCEV *, 4> NewOps;
      for (; I != E && I->first == CurLoop; ++I) {
        // If the operand is SCEVUnknown and not instructions, peek through
        // it, to enable more of it to be folded into the GEP.
        const SCEV *X = I->second;
        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
          if (!isa<Instruction>(U->getValue()))
            X = SE.getSCEV(U->getValue());
        NewOps.push_back(X);
      }
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
      // The running sum is an integer, and there's a pointer at this level.
      // Try to form a getelementptr. If the running sum is instructions,
      // use a SCEVUnknown to avoid re-analyzing them.
      SmallVector<const SCEV *, 4> NewOps;
      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
                                               SE.getSCEV(Sum));
      for (++I; I != E && I->first == CurLoop; ++I)
        NewOps.push_back(I->second);
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    } else if (Op->isNonConstantNegative()) {
      // Instead of doing a negate and add, just do a subtract.
      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
                        /*IsSafeToHoist*/ true);
      ++I;
    } else {
      // A simple add.
      Value *W = expandCodeFor(Op, Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Sum)) std::swap(Sum, W);
      Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
                        /*IsSafeToHoist*/ true);
      ++I;
    }
  }

  return Sum;
}

Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the mul operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants.
  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));

  // Emit instructions to mul all the operands. Hoist as much as possible
  // out of loops.
  Value *Prod = nullptr;
  auto I = OpsAndLoops.begin();

  // Expand the calculation of X pow N in the following manner:
  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
    auto E = I;
    // Calculate how many times the same operand from the same loop is included
    // into this power.
    uint64_t Exponent = 0;
    const uint64_t MaxExponent = UINT64_MAX >> 1;
    // No one sane will ever try to calculate such huge exponents, but if we
    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
    // below when the power of 2 exceeds our Exponent, and we want it to be
    // 1u << 31 at most to not deal with unsigned overflow.
    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
      ++Exponent;
      ++E;
    }
    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");

    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
    // that are needed into the result.
    Value *P = expandCodeFor(I->second, Ty);
    Value *Result = nullptr;
    if (Exponent & 1)
      Result = P;
    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
      P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
                      /*IsSafeToHoist*/ true);
      if (Exponent & BinExp)
        Result = Result ? InsertBinop(Instruction::Mul, Result, P,
                                      SCEV::FlagAnyWrap,
                                      /*IsSafeToHoist*/ true)
                        : P;
    }

    I = E;
    assert(Result && "Nothing was expanded?");
    return Result;
  };

  while (I != OpsAndLoops.end()) {
    if (!Prod) {
      // This is the first operand. Just expand it.
      Prod = ExpandOpBinPowN();
    } else if (I->second->isAllOnesValue()) {
      // Instead of doing a multiply by negative one, just do a negate.
      Prod = InsertNoopCastOfTo(Prod, Ty);
      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
      ++I;
    } else {
      // A simple mul.
      Value *W = ExpandOpBinPowN();
      Prod = InsertNoopCastOfTo(Prod, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Prod)) std::swap(Prod, W);
      const APInt *RHS;
      if (match(W, m_Power2(RHS))) {
        // Canonicalize Prod*(1<<C) to Prod<<C.
        assert(!Ty->isVectorTy() && "vector types are not SCEVable");
        auto NWFlags = S->getNoWrapFlags();
        // clear nsw flag if shl will produce poison value.
        if (RHS->logBase2() == RHS->getBitWidth() - 1)
          NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
        Prod = InsertBinop(Instruction::Shl, Prod,
                           ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
                           /*IsSafeToHoist*/ true);
      } else {
        Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
                           /*IsSafeToHoist*/ true);
      }
    }
  }

  return Prod;
}

Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  Value *LHS = expandCodeFor(S->getLHS(), Ty);
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    const APInt &RHS = SC->getAPInt();
    if (RHS.isPowerOf2())
      return InsertBinop(Instruction::LShr, LHS,
                         ConstantInt::get(Ty, RHS.logBase2()),
                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
  }

  Value *RHS = expandCodeFor(S->getRHS(), Ty);
  return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
                     /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
}

/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
                              ScalarEvolution &SE) {
  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    Base = A->getStart();
    Rest = SE.getAddExpr(Rest,
                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
                                          A->getStepRecurrence(SE),
                                          A->getLoop(),
                                          A->getNoWrapFlags(SCEV::FlagNW)));
  }
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    Base = A->getOperand(A->getNumOperands()-1);
    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    NewAddOps.back() = Rest;
    Rest = SE.getAddExpr(NewAddOps);
    ExposePointerBase(Base, Rest, SE);
  }
}

/// Determine if this is a well-behaved chain of instructions leading back to
/// the PHI. If so, it may be reused by expanded expressions.
bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                         const Loop *L) {
  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    return false;
  // If any of the operands don't dominate the insert position, bail.
  // Addrec operands are always loop-invariant, so this can only happen
  // if there are instructions which haven't been hoisted.
  if (L == IVIncInsertLoop) {
    for (User::op_iterator OI = IncV->op_begin()+1,
           OE = IncV->op_end(); OI != OE; ++OI)
      if (Instruction *OInst = dyn_cast<Instruction>(OI))
        if (!SE.DT.dominates(OInst, IVIncInsertPos))
          return false;
  }
  // Advance to the next instruction.
  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
  if (!IncV)
    return false;

  if (IncV->mayHaveSideEffects())
    return false;

  if (IncV == PN)
    return true;

  return isNormalAddRecExprPHI(PN, IncV, L);
}

/// getIVIncOperand returns an induction variable increment's induction
/// variable operand.
///
/// If allowScale is set, any type of GEP is allowed as long as the nonIV
/// operands dominate InsertPos.
///
/// If allowScale is not set, ensure that a GEP increment conforms to one of the
/// simple patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
                                           Instruction *InsertPos,
                                           bool allowScale) {
  if (IncV == InsertPos)
    return nullptr;

  switch (IncV->getOpcode()) {
  default:
    return nullptr;
  // Check for a simple Add/Sub or GEP of a loop invariant step.
  case Instruction::Add:
  case Instruction::Sub: {
    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    if (!OInst || SE.DT.dominates(OInst, InsertPos))
      return dyn_cast<Instruction>(IncV->getOperand(0));
    return nullptr;
  }
  case Instruction::BitCast:
    return dyn_cast<Instruction>(IncV->getOperand(0));
  case Instruction::GetElementPtr:
    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
      if (isa<Constant>(*I))
        continue;
      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
        if (!SE.DT.dominates(OInst, InsertPos))
          return nullptr;
      }
      if (allowScale) {
        // allow any kind of GEP as long as it can be hoisted.
        continue;
      }
      // This must be a pointer addition of constants (pretty), which is already
      // handled, or some number of address-size elements (ugly). Ugly geps
      // have 2 operands. i1* is used by the expander to represent an
      // address-size element.
      if (IncV->getNumOperands() != 2)
        return nullptr;
      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
        return nullptr;
      break;
    }
    return dyn_cast<Instruction>(IncV->getOperand(0));
  }
}

/// If the insert point of the current builder or any of the builders on the
/// stack of saved builders has 'I' as its insert point, update it to point to
/// the instruction after 'I'.  This is intended to be used when the instruction
/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
/// different block, the inconsistent insert point (with a mismatched
/// Instruction and Block) can lead to an instruction being inserted in a block
/// other than its parent.
void SCEVExpander::fixupInsertPoints(Instruction *I) {
  BasicBlock::iterator It(*I);
  BasicBlock::iterator NewInsertPt = std::next(It);
  if (Builder.GetInsertPoint() == It)
    Builder.SetInsertPoint(&*NewInsertPt);
  for (auto *InsertPtGuard : InsertPointGuards)
    if (InsertPtGuard->GetInsertPoint() == It)
      InsertPtGuard->SetInsertPoint(NewInsertPt);
}

/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
/// it available to other uses in this loop. Recursively hoist any operands,
/// until we reach a value that dominates InsertPos.
bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
  if (SE.DT.dominates(IncV, InsertPos))
      return true;

  // InsertPos must itself dominate IncV so that IncV's new position satisfies
  // its existing users.
  if (isa<PHINode>(InsertPos) ||
      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
    return false;

  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
    return false;

  // Check that the chain of IV operands leading back to Phi can be hoisted.
  SmallVector<Instruction*, 4> IVIncs;
  for(;;) {
    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    if (!Oper)
      return false;
    // IncV is safe to hoist.
    IVIncs.push_back(IncV);
    IncV = Oper;
    if (SE.DT.dominates(IncV, InsertPos))
      break;
  }
  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
    fixupInsertPoints(*I);
    (*I)->moveBefore(InsertPos);
  }
  return true;
}

/// Determine if this cyclic phi is in a form that would have been generated by
/// LSR. We don't care if the phi was actually expanded in this pass, as long
/// as it is in a low-cost form, for example, no implied multiplication. This
/// should match any patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP.
bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                           const Loop *L) {
  for(Instruction *IVOper = IncV;
      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
                                /*allowScale=*/false));) {
    if (IVOper == PN)
      return true;
  }
  return false;
}

/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
/// need to materialize IV increments elsewhere to handle difficult situations.
Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
                                 Type *ExpandTy, Type *IntTy,
                                 bool useSubtract) {
  Value *IncV;
  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
  if (ExpandTy->isPointerTy()) {
    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
    // If the step isn't constant, don't use an implicitly scaled GEP, because
    // that would require a multiply inside the loop.
    if (!isa<ConstantInt>(StepV))
      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
                                  GEPPtrTy->getAddressSpace());
    IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
    if (IncV->getType() != PN->getType()) {
      IncV = Builder.CreateBitCast(IncV, PN->getType());
      rememberInstruction(IncV);
    }
  } else {
    IncV = useSubtract ?
      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
    rememberInstruction(IncV);
  }
  return IncV;
}

/// Hoist the addrec instruction chain rooted in the loop phi above the
/// position. This routine assumes that this is possible (has been checked).
void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
                                  Instruction *Pos, PHINode *LoopPhi) {
  do {
    if (DT->dominates(InstToHoist, Pos))
      break;
    // Make sure the increment is where we want it. But don't move it
    // down past a potential existing post-inc user.
    fixupInsertPoints(InstToHoist);
    InstToHoist->moveBefore(Pos);
    Pos = InstToHoist;
    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
  } while (InstToHoist != LoopPhi);
}

/// Check whether we can cheaply express the requested SCEV in terms of
/// the available PHI SCEV by truncation and/or inversion of the step.
static bool canBeCheaplyTransformed(ScalarEvolution &SE,
                                    const SCEVAddRecExpr *Phi,
                                    const SCEVAddRecExpr *Requested,
                                    bool &InvertStep) {
  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());

  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
    return false;

  // Try truncate it if necessary.
  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
  if (!Phi)
    return false;

  // Check whether truncation will help.
  if (Phi == Requested) {
    InvertStep = false;
    return true;
  }

  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
  if (SE.getAddExpr(Requested->getStart(),
                    SE.getNegativeSCEV(Requested)) == Phi) {
    InvertStep = true;
    return true;
  }

  return false;
}

static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
  if (!isa<IntegerType>(AR->getType()))
    return false;

  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
                                            SE.getSignExtendExpr(AR, WideTy));
  const SCEV *ExtendAfterOp =
    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
  return ExtendAfterOp == OpAfterExtend;
}

static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
  if (!isa<IntegerType>(AR->getType()))
    return false;

  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
                                            SE.getZeroExtendExpr(AR, WideTy));
  const SCEV *ExtendAfterOp =
    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
  return ExtendAfterOp == OpAfterExtend;
}

/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
                                        const Loop *L,
                                        Type *ExpandTy,
                                        Type *IntTy,
                                        Type *&TruncTy,
                                        bool &InvertStep) {
  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");

  // Reuse a previously-inserted PHI, if present.
  BasicBlock *LatchBlock = L->getLoopLatch();
  if (LatchBlock) {
    PHINode *AddRecPhiMatch = nullptr;
    Instruction *IncV = nullptr;
    TruncTy = nullptr;
    InvertStep = false;

    // Only try partially matching scevs that need truncation and/or
    // step-inversion if we know this loop is outside the current loop.
    bool TryNonMatchingSCEV =
        IVIncInsertLoop &&
        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());

    for (PHINode &PN : L->getHeader()->phis()) {
      if (!SE.isSCEVable(PN.getType()))
        continue;

      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
      if (!PhiSCEV)
        continue;

      bool IsMatchingSCEV = PhiSCEV == Normalized;
      // We only handle truncation and inversion of phi recurrences for the
      // expanded expression if the expanded expression's loop dominates the
      // loop we insert to. Check now, so we can bail out early.
      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
          continue;

      // TODO: this possibly can be reworked to avoid this cast at all.
      Instruction *TempIncV =
          dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
      if (!TempIncV)
        continue;

      // Check whether we can reuse this PHI node.
      if (LSRMode) {
        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
          continue;
        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
          continue;
      } else {
        if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
          continue;
      }

      // Stop if we have found an exact match SCEV.
      if (IsMatchingSCEV) {
        IncV = TempIncV;
        TruncTy = nullptr;
        InvertStep = false;
        AddRecPhiMatch = &PN;
        break;
      }

      // Try whether the phi can be translated into the requested form
      // (truncated and/or offset by a constant).
      if ((!TruncTy || InvertStep) &&
          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
        // Record the phi node. But don't stop we might find an exact match
        // later.
        AddRecPhiMatch = &PN;
        IncV = TempIncV;
        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
      }
    }

    if (AddRecPhiMatch) {
      // Potentially, move the increment. We have made sure in
      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
      if (L == IVIncInsertLoop)
        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);

      // Ok, the add recurrence looks usable.
      // Remember this PHI, even in post-inc mode.
      InsertedValues.insert(AddRecPhiMatch);
      // Remember the increment.
      rememberInstruction(IncV);
      return AddRecPhiMatch;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  SCEVInsertPointGuard Guard(Builder, this);

  // Another AddRec may need to be recursively expanded below. For example, if
  // this AddRec is quadratic, the StepV may itself be an AddRec in this
  // loop. Remove this loop from the PostIncLoops set before expanding such
  // AddRecs. Otherwise, we cannot find a valid position for the step
  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
  // so it's not worth implementing SmallPtrSet::swap.
  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
  PostIncLoops.clear();

  // Expand code for the start value into the loop preheader.
  assert(L->getLoopPreheader() &&
         "Can't expand add recurrences without a loop preheader!");
  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
                                L->getLoopPreheader()->getTerminator());

  // StartV must have been be inserted into L's preheader to dominate the new
  // phi.
  assert(!isa<Instruction>(StartV) ||
         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
                                 L->getHeader()));

  // Expand code for the step value. Do this before creating the PHI so that PHI
  // reuse code doesn't see an incomplete PHI.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  // If the stride is negative, insert a sub instead of an add for the increment
  // (unless it's a constant, because subtracts of constants are canonicalized
  // to adds).
  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
  if (useSubtract)
    Step = SE.getNegativeSCEV(Step);
  // Expand the step somewhere that dominates the loop header.
  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());

  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
  // we actually do emit an addition.  It does not apply if we emit a
  // subtraction.
  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);

  // Create the PHI.
  BasicBlock *Header = L->getHeader();
  Builder.SetInsertPoint(Header, Header->begin());
  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
                                  Twine(IVName) + ".iv");
  rememberInstruction(PN);

  // Create the step instructions and populate the PHI.
  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
    BasicBlock *Pred = *HPI;

    // Add a start value.
    if (!L->contains(Pred)) {
      PN->addIncoming(StartV, Pred);
      continue;
    }

    // Create a step value and add it to the PHI.
    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
    // instructions at IVIncInsertPos.
    Instruction *InsertPos = L == IVIncInsertLoop ?
      IVIncInsertPos : Pred->getTerminator();
    Builder.SetInsertPoint(InsertPos);
    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);

    if (isa<OverflowingBinaryOperator>(IncV)) {
      if (IncrementIsNUW)
        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
      if (IncrementIsNSW)
        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
    }
    PN->addIncoming(IncV, Pred);
  }

  // After expanding subexpressions, restore the PostIncLoops set so the caller
  // can ensure that IVIncrement dominates the current uses.
  PostIncLoops = SavedPostIncLoops;

  // Remember this PHI, even in post-inc mode.
  InsertedValues.insert(PN);

  return PN;
}

Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
  Type *STy = S->getType();
  Type *IntTy = SE.getEffectiveSCEVType(STy);
  const Loop *L = S->getLoop();

  // Determine a normalized form of this expression, which is the expression
  // before any post-inc adjustment is made.
  const SCEVAddRecExpr *Normalized = S;
  if (PostIncLoops.count(L)) {
    PostIncLoopSet Loops;
    Loops.insert(L);
    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
  }

  // Strip off any non-loop-dominating component from the addrec start.
  const SCEV *Start = Normalized->getStart();
  const SCEV *PostLoopOffset = nullptr;
  if (!SE.properlyDominates(Start, L->getHeader())) {
    PostLoopOffset = Start;
    Start = SE.getConstant(Normalized->getType(), 0);
    Normalized = cast<SCEVAddRecExpr>(
      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
                       Normalized->getLoop(),
                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Strip off any non-loop-dominating component from the addrec step.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  const SCEV *PostLoopScale = nullptr;
  if (!SE.dominates(Step, L->getHeader())) {
    PostLoopScale = Step;
    Step = SE.getConstant(Normalized->getType(), 1);
    if (!Start->isZero()) {
        // The normalization below assumes that Start is constant zero, so if
        // it isn't re-associate Start to PostLoopOffset.
        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
        PostLoopOffset = Start;
        Start = SE.getConstant(Normalized->getType(), 0);
    }
    Normalized =
      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
                             Start, Step, Normalized->getLoop(),
                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Expand the core addrec. If we need post-loop scaling, force it to
  // expand to an integer type to avoid the need for additional casting.
  Type *ExpandTy = PostLoopScale ? IntTy : STy;
  // We can't use a pointer type for the addrec if the pointer type is
  // non-integral.
  Type *AddRecPHIExpandTy =
      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;

  // In some cases, we decide to reuse an existing phi node but need to truncate
  // it and/or invert the step.
  Type *TruncTy = nullptr;
  bool InvertStep = false;
  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
                                          IntTy, TruncTy, InvertStep);

  // Accommodate post-inc mode, if necessary.
  Value *Result;
  if (!PostIncLoops.count(L))
    Result = PN;
  else {
    // In PostInc mode, use the post-incremented value.
    BasicBlock *LatchBlock = L->getLoopLatch();
    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
    Result = PN->getIncomingValueForBlock(LatchBlock);

    // For an expansion to use the postinc form, the client must call
    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
    // or dominated by IVIncInsertPos.
    if (isa<Instruction>(Result) &&
        !SE.DT.dominates(cast<Instruction>(Result),
                         &*Builder.GetInsertPoint())) {
      // The induction variable's postinc expansion does not dominate this use.
      // IVUsers tries to prevent this case, so it is rare. However, it can
      // happen when an IVUser outside the loop is not dominated by the latch
      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
      // all cases. Consider a phi outside whose operand is replaced during
      // expansion with the value of the postinc user. Without fundamentally
      // changing the way postinc users are tracked, the only remedy is
      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
      // but hopefully expandCodeFor handles that.
      bool useSubtract =
        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
      if (useSubtract)
        Step = SE.getNegativeSCEV(Step);
      Value *StepV;
      {
        // Expand the step somewhere that dominates the loop header.
        SCEVInsertPointGuard Guard(Builder, this);
        StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
      }
      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
    }
  }

  // We have decided to reuse an induction variable of a dominating loop. Apply
  // truncation and/or inversion of the step.
  if (TruncTy) {
    Type *ResTy = Result->getType();
    // Normalize the result type.
    if (ResTy != SE.getEffectiveSCEVType(ResTy))
      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
    // Truncate the result.
    if (TruncTy != Result->getType()) {
      Result = Builder.CreateTrunc(Result, TruncTy);
      rememberInstruction(Result);
    }
    // Invert the result.
    if (InvertStep) {
      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
                                 Result);
      rememberInstruction(Result);
    }
  }

  // Re-apply any non-loop-dominating scale.
  if (PostLoopScale) {
    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
    Result = InsertNoopCastOfTo(Result, IntTy);
    Result = Builder.CreateMul(Result,
                               expandCodeFor(PostLoopScale, IntTy));
    rememberInstruction(Result);
  }

  // Re-apply any non-loop-dominating offset.
  if (PostLoopOffset) {
    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
      if (Result->getType()->isIntegerTy()) {
        Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
        Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
      } else {
        Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
      }
    } else {
      Result = InsertNoopCastOfTo(Result, IntTy);
      Result = Builder.CreateAdd(Result,
                                 expandCodeFor(PostLoopOffset, IntTy));
      rememberInstruction(Result);
    }
  }

  return Result;
}

Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
  // In canonical mode we compute the addrec as an expression of a canonical IV
  // using evaluateAtIteration and expand the resulting SCEV expression. This
  // way we avoid introducing new IVs to carry on the comutation of the addrec
  // throughout the loop.
  //
  // For nested addrecs evaluateAtIteration might need a canonical IV of a
  // type wider than the addrec itself. Emitting a canonical IV of the
  // proper type might produce non-legal types, for example expanding an i64
  // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
  // back to non-canonical mode for nested addrecs.
  if (!CanonicalMode || (S->getNumOperands() > 2))
    return expandAddRecExprLiterally(S);

  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  const Loop *L = S->getLoop();

  // First check for an existing canonical IV in a suitable type.
  PHINode *CanonicalIV = nullptr;
  if (PHINode *PN = L->getCanonicalInductionVariable())
    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
      CanonicalIV = PN;

  // Rewrite an AddRec in terms of the canonical induction variable, if
  // its type is more narrow.
  if (CanonicalIV &&
      SE.getTypeSizeInBits(CanonicalIV->getType()) >
      SE.getTypeSizeInBits(Ty)) {
    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
                                       S->getNoWrapFlags(SCEV::FlagNW)));
    BasicBlock::iterator NewInsertPt =
        findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
                      &*NewInsertPt);
    return V;
  }

  // {X,+,F} --> X + {0,+,F}
  if (!S->getStart()->isZero()) {
    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
    NewOps[0] = SE.getConstant(Ty, 0);
    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
                                        S->getNoWrapFlags(SCEV::FlagNW));

    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
    // comments on expandAddToGEP for details.
    const SCEV *Base = S->getStart();
    // Dig into the expression to find the pointer base for a GEP.
    const SCEV *ExposedRest = Rest;
    ExposePointerBase(Base, ExposedRest, SE);
    // If we found a pointer, expand the AddRec with a GEP.
    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
      // Make sure the Base isn't something exotic, such as a multiplied
      // or divided pointer value. In those cases, the result type isn't
      // actually a pointer type.
      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
        Value *StartV = expand(Base);
        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
        return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
      }
    }

    // Just do a normal add. Pre-expand the operands to suppress folding.
    //
    // The LHS and RHS values are factored out of the expand call to make the
    // output independent of the argument evaluation order.
    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
  }

  // If we don't yet have a canonical IV, create one.
  if (!CanonicalIV) {
    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
                                  &Header->front());
    rememberInstruction(CanonicalIV);

    SmallSet<BasicBlock *, 4> PredSeen;
    Constant *One = ConstantInt::get(Ty, 1);
    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
      BasicBlock *HP = *HPI;
      if (!PredSeen.insert(HP).second) {
        // There must be an incoming value for each predecessor, even the
        // duplicates!
        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
        continue;
      }

      if (L->contains(HP)) {
        // Insert a unit add instruction right before the terminator
        // corresponding to the back-edge.
        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
                                                     "indvar.next",
                                                     HP->getTerminator());
        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
        rememberInstruction(Add);
        CanonicalIV->addIncoming(Add, HP);
      } else {
        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
      }
    }
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->isAffine() && S->getOperand(1)->isOne()) {
    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
           "IVs with types different from the canonical IV should "
           "already have been handled!");
    return CanonicalIV;
  }

  // {0,+,F} --> {0,+,1} * F

  // If this is a simple linear addrec, emit it now as a special case.
  if (S->isAffine())    // {0,+,F} --> i*F
    return
      expand(SE.getTruncateOrNoop(
        SE.getMulExpr(SE.getUnknown(CanonicalIV),
                      SE.getNoopOrAnyExtend(S->getOperand(1),
                                            CanonicalIV->getType())),
        Ty));

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.

  // Promote S up to the canonical IV type, if the cast is foldable.
  const SCEV *NewS = S;
  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
  if (isa<SCEVAddRecExpr>(Ext))
    NewS = Ext;

  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  // Truncate the result down to the original type, if needed.
  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
  return expand(T);
}

Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateTrunc(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateZExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateSExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    Type *OpTy = S->getOperand(i)->getType();
    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    Type *OpTy = S->getOperand(i)->getType();
    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands() - 2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    Type *OpTy = S->getOperand(i)->getType();
    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands() - 2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    Type *OpTy = S->getOperand(i)->getType();
    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
                                   Instruction *IP) {
  setInsertPoint(IP);
  return expandCodeFor(SH, Ty);
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
  // Expand the code for this SCEV.
  Value *V = expand(SH);
  if (Ty) {
    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
           "non-trivial casts should be done with the SCEVs directly!");
    V = InsertNoopCastOfTo(V, Ty);
  }
  return V;
}

ScalarEvolution::ValueOffsetPair
SCEVExpander::FindValueInExprValueMap(const SCEV *S,
                                      const Instruction *InsertPt) {
  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
  // If the expansion is not in CanonicalMode, and the SCEV contains any
  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
    // If S is scConstant, it may be worse to reuse an existing Value.
    if (S->getSCEVType() != scConstant && Set) {
      // Choose a Value from the set which dominates the insertPt.
      // insertPt should be inside the Value's parent loop so as not to break
      // the LCSSA form.
      for (auto const &VOPair : *Set) {
        Value *V = VOPair.first;
        ConstantInt *Offset = VOPair.second;
        Instruction *EntInst = nullptr;
        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
            S->getType() == V->getType() &&
            EntInst->getFunction() == InsertPt->getFunction() &&
            SE.DT.dominates(EntInst, InsertPt) &&
            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
          return {V, Offset};
      }
    }
  }
  return {nullptr, nullptr};
}

// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
// the expansion will try to reuse Value from ExprValueMap, and only when it
// fails, expand the SCEV literally.
Value *SCEVExpander::expand(const SCEV *S) {
  // Compute an insertion point for this SCEV object. Hoist the instructions
  // as far out in the loop nest as possible.
  Instruction *InsertPt = &*Builder.GetInsertPoint();

  // We can move insertion point only if there is no div or rem operations
  // otherwise we are risky to move it over the check for zero denominator.
  auto SafeToHoist = [](const SCEV *S) {
    return !SCEVExprContains(S, [](const SCEV *S) {
              if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
                if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
                  // Division by non-zero constants can be hoisted.
                  return SC->getValue()->isZero();
                // All other divisions should not be moved as they may be
                // divisions by zero and should be kept within the
                // conditions of the surrounding loops that guard their
                // execution (see PR35406).
                return true;
              }
              return false;
            });
  };
  if (SafeToHoist(S)) {
    for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
         L = L->getParentLoop()) {
      if (SE.isLoopInvariant(S, L)) {
        if (!L) break;
        if (BasicBlock *Preheader = L->getLoopPreheader())
          InsertPt = Preheader->getTerminator();
        else
          // LSR sets the insertion point for AddRec start/step values to the
          // block start to simplify value reuse, even though it's an invalid
          // position. SCEVExpander must correct for this in all cases.
          InsertPt = &*L->getHeader()->getFirstInsertionPt();
      } else {
        // If the SCEV is computable at this level, insert it into the header
        // after the PHIs (and after any other instructions that we've inserted
        // there) so that it is guaranteed to dominate any user inside the loop.
        if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
          InsertPt = &*L->getHeader()->getFirstInsertionPt();
        while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
               (isInsertedInstruction(InsertPt) ||
                isa<DbgInfoIntrinsic>(InsertPt)))
          InsertPt = &*std::next(InsertPt->getIterator());
        break;
      }
    }
  }

  // IndVarSimplify sometimes sets the insertion point at the block start, even
  // when there are PHIs at that point.  We must correct for this.
  if (isa<PHINode>(*InsertPt))
    InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();

  // Check to see if we already expanded this here.
  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
  if (I != InsertedExpressions.end())
    return I->second;

  SCEVInsertPointGuard Guard(Builder, this);
  Builder.SetInsertPoint(InsertPt);

  // Expand the expression into instructions.
  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
  Value *V = VO.first;

  if (!V)
    V = visit(S);
  else if (VO.second) {
    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
      Type *Ety = Vty->getPointerElementType();
      int64_t Offset = VO.second->getSExtValue();
      int64_t ESize = SE.getTypeSizeInBits(Ety);
      if ((Offset * 8) % ESize == 0) {
        ConstantInt *Idx =
            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
        V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
      } else {
        ConstantInt *Idx =
            ConstantInt::getSigned(VO.second->getType(), -Offset);
        unsigned AS = Vty->getAddressSpace();
        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
                              "uglygep");
        V = Builder.CreateBitCast(V, Vty);
      }
    } else {
      V = Builder.CreateSub(V, VO.second);
    }
  }
  // Remember the expanded value for this SCEV at this location.
  //
  // This is independent of PostIncLoops. The mapped value simply materializes
  // the expression at this insertion point. If the mapped value happened to be
  // a postinc expansion, it could be reused by a non-postinc user, but only if
  // its insertion point was already at the head of the loop.
  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
  return V;
}

void SCEVExpander::rememberInstruction(Value *I) {
  if (!PostIncLoops.empty())
    InsertedPostIncValues.insert(I);
  else
    InsertedValues.insert(I);
}

/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none).  A canonical induction variable
/// starts at zero and steps by one on each iteration.
PHINode *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
                                                    Type *Ty) {
  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");

  // Build a SCEV for {0,+,1}<L>.
  // Conservatively use FlagAnyWrap for now.
  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);

  // Emit code for it.
  SCEVInsertPointGuard Guard(Builder, this);
  PHINode *V =
      cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));

  return V;
}

/// replaceCongruentIVs - Check for congruent phis in this loop header and
/// replace them with their most canonical representative. Return the number of
/// phis eliminated.
///
/// This does not depend on any SCEVExpander state but should be used in
/// the same context that SCEVExpander is used.
unsigned
SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
                                  const TargetTransformInfo *TTI) {
  // Find integer phis in order of increasing width.
  SmallVector<PHINode*, 8> Phis;
  for (PHINode &PN : L->getHeader()->phis())
    Phis.push_back(&PN);

  if (TTI)
    llvm::sort(Phis, [](Value *LHS, Value *RHS) {
      // Put pointers at the back and make sure pointer < pointer = false.
      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
      return RHS->getType()->getPrimitiveSizeInBits() <
             LHS->getType()->getPrimitiveSizeInBits();
    });

  unsigned NumElim = 0;
  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
  // Process phis from wide to narrow. Map wide phis to their truncation
  // so narrow phis can reuse them.
  for (PHINode *Phi : Phis) {
    auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
        return V;
      if (!SE.isSCEVable(PN->getType()))
        return nullptr;
      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
      if (!Const)
        return nullptr;
      return Const->getValue();
    };

    // Fold constant phis. They may be congruent to other constant phis and
    // would confuse the logic below that expects proper IVs.
    if (Value *V = SimplifyPHINode(Phi)) {
      if (V->getType() != Phi->getType())
        continue;
      Phi->replaceAllUsesWith(V);
      DeadInsts.emplace_back(Phi);
      ++NumElim;
      DEBUG_WITH_TYPE(DebugType, dbgs()
                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
      continue;
    }

    if (!SE.isSCEVable(Phi->getType()))
      continue;

    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
    if (!OrigPhiRef) {
      OrigPhiRef = Phi;
      if (Phi->getType()->isIntegerTy() && TTI &&
          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
        // This phi can be freely truncated to the narrowest phi type. Map the
        // truncated expression to it so it will be reused for narrow types.
        const SCEV *TruncExpr =
          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
        ExprToIVMap[TruncExpr] = Phi;
      }
      continue;
    }

    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
    // sense.
    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
      continue;

    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
      Instruction *OrigInc = dyn_cast<Instruction>(
          OrigPhiRef->getIncomingValueForBlock(LatchBlock));
      Instruction *IsomorphicInc =
          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));

      if (OrigInc && IsomorphicInc) {
        // If this phi has the same width but is more canonical, replace the
        // original with it. As part of the "more canonical" determination,
        // respect a prior decision to use an IV chain.
        if (OrigPhiRef->getType() == Phi->getType() &&
            !(ChainedPhis.count(Phi) ||
              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
            (ChainedPhis.count(Phi) ||
             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
          std::swap(OrigPhiRef, Phi);
          std::swap(OrigInc, IsomorphicInc);
        }
        // Replacing the congruent phi is sufficient because acyclic
        // redundancy elimination, CSE/GVN, should handle the
        // rest. However, once SCEV proves that a phi is congruent,
        // it's often the head of an IV user cycle that is isomorphic
        // with the original phi. It's worth eagerly cleaning up the
        // common case of a single IV increment so that DeleteDeadPHIs
        // can remove cycles that had postinc uses.
        const SCEV *TruncExpr =
            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
        if (OrigInc != IsomorphicInc &&
            TruncExpr == SE.getSCEV(IsomorphicInc) &&
            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
            hoistIVInc(OrigInc, IsomorphicInc)) {
          DEBUG_WITH_TYPE(DebugType,
                          dbgs() << "INDVARS: Eliminated congruent iv.inc: "
                                 << *IsomorphicInc << '\n');
          Value *NewInc = OrigInc;
          if (OrigInc->getType() != IsomorphicInc->getType()) {
            Instruction *IP = nullptr;
            if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
              IP = &*PN->getParent()->getFirstInsertionPt();
            else
              IP = OrigInc->getNextNode();

            IRBuilder<> Builder(IP);
            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
            NewInc = Builder.CreateTruncOrBitCast(
                OrigInc, IsomorphicInc->getType(), IVName);
          }
          IsomorphicInc->replaceAllUsesWith(NewInc);
          DeadInsts.emplace_back(IsomorphicInc);
        }
      }
    }
    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
                                      << *Phi << '\n');
    ++NumElim;
    Value *NewIV = OrigPhiRef;
    if (OrigPhiRef->getType() != Phi->getType()) {
      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
    }
    Phi->replaceAllUsesWith(NewIV);
    DeadInsts.emplace_back(Phi);
  }
  return NumElim;
}

Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
                                               const Instruction *At, Loop *L) {
  Optional<ScalarEvolution::ValueOffsetPair> VO =
      getRelatedExistingExpansion(S, At, L);
  if (VO && VO.getValue().second == nullptr)
    return VO.getValue().first;
  return nullptr;
}

Optional<ScalarEvolution::ValueOffsetPair>
SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
                                          Loop *L) {
  using namespace llvm::PatternMatch;

  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // Look for suitable value in simple conditions at the loop exits.
  for (BasicBlock *BB : ExitingBlocks) {
    ICmpInst::Predicate Pred;
    Instruction *LHS, *RHS;

    if (!match(BB->getTerminator(),
               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
                    m_BasicBlock(), m_BasicBlock())))
      continue;

    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
      return ScalarEvolution::ValueOffsetPair(LHS, nullptr);

    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
      return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
  }

  // Use expand's logic which is used for reusing a previous Value in
  // ExprValueMap.
  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
  if (VO.first)
    return VO;

  // There is potential to make this significantly smarter, but this simple
  // heuristic already gets some interesting cases.

  // Can not find suitable value.
  return None;
}

bool SCEVExpander::isHighCostExpansionHelper(
    const SCEV *S, Loop *L, const Instruction *At,
    SmallPtrSetImpl<const SCEV *> &Processed) {

  // If we can find an existing value for this scev available at the point "At"
  // then consider the expression cheap.
  if (At && getRelatedExistingExpansion(S, At, L))
    return false;

  // Zero/One operand expressions
  switch (S->getSCEVType()) {
  case scUnknown:
  case scConstant:
    return false;
  case scTruncate:
    return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
                                     L, At, Processed);
  case scZeroExtend:
    return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
                                     L, At, Processed);
  case scSignExtend:
    return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
                                     L, At, Processed);
  }

  if (!Processed.insert(S).second)
    return false;

  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
    // If the divisor is a power of two and the SCEV type fits in a native
    // integer (and the LHS not expensive), consider the division cheap
    // irrespective of whether it occurs in the user code since it can be
    // lowered into a right shift.
    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
      if (SC->getAPInt().isPowerOf2()) {
        if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
          return true;
        const DataLayout &DL =
            L->getHeader()->getParent()->getParent()->getDataLayout();
        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
        return DL.isIllegalInteger(Width);
      }

    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
    // HowManyLessThans produced to compute a precise expression, rather than a
    // UDiv from the user's code. If we can't find a UDiv in the code with some
    // simple searching, assume the former consider UDivExpr expensive to
    // compute.
    BasicBlock *ExitingBB = L->getExitingBlock();
    if (!ExitingBB)
      return true;

    // At the beginning of this function we already tried to find existing value
    // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
    // involving division. This is just a simple search heuristic.
    if (!At)
      At = &ExitingBB->back();
    if (!getRelatedExistingExpansion(
            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
      return true;
  }

  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
  // the exit condition.
  if (isa<SCEVMinMaxExpr>(S))
    return true;

  // Recurse past nary expressions, which commonly occur in the
  // BackedgeTakenCount. They may already exist in program code, and if not,
  // they are not too expensive rematerialize.
  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
    for (auto *Op : NAry->operands())
      if (isHighCostExpansionHelper(Op, L, At, Processed))
        return true;
  }

  // If we haven't recognized an expensive SCEV pattern, assume it's an
  // expression produced by program code.
  return false;
}

Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
                                            Instruction *IP) {
  assert(IP);
  switch (Pred->getKind()) {
  case SCEVPredicate::P_Union:
    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
  case SCEVPredicate::P_Equal:
    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
  case SCEVPredicate::P_Wrap: {
    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
    return expandWrapPredicate(AddRecPred, IP);
  }
  }
  llvm_unreachable("Unknown SCEV predicate type");
}

Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
                                          Instruction *IP) {
  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);

  Builder.SetInsertPoint(IP);
  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
  return I;
}

Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
                                           Instruction *Loc, bool Signed) {
  assert(AR->isAffine() && "Cannot generate RT check for "
                           "non-affine expression");

  SCEVUnionPredicate Pred;
  const SCEV *ExitCount =
      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);

  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");

  const SCEV *Step = AR->getStepRecurrence(SE);
  const SCEV *Start = AR->getStart();

  Type *ARTy = AR->getType();
  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
  unsigned DstBits = SE.getTypeSizeInBits(ARTy);

  // The expression {Start,+,Step} has nusw/nssw if
  //   Step < 0, Start - |Step| * Backedge <= Start
  //   Step >= 0, Start + |Step| * Backedge > Start
  // and |Step| * Backedge doesn't unsigned overflow.

  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
  Builder.SetInsertPoint(Loc);
  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);

  IntegerType *Ty =
      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
  Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;

  Value *StepValue = expandCodeFor(Step, Ty, Loc);
  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
  Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);

  ConstantInt *Zero =
      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));

  Builder.SetInsertPoint(Loc);
  // Compute |Step|
  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);

  // Get the backedge taken count and truncate or extended to the AR type.
  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
                                         Intrinsic::umul_with_overflow, Ty);

  // Compute |Step| * Backedge
  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");

  // Compute:
  //   Start + |Step| * Backedge < Start
  //   Start - |Step| * Backedge > Start
  Value *Add = nullptr, *Sub = nullptr;
  if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
    const SCEV *MulS = SE.getSCEV(MulV);
    const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
    Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
                                ARPtrTy);
    Sub = Builder.CreateBitCast(
        expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
  } else {
    Add = Builder.CreateAdd(StartValue, MulV);
    Sub = Builder.CreateSub(StartValue, MulV);
  }

  Value *EndCompareGT = Builder.CreateICmp(
      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);

  Value *EndCompareLT = Builder.CreateICmp(
      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);

  // Select the answer based on the sign of Step.
  Value *EndCheck =
      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);

  // If the backedge taken count type is larger than the AR type,
  // check that we don't drop any bits by truncating it. If we are
  // dropping bits, then we have overflow (unless the step is zero).
  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
    auto *BackedgeCheck =
        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
                           ConstantInt::get(Loc->getContext(), MaxVal));
    BackedgeCheck = Builder.CreateAnd(
        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));

    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
  }

  EndCheck = Builder.CreateOr(EndCheck, OfMul);
  return EndCheck;
}

Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
                                         Instruction *IP) {
  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;

  // Add a check for NUSW
  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
    NUSWCheck = generateOverflowCheck(A, IP, false);

  // Add a check for NSSW
  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
    NSSWCheck = generateOverflowCheck(A, IP, true);

  if (NUSWCheck && NSSWCheck)
    return Builder.CreateOr(NUSWCheck, NSSWCheck);

  if (NUSWCheck)
    return NUSWCheck;

  if (NSSWCheck)
    return NSSWCheck;

  return ConstantInt::getFalse(IP->getContext());
}

Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
                                          Instruction *IP) {
  auto *BoolType = IntegerType::get(IP->getContext(), 1);
  Value *Check = ConstantInt::getNullValue(BoolType);

  // Loop over all checks in this set.
  for (auto Pred : Union->getPredicates()) {
    auto *NextCheck = expandCodeForPredicate(Pred, IP);
    Builder.SetInsertPoint(IP);
    Check = Builder.CreateOr(Check, NextCheck);
  }

  return Check;
}

namespace {
// Search for a SCEV subexpression that is not safe to expand.  Any expression
// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
// UDiv expressions. We don't know if the UDiv is derived from an IR divide
// instruction, but the important thing is that we prove the denominator is
// nonzero before expansion.
//
// IVUsers already checks that IV-derived expressions are safe. So this check is
// only needed when the expression includes some subexpression that is not IV
// derived.
//
// Currently, we only allow division by a nonzero constant here. If this is
// inadequate, we could easily allow division by SCEVUnknown by using
// ValueTracking to check isKnownNonZero().
//
// We cannot generally expand recurrences unless the step dominates the loop
// header. The expander handles the special case of affine recurrences by
// scaling the recurrence outside the loop, but this technique isn't generally
// applicable. Expanding a nested recurrence outside a loop requires computing
// binomial coefficients. This could be done, but the recurrence has to be in a
// perfectly reduced form, which can't be guaranteed.
struct SCEVFindUnsafe {
  ScalarEvolution &SE;
  bool IsUnsafe;

  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}

  bool follow(const SCEV *S) {
    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
      if (!SC || SC->getValue()->isZero()) {
        IsUnsafe = true;
        return false;
      }
    }
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
      const SCEV *Step = AR->getStepRecurrence(SE);
      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
        IsUnsafe = true;
        return false;
      }
    }
    return true;
  }
  bool isDone() const { return IsUnsafe; }
};
}

namespace llvm {
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
  SCEVFindUnsafe Search(SE);
  visitAll(S, Search);
  return !Search.IsUnsafe;
}

bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
                      ScalarEvolution &SE) {
  if (!isSafeToExpand(S, SE))
    return false;
  // We have to prove that the expanded site of S dominates InsertionPoint.
  // This is easy when not in the same block, but hard when S is an instruction
  // to be expanded somewhere inside the same block as our insertion point.
  // What we really need here is something analogous to an OrderedBasicBlock,
  // but for the moment, we paper over the problem by handling two common and
  // cheap to check cases.
  if (SE.properlyDominates(S, InsertionPoint->getParent()))
    return true;
  if (SE.dominates(S, InsertionPoint->getParent())) {
    if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
      return true;
    if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
      for (const Value *V : InsertionPoint->operand_values())
        if (V == U->getValue())
          return true;
  }
  return false;
}
}