ValueTracking.cpp 224 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

const unsigned MaxDepth = 6;

// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
                                              cl::Hidden, cl::init(20));

/// Returns the bitwidth of the given scalar or pointer type. For vector types,
/// returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
  if (unsigned BitWidth = Ty->getScalarSizeInBits())
    return BitWidth;

  return DL.getPointerTypeSizeInBits(Ty);
}

namespace {

// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
  const DataLayout &DL;
  AssumptionCache *AC;
  const Instruction *CxtI;
  const DominatorTree *DT;

  // Unlike the other analyses, this may be a nullptr because not all clients
  // provide it currently.
  OptimizationRemarkEmitter *ORE;

  /// Set of assumptions that should be excluded from further queries.
  /// This is because of the potential for mutual recursion to cause
  /// computeKnownBits to repeatedly visit the same assume intrinsic. The
  /// classic case of this is assume(x = y), which will attempt to determine
  /// bits in x from bits in y, which will attempt to determine bits in y from
  /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
  /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
  /// (all of which can call computeKnownBits), and so on.
  std::array<const Value *, MaxDepth> Excluded;

  /// If true, it is safe to use metadata during simplification.
  InstrInfoQuery IIQ;

  unsigned NumExcluded = 0;

  Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
        const DominatorTree *DT, bool UseInstrInfo,
        OptimizationRemarkEmitter *ORE = nullptr)
      : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}

  Query(const Query &Q, const Value *NewExcl)
      : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
        NumExcluded(Q.NumExcluded) {
    Excluded = Q.Excluded;
    Excluded[NumExcluded++] = NewExcl;
    assert(NumExcluded <= Excluded.size());
  }

  bool isExcluded(const Value *Value) const {
    if (NumExcluded == 0)
      return false;
    auto End = Excluded.begin() + NumExcluded;
    return std::find(Excluded.begin(), End, Value) != End;
  }
};

} // end anonymous namespace

// Given the provided Value and, potentially, a context instruction, return
// the preferred context instruction (if any).
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
  // If we've been provided with a context instruction, then use that (provided
  // it has been inserted).
  if (CxtI && CxtI->getParent())
    return CxtI;

  // If the value is really an already-inserted instruction, then use that.
  CxtI = dyn_cast<Instruction>(V);
  if (CxtI && CxtI->getParent())
    return CxtI;

  return nullptr;
}

static void computeKnownBits(const Value *V, KnownBits &Known,
                             unsigned Depth, const Query &Q);

void llvm::computeKnownBits(const Value *V, KnownBits &Known,
                            const DataLayout &DL, unsigned Depth,
                            AssumptionCache *AC, const Instruction *CxtI,
                            const DominatorTree *DT,
                            OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
  ::computeKnownBits(V, Known, Depth,
                     Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}

static KnownBits computeKnownBits(const Value *V, unsigned Depth,
                                  const Query &Q);

KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
                                 unsigned Depth, AssumptionCache *AC,
                                 const Instruction *CxtI,
                                 const DominatorTree *DT,
                                 OptimizationRemarkEmitter *ORE,
                                 bool UseInstrInfo) {
  return ::computeKnownBits(
      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}

bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
                               const DataLayout &DL, AssumptionCache *AC,
                               const Instruction *CxtI, const DominatorTree *DT,
                               bool UseInstrInfo) {
  assert(LHS->getType() == RHS->getType() &&
         "LHS and RHS should have the same type");
  assert(LHS->getType()->isIntOrIntVectorTy() &&
         "LHS and RHS should be integers");
  // Look for an inverted mask: (X & ~M) op (Y & M).
  Value *M;
  if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
      match(RHS, m_c_And(m_Specific(M), m_Value())))
    return true;
  if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
      match(LHS, m_c_And(m_Specific(M), m_Value())))
    return true;
  IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
  KnownBits LHSKnown(IT->getBitWidth());
  KnownBits RHSKnown(IT->getBitWidth());
  computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
  computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
  return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
}

bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
  for (const User *U : CxtI->users()) {
    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
      if (IC->isEquality())
        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
          if (C->isNullValue())
            continue;
    return false;
  }
  return true;
}

static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
                                   const Query &Q);

bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
                                  bool OrZero, unsigned Depth,
                                  AssumptionCache *AC, const Instruction *CxtI,
                                  const DominatorTree *DT, bool UseInstrInfo) {
  return ::isKnownToBeAPowerOfTwo(
      V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}

static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);

bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
                          AssumptionCache *AC, const Instruction *CxtI,
                          const DominatorTree *DT, bool UseInstrInfo) {
  return ::isKnownNonZero(V, Depth,
                          Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}

bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
                              unsigned Depth, AssumptionCache *AC,
                              const Instruction *CxtI, const DominatorTree *DT,
                              bool UseInstrInfo) {
  KnownBits Known =
      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
  return Known.isNonNegative();
}

bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
                           AssumptionCache *AC, const Instruction *CxtI,
                           const DominatorTree *DT, bool UseInstrInfo) {
  if (auto *CI = dyn_cast<ConstantInt>(V))
    return CI->getValue().isStrictlyPositive();

  // TODO: We'd doing two recursive queries here.  We should factor this such
  // that only a single query is needed.
  return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
         isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
}

bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
                           AssumptionCache *AC, const Instruction *CxtI,
                           const DominatorTree *DT, bool UseInstrInfo) {
  KnownBits Known =
      computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
  return Known.isNegative();
}

static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);

bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
                           const DataLayout &DL, AssumptionCache *AC,
                           const Instruction *CxtI, const DominatorTree *DT,
                           bool UseInstrInfo) {
  return ::isKnownNonEqual(V1, V2,
                           Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
                                 UseInstrInfo, /*ORE=*/nullptr));
}

static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
                              const Query &Q);

bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
                             const DataLayout &DL, unsigned Depth,
                             AssumptionCache *AC, const Instruction *CxtI,
                             const DominatorTree *DT, bool UseInstrInfo) {
  return ::MaskedValueIsZero(
      V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}

static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
                                   const Query &Q);

unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
                                  unsigned Depth, AssumptionCache *AC,
                                  const Instruction *CxtI,
                                  const DominatorTree *DT, bool UseInstrInfo) {
  return ::ComputeNumSignBits(
      V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}

static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
                                   bool NSW,
                                   KnownBits &KnownOut, KnownBits &Known2,
                                   unsigned Depth, const Query &Q) {
  unsigned BitWidth = KnownOut.getBitWidth();

  // If an initial sequence of bits in the result is not needed, the
  // corresponding bits in the operands are not needed.
  KnownBits LHSKnown(BitWidth);
  computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
  computeKnownBits(Op1, Known2, Depth + 1, Q);

  KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
}

static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
                                KnownBits &Known, KnownBits &Known2,
                                unsigned Depth, const Query &Q) {
  unsigned BitWidth = Known.getBitWidth();
  computeKnownBits(Op1, Known, Depth + 1, Q);
  computeKnownBits(Op0, Known2, Depth + 1, Q);

  bool isKnownNegative = false;
  bool isKnownNonNegative = false;
  // If the multiplication is known not to overflow, compute the sign bit.
  if (NSW) {
    if (Op0 == Op1) {
      // The product of a number with itself is non-negative.
      isKnownNonNegative = true;
    } else {
      bool isKnownNonNegativeOp1 = Known.isNonNegative();
      bool isKnownNonNegativeOp0 = Known2.isNonNegative();
      bool isKnownNegativeOp1 = Known.isNegative();
      bool isKnownNegativeOp0 = Known2.isNegative();
      // The product of two numbers with the same sign is non-negative.
      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
      // The product of a negative number and a non-negative number is either
      // negative or zero.
      if (!isKnownNonNegative)
        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
                           isKnownNonZero(Op0, Depth, Q)) ||
                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
                           isKnownNonZero(Op1, Depth, Q));
    }
  }

  assert(!Known.hasConflict() && !Known2.hasConflict());
  // Compute a conservative estimate for high known-0 bits.
  unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
                             Known2.countMinLeadingZeros(),
                             BitWidth) - BitWidth;
  LeadZ = std::min(LeadZ, BitWidth);

  // The result of the bottom bits of an integer multiply can be
  // inferred by looking at the bottom bits of both operands and
  // multiplying them together.
  // We can infer at least the minimum number of known trailing bits
  // of both operands. Depending on number of trailing zeros, we can
  // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
  // a and b are divisible by m and n respectively.
  // We then calculate how many of those bits are inferrable and set
  // the output. For example, the i8 mul:
  //  a = XXXX1100 (12)
  //  b = XXXX1110 (14)
  // We know the bottom 3 bits are zero since the first can be divided by
  // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
  // Applying the multiplication to the trimmed arguments gets:
  //    XX11 (3)
  //    X111 (7)
  // -------
  //    XX11
  //   XX11
  //  XX11
  // XX11
  // -------
  // XXXXX01
  // Which allows us to infer the 2 LSBs. Since we're multiplying the result
  // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
  // The proof for this can be described as:
  // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
  //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
  //                    umin(countTrailingZeros(C2), C6) +
  //                    umin(C5 - umin(countTrailingZeros(C1), C5),
  //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
  // %aa = shl i8 %a, C5
  // %bb = shl i8 %b, C6
  // %aaa = or i8 %aa, C1
  // %bbb = or i8 %bb, C2
  // %mul = mul i8 %aaa, %bbb
  // %mask = and i8 %mul, C7
  //   =>
  // %mask = i8 ((C1*C2)&C7)
  // Where C5, C6 describe the known bits of %a, %b
  // C1, C2 describe the known bottom bits of %a, %b.
  // C7 describes the mask of the known bits of the result.
  APInt Bottom0 = Known.One;
  APInt Bottom1 = Known2.One;

  // How many times we'd be able to divide each argument by 2 (shr by 1).
  // This gives us the number of trailing zeros on the multiplication result.
  unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
  unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
  unsigned TrailZero0 = Known.countMinTrailingZeros();
  unsigned TrailZero1 = Known2.countMinTrailingZeros();
  unsigned TrailZ = TrailZero0 + TrailZero1;

  // Figure out the fewest known-bits operand.
  unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
                                      TrailBitsKnown1 - TrailZero1);
  unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);

  APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
                      Bottom1.getLoBits(TrailBitsKnown1);

  Known.resetAll();
  Known.Zero.setHighBits(LeadZ);
  Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
  Known.One |= BottomKnown.getLoBits(ResultBitsKnown);

  // Only make use of no-wrap flags if we failed to compute the sign bit
  // directly.  This matters if the multiplication always overflows, in
  // which case we prefer to follow the result of the direct computation,
  // though as the program is invoking undefined behaviour we can choose
  // whatever we like here.
  if (isKnownNonNegative && !Known.isNegative())
    Known.makeNonNegative();
  else if (isKnownNegative && !Known.isNonNegative())
    Known.makeNegative();
}

void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
                                             KnownBits &Known) {
  unsigned BitWidth = Known.getBitWidth();
  unsigned NumRanges = Ranges.getNumOperands() / 2;
  assert(NumRanges >= 1);

  Known.Zero.setAllBits();
  Known.One.setAllBits();

  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    ConstantInt *Upper =
        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
    ConstantRange Range(Lower->getValue(), Upper->getValue());

    // The first CommonPrefixBits of all values in Range are equal.
    unsigned CommonPrefixBits =
        (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();

    APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
    Known.One &= Range.getUnsignedMax() & Mask;
    Known.Zero &= ~Range.getUnsignedMax() & Mask;
  }
}

static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
  SmallVector<const Value *, 16> WorkSet(1, I);
  SmallPtrSet<const Value *, 32> Visited;
  SmallPtrSet<const Value *, 16> EphValues;

  // The instruction defining an assumption's condition itself is always
  // considered ephemeral to that assumption (even if it has other
  // non-ephemeral users). See r246696's test case for an example.
  if (is_contained(I->operands(), E))
    return true;

  while (!WorkSet.empty()) {
    const Value *V = WorkSet.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    // If all uses of this value are ephemeral, then so is this value.
    if (llvm::all_of(V->users(), [&](const User *U) {
                                   return EphValues.count(U);
                                 })) {
      if (V == E)
        return true;

      if (V == I || isSafeToSpeculativelyExecute(V)) {
       EphValues.insert(V);
       if (const User *U = dyn_cast<User>(V))
         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
              J != JE; ++J)
           WorkSet.push_back(*J);
      }
    }
  }

  return false;
}

// Is this an intrinsic that cannot be speculated but also cannot trap?
bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
  if (const CallInst *CI = dyn_cast<CallInst>(I))
    if (Function *F = CI->getCalledFunction())
      switch (F->getIntrinsicID()) {
      default: break;
      // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
      case Intrinsic::assume:
      case Intrinsic::sideeffect:
      case Intrinsic::dbg_declare:
      case Intrinsic::dbg_value:
      case Intrinsic::dbg_label:
      case Intrinsic::invariant_start:
      case Intrinsic::invariant_end:
      case Intrinsic::lifetime_start:
      case Intrinsic::lifetime_end:
      case Intrinsic::objectsize:
      case Intrinsic::ptr_annotation:
      case Intrinsic::var_annotation:
        return true;
      }

  return false;
}

bool llvm::isValidAssumeForContext(const Instruction *Inv,
                                   const Instruction *CxtI,
                                   const DominatorTree *DT) {
  // There are two restrictions on the use of an assume:
  //  1. The assume must dominate the context (or the control flow must
  //     reach the assume whenever it reaches the context).
  //  2. The context must not be in the assume's set of ephemeral values
  //     (otherwise we will use the assume to prove that the condition
  //     feeding the assume is trivially true, thus causing the removal of
  //     the assume).

  if (DT) {
    if (DT->dominates(Inv, CxtI))
      return true;
  } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
    // We don't have a DT, but this trivially dominates.
    return true;
  }

  // With or without a DT, the only remaining case we will check is if the
  // instructions are in the same BB.  Give up if that is not the case.
  if (Inv->getParent() != CxtI->getParent())
    return false;

  // If we have a dom tree, then we now know that the assume doesn't dominate
  // the other instruction.  If we don't have a dom tree then we can check if
  // the assume is first in the BB.
  if (!DT) {
    // Search forward from the assume until we reach the context (or the end
    // of the block); the common case is that the assume will come first.
    for (auto I = std::next(BasicBlock::const_iterator(Inv)),
         IE = Inv->getParent()->end(); I != IE; ++I)
      if (&*I == CxtI)
        return true;
  }

  // Don't let an assume affect itself - this would cause the problems
  // `isEphemeralValueOf` is trying to prevent, and it would also make
  // the loop below go out of bounds.
  if (Inv == CxtI)
    return false;

  // The context comes first, but they're both in the same block.
  // Make sure there is nothing in between that might interrupt
  // the control flow, not even CxtI itself.
  for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
    if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
      return false;

  return !isEphemeralValueOf(Inv, CxtI);
}

static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
  // Use of assumptions is context-sensitive. If we don't have a context, we
  // cannot use them!
  if (!Q.AC || !Q.CxtI)
    return false;

  // Note that the patterns below need to be kept in sync with the code
  // in AssumptionCache::updateAffectedValues.

  auto CmpExcludesZero = [V](ICmpInst *Cmp) {
    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));

    Value *RHS;
    CmpInst::Predicate Pred;
    if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
      return false;
    // Canonicalize 'v' to be on the LHS of the comparison.
    if (Cmp->getOperand(1) != RHS)
      Pred = CmpInst::getSwappedPredicate(Pred);

    // assume(v u> y) -> assume(v != 0)
    if (Pred == ICmpInst::ICMP_UGT)
      return true;

    // assume(v != 0)
    // We special-case this one to ensure that we handle `assume(v != null)`.
    if (Pred == ICmpInst::ICMP_NE)
      return match(RHS, m_Zero());

    // All other predicates - rely on generic ConstantRange handling.
    ConstantInt *CI;
    if (!match(RHS, m_ConstantInt(CI)))
      return false;
    ConstantRange RHSRange(CI->getValue());
    ConstantRange TrueValues =
        ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
    return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
  };

  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
    if (!AssumeVH)
      continue;
    CallInst *I = cast<CallInst>(AssumeVH);
    assert(I->getFunction() == Q.CxtI->getFunction() &&
           "Got assumption for the wrong function!");
    if (Q.isExcluded(I))
      continue;

    // Warning: This loop can end up being somewhat performance sensitive.
    // We're running this loop for once for each value queried resulting in a
    // runtime of ~O(#assumes * #values).

    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
           "must be an assume intrinsic");

    Value *Arg = I->getArgOperand(0);
    ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
    if (!Cmp)
      continue;

    if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
      return true;
  }

  return false;
}

static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
                                       unsigned Depth, const Query &Q) {
  // Use of assumptions is context-sensitive. If we don't have a context, we
  // cannot use them!
  if (!Q.AC || !Q.CxtI)
    return;

  unsigned BitWidth = Known.getBitWidth();

  // Note that the patterns below need to be kept in sync with the code
  // in AssumptionCache::updateAffectedValues.

  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
    if (!AssumeVH)
      continue;
    CallInst *I = cast<CallInst>(AssumeVH);
    assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
           "Got assumption for the wrong function!");
    if (Q.isExcluded(I))
      continue;

    // Warning: This loop can end up being somewhat performance sensitive.
    // We're running this loop for once for each value queried resulting in a
    // runtime of ~O(#assumes * #values).

    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
           "must be an assume intrinsic");

    Value *Arg = I->getArgOperand(0);

    if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      assert(BitWidth == 1 && "assume operand is not i1?");
      Known.setAllOnes();
      return;
    }
    if (match(Arg, m_Not(m_Specific(V))) &&
        isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      assert(BitWidth == 1 && "assume operand is not i1?");
      Known.setAllZero();
      return;
    }

    // The remaining tests are all recursive, so bail out if we hit the limit.
    if (Depth == MaxDepth)
      continue;

    ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
    if (!Cmp)
      continue;

    Value *A, *B;
    auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));

    CmpInst::Predicate Pred;
    uint64_t C;
    switch (Cmp->getPredicate()) {
    default:
      break;
    case ICmpInst::ICMP_EQ:
      // assume(v = a)
      if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        Known.Zero |= RHSKnown.Zero;
        Known.One  |= RHSKnown.One;
      // assume(v & b = a)
      } else if (match(Cmp,
                       m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits MaskKnown(BitWidth);
        computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));

        // For those bits in the mask that are known to be one, we can propagate
        // known bits from the RHS to V.
        Known.Zero |= RHSKnown.Zero & MaskKnown.One;
        Known.One  |= RHSKnown.One  & MaskKnown.One;
      // assume(~(v & b) = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits MaskKnown(BitWidth);
        computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));

        // For those bits in the mask that are known to be one, we can propagate
        // inverted known bits from the RHS to V.
        Known.Zero |= RHSKnown.One  & MaskKnown.One;
        Known.One  |= RHSKnown.Zero & MaskKnown.One;
      // assume(v | b = a)
      } else if (match(Cmp,
                       m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits BKnown(BitWidth);
        computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

        // For those bits in B that are known to be zero, we can propagate known
        // bits from the RHS to V.
        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
        Known.One  |= RHSKnown.One  & BKnown.Zero;
      // assume(~(v | b) = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits BKnown(BitWidth);
        computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

        // For those bits in B that are known to be zero, we can propagate
        // inverted known bits from the RHS to V.
        Known.Zero |= RHSKnown.One  & BKnown.Zero;
        Known.One  |= RHSKnown.Zero & BKnown.Zero;
      // assume(v ^ b = a)
      } else if (match(Cmp,
                       m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits BKnown(BitWidth);
        computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

        // For those bits in B that are known to be zero, we can propagate known
        // bits from the RHS to V. For those bits in B that are known to be one,
        // we can propagate inverted known bits from the RHS to V.
        Known.Zero |= RHSKnown.Zero & BKnown.Zero;
        Known.One  |= RHSKnown.One  & BKnown.Zero;
        Known.Zero |= RHSKnown.One  & BKnown.One;
        Known.One  |= RHSKnown.Zero & BKnown.One;
      // assume(~(v ^ b) = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        KnownBits BKnown(BitWidth);
        computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

        // For those bits in B that are known to be zero, we can propagate
        // inverted known bits from the RHS to V. For those bits in B that are
        // known to be one, we can propagate known bits from the RHS to V.
        Known.Zero |= RHSKnown.One  & BKnown.Zero;
        Known.One  |= RHSKnown.Zero & BKnown.Zero;
        Known.Zero |= RHSKnown.Zero & BKnown.One;
        Known.One  |= RHSKnown.One  & BKnown.One;
      // assume(v << c = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        // For those bits in RHS that are known, we can propagate them to known
        // bits in V shifted to the right by C.
        RHSKnown.Zero.lshrInPlace(C);
        Known.Zero |= RHSKnown.Zero;
        RHSKnown.One.lshrInPlace(C);
        Known.One  |= RHSKnown.One;
      // assume(~(v << c) = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        // For those bits in RHS that are known, we can propagate them inverted
        // to known bits in V shifted to the right by C.
        RHSKnown.One.lshrInPlace(C);
        Known.Zero |= RHSKnown.One;
        RHSKnown.Zero.lshrInPlace(C);
        Known.One  |= RHSKnown.Zero;
      // assume(v >> c = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        // For those bits in RHS that are known, we can propagate them to known
        // bits in V shifted to the right by C.
        Known.Zero |= RHSKnown.Zero << C;
        Known.One  |= RHSKnown.One  << C;
      // assume(~(v >> c) = a)
      } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
                                     m_Value(A))) &&
                 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
        // For those bits in RHS that are known, we can propagate them inverted
        // to known bits in V shifted to the right by C.
        Known.Zero |= RHSKnown.One  << C;
        Known.One  |= RHSKnown.Zero << C;
      }
      break;
    case ICmpInst::ICMP_SGE:
      // assume(v >=_s c) where c is non-negative
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));

        if (RHSKnown.isNonNegative()) {
          // We know that the sign bit is zero.
          Known.makeNonNegative();
        }
      }
      break;
    case ICmpInst::ICMP_SGT:
      // assume(v >_s c) where c is at least -1.
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));

        if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
          // We know that the sign bit is zero.
          Known.makeNonNegative();
        }
      }
      break;
    case ICmpInst::ICMP_SLE:
      // assume(v <=_s c) where c is negative
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));

        if (RHSKnown.isNegative()) {
          // We know that the sign bit is one.
          Known.makeNegative();
        }
      }
      break;
    case ICmpInst::ICMP_SLT:
      // assume(v <_s c) where c is non-positive
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

        if (RHSKnown.isZero() || RHSKnown.isNegative()) {
          // We know that the sign bit is one.
          Known.makeNegative();
        }
      }
      break;
    case ICmpInst::ICMP_ULE:
      // assume(v <=_u c)
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

        // Whatever high bits in c are zero are known to be zero.
        Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
      }
      break;
    case ICmpInst::ICMP_ULT:
      // assume(v <_u c)
      if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
        KnownBits RHSKnown(BitWidth);
        computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

        // If the RHS is known zero, then this assumption must be wrong (nothing
        // is unsigned less than zero). Signal a conflict and get out of here.
        if (RHSKnown.isZero()) {
          Known.Zero.setAllBits();
          Known.One.setAllBits();
          break;
        }

        // Whatever high bits in c are zero are known to be zero (if c is a power
        // of 2, then one more).
        if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
        else
          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
      }
      break;
    }
  }

  // If assumptions conflict with each other or previous known bits, then we
  // have a logical fallacy. It's possible that the assumption is not reachable,
  // so this isn't a real bug. On the other hand, the program may have undefined
  // behavior, or we might have a bug in the compiler. We can't assert/crash, so
  // clear out the known bits, try to warn the user, and hope for the best.
  if (Known.Zero.intersects(Known.One)) {
    Known.resetAll();

    if (Q.ORE)
      Q.ORE->emit([&]() {
        auto *CxtI = const_cast<Instruction *>(Q.CxtI);
        return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
                                          CxtI)
               << "Detected conflicting code assumptions. Program may "
                  "have undefined behavior, or compiler may have "
                  "internal error.";
      });
  }
}

/// Compute known bits from a shift operator, including those with a
/// non-constant shift amount. Known is the output of this function. Known2 is a
/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
/// operator-specific functions that, given the known-zero or known-one bits
/// respectively, and a shift amount, compute the implied known-zero or
/// known-one bits of the shift operator's result respectively for that shift
/// amount. The results from calling KZF and KOF are conservatively combined for
/// all permitted shift amounts.
static void computeKnownBitsFromShiftOperator(
    const Operator *I, KnownBits &Known, KnownBits &Known2,
    unsigned Depth, const Query &Q,
    function_ref<APInt(const APInt &, unsigned)> KZF,
    function_ref<APInt(const APInt &, unsigned)> KOF) {
  unsigned BitWidth = Known.getBitWidth();

  if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);

    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    Known.Zero = KZF(Known.Zero, ShiftAmt);
    Known.One  = KOF(Known.One, ShiftAmt);
    // If the known bits conflict, this must be an overflowing left shift, so
    // the shift result is poison. We can return anything we want. Choose 0 for
    // the best folding opportunity.
    if (Known.hasConflict())
      Known.setAllZero();

    return;
  }

  computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);

  // If the shift amount could be greater than or equal to the bit-width of the
  // LHS, the value could be poison, but bail out because the check below is
  // expensive. TODO: Should we just carry on?
  if (Known.getMaxValue().uge(BitWidth)) {
    Known.resetAll();
    return;
  }

  // Note: We cannot use Known.Zero.getLimitedValue() here, because if
  // BitWidth > 64 and any upper bits are known, we'll end up returning the
  // limit value (which implies all bits are known).
  uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
  uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();

  // It would be more-clearly correct to use the two temporaries for this
  // calculation. Reusing the APInts here to prevent unnecessary allocations.
  Known.resetAll();

  // If we know the shifter operand is nonzero, we can sometimes infer more
  // known bits. However this is expensive to compute, so be lazy about it and
  // only compute it when absolutely necessary.
  Optional<bool> ShifterOperandIsNonZero;

  // Early exit if we can't constrain any well-defined shift amount.
  if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
      !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
    ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
    if (!*ShifterOperandIsNonZero)
      return;
  }

  computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

  Known.Zero.setAllBits();
  Known.One.setAllBits();
  for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
    // Combine the shifted known input bits only for those shift amounts
    // compatible with its known constraints.
    if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
      continue;
    if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
      continue;
    // If we know the shifter is nonzero, we may be able to infer more known
    // bits. This check is sunk down as far as possible to avoid the expensive
    // call to isKnownNonZero if the cheaper checks above fail.
    if (ShiftAmt == 0) {
      if (!ShifterOperandIsNonZero.hasValue())
        ShifterOperandIsNonZero =
            isKnownNonZero(I->getOperand(1), Depth + 1, Q);
      if (*ShifterOperandIsNonZero)
        continue;
    }

    Known.Zero &= KZF(Known2.Zero, ShiftAmt);
    Known.One  &= KOF(Known2.One, ShiftAmt);
  }

  // If the known bits conflict, the result is poison. Return a 0 and hope the
  // caller can further optimize that.
  if (Known.hasConflict())
    Known.setAllZero();
}

static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
                                         unsigned Depth, const Query &Q) {
  unsigned BitWidth = Known.getBitWidth();

  KnownBits Known2(Known);
  switch (I->getOpcode()) {
  default: break;
  case Instruction::Load:
    if (MDNode *MD =
            Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
      computeKnownBitsFromRangeMetadata(*MD, Known);
    break;
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-1 bits are only known if set in both the LHS & RHS.
    Known.One &= Known2.One;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    Known.Zero |= Known2.Zero;

    // and(x, add (x, -1)) is a common idiom that always clears the low bit;
    // here we handle the more general case of adding any odd number by
    // matching the form add(x, add(x, y)) where y is odd.
    // TODO: This could be generalized to clearing any bit set in y where the
    // following bit is known to be unset in y.
    Value *X = nullptr, *Y = nullptr;
    if (!Known.Zero[0] && !Known.One[0] &&
        match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
      Known2.resetAll();
      computeKnownBits(Y, Known2, Depth + 1, Q);
      if (Known2.countMinTrailingOnes() > 0)
        Known.Zero.setBit(0);
    }
    break;
  }
  case Instruction::Or:
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    Known.Zero &= Known2.Zero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    Known.One |= Known2.One;
    break;
  case Instruction::Xor: {
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
    Known.Zero = std::move(KnownZeroOut);
    break;
  }
  case Instruction::Mul: {
    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
                        Known2, Depth, Q);
    break;
  }
  case Instruction::UDiv: {
    // For the purposes of computing leading zeros we can conservatively
    // treat a udiv as a logical right shift by the power of 2 known to
    // be less than the denominator.
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
    unsigned LeadZ = Known2.countMinLeadingZeros();

    Known2.resetAll();
    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
    unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
    if (RHSMaxLeadingZeros != BitWidth)
      LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);

    Known.Zero.setHighBits(LeadZ);
    break;
  }
  case Instruction::Select: {
    const Value *LHS = nullptr, *RHS = nullptr;
    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
    if (SelectPatternResult::isMinOrMax(SPF)) {
      computeKnownBits(RHS, Known, Depth + 1, Q);
      computeKnownBits(LHS, Known2, Depth + 1, Q);
    } else {
      computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
    }

    unsigned MaxHighOnes = 0;
    unsigned MaxHighZeros = 0;
    if (SPF == SPF_SMAX) {
      // If both sides are negative, the result is negative.
      if (Known.isNegative() && Known2.isNegative())
        // We can derive a lower bound on the result by taking the max of the
        // leading one bits.
        MaxHighOnes =
            std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
      // If either side is non-negative, the result is non-negative.
      else if (Known.isNonNegative() || Known2.isNonNegative())
        MaxHighZeros = 1;
    } else if (SPF == SPF_SMIN) {
      // If both sides are non-negative, the result is non-negative.
      if (Known.isNonNegative() && Known2.isNonNegative())
        // We can derive an upper bound on the result by taking the max of the
        // leading zero bits.
        MaxHighZeros = std::max(Known.countMinLeadingZeros(),
                                Known2.countMinLeadingZeros());
      // If either side is negative, the result is negative.
      else if (Known.isNegative() || Known2.isNegative())
        MaxHighOnes = 1;
    } else if (SPF == SPF_UMAX) {
      // We can derive a lower bound on the result by taking the max of the
      // leading one bits.
      MaxHighOnes =
          std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
    } else if (SPF == SPF_UMIN) {
      // We can derive an upper bound on the result by taking the max of the
      // leading zero bits.
      MaxHighZeros =
          std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
    } else if (SPF == SPF_ABS) {
      // RHS from matchSelectPattern returns the negation part of abs pattern.
      // If the negate has an NSW flag we can assume the sign bit of the result
      // will be 0 because that makes abs(INT_MIN) undefined.
      if (match(RHS, m_Neg(m_Specific(LHS))) &&
          Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
        MaxHighZeros = 1;
    }

    // Only known if known in both the LHS and RHS.
    Known.One &= Known2.One;
    Known.Zero &= Known2.Zero;
    if (MaxHighOnes > 0)
      Known.One.setHighBits(MaxHighOnes);
    if (MaxHighZeros > 0)
      Known.Zero.setHighBits(MaxHighZeros);
    break;
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
    break; // Can't work with floating point.
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
    // Fall through and handle them the same as zext/trunc.
    LLVM_FALLTHROUGH;
  case Instruction::ZExt:
  case Instruction::Trunc: {
    Type *SrcTy = I->getOperand(0)->getType();

    unsigned SrcBitWidth;
    // Note that we handle pointer operands here because of inttoptr/ptrtoint
    // which fall through here.
    Type *ScalarTy = SrcTy->getScalarType();
    SrcBitWidth = ScalarTy->isPointerTy() ?
      Q.DL.getPointerTypeSizeInBits(ScalarTy) :
      Q.DL.getTypeSizeInBits(ScalarTy);

    assert(SrcBitWidth && "SrcBitWidth can't be zero");
    Known = Known.zextOrTrunc(SrcBitWidth, false);
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
    break;
  }
  case Instruction::BitCast: {
    Type *SrcTy = I->getOperand(0)->getType();
    if (SrcTy->isIntOrPtrTy() &&
        // TODO: For now, not handling conversions like:
        // (bitcast i64 %x to <2 x i32>)
        !I->getType()->isVectorTy()) {
      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
      break;
    }
    break;
  }
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    Known = Known.trunc(SrcBitWidth);
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    Known = Known.sext(BitWidth);
    break;
  }
  case Instruction::Shl: {
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
    auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
      APInt KZResult = KnownZero << ShiftAmt;
      KZResult.setLowBits(ShiftAmt); // Low bits known 0.
      // If this shift has "nsw" keyword, then the result is either a poison
      // value or has the same sign bit as the first operand.
      if (NSW && KnownZero.isSignBitSet())
        KZResult.setSignBit();
      return KZResult;
    };

    auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
      APInt KOResult = KnownOne << ShiftAmt;
      if (NSW && KnownOne.isSignBitSet())
        KOResult.setSignBit();
      return KOResult;
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::LShr: {
    // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
      APInt KZResult = KnownZero.lshr(ShiftAmt);
      // High bits known zero.
      KZResult.setHighBits(ShiftAmt);
      return KZResult;
    };

    auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
      return KnownOne.lshr(ShiftAmt);
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::AShr: {
    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
      return KnownZero.ashr(ShiftAmt);
    };

    auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
      return KnownOne.ashr(ShiftAmt);
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::Sub: {
    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
                           Known, Known2, Depth, Q);
    break;
  }
  case Instruction::Add: {
    bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
                           Known, Known2, Depth, Q);
    break;
  }
  case Instruction::SRem:
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      APInt RA = Rem->getValue().abs();
      if (RA.isPowerOf2()) {
        APInt LowBits = RA - 1;
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

        // The low bits of the first operand are unchanged by the srem.
        Known.Zero = Known2.Zero & LowBits;
        Known.One = Known2.One & LowBits;

        // If the first operand is non-negative or has all low bits zero, then
        // the upper bits are all zero.
        if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
          Known.Zero |= ~LowBits;

        // If the first operand is negative and not all low bits are zero, then
        // the upper bits are all one.
        if (Known2.isNegative() && LowBits.intersects(Known2.One))
          Known.One |= ~LowBits;

        assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
        break;
      }
    }

    // The sign bit is the LHS's sign bit, except when the result of the
    // remainder is zero.
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
    // If it's known zero, our sign bit is also zero.
    if (Known2.isNonNegative())
      Known.makeNonNegative();

    break;
  case Instruction::URem: {
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      const APInt &RA = Rem->getValue();
      if (RA.isPowerOf2()) {
        APInt LowBits = (RA - 1);
        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
        Known.Zero |= ~LowBits;
        Known.One &= LowBits;
        break;
      }
    }

    // Since the result is less than or equal to either operand, any leading
    // zero bits in either operand must also exist in the result.
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);

    unsigned Leaders =
        std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
    Known.resetAll();
    Known.Zero.setHighBits(Leaders);
    break;
  }

  case Instruction::Alloca: {
    const AllocaInst *AI = cast<AllocaInst>(I);
    unsigned Align = AI->getAlignment();
    if (Align == 0)
      Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());

    if (Align > 0)
      Known.Zero.setLowBits(countTrailingZeros(Align));
    break;
  }
  case Instruction::GetElementPtr: {
    // Analyze all of the subscripts of this getelementptr instruction
    // to determine if we can prove known low zero bits.
    KnownBits LocalKnown(BitWidth);
    computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
    unsigned TrailZ = LocalKnown.countMinTrailingZeros();

    gep_type_iterator GTI = gep_type_begin(I);
    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
      Value *Index = I->getOperand(i);
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        // Handle struct member offset arithmetic.

        // Handle case when index is vector zeroinitializer
        Constant *CIndex = cast<Constant>(Index);
        if (CIndex->isZeroValue())
          continue;

        if (CIndex->getType()->isVectorTy())
          Index = CIndex->getSplatValue();

        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
        const StructLayout *SL = Q.DL.getStructLayout(STy);
        uint64_t Offset = SL->getElementOffset(Idx);
        TrailZ = std::min<unsigned>(TrailZ,
                                    countTrailingZeros(Offset));
      } else {
        // Handle array index arithmetic.
        Type *IndexedTy = GTI.getIndexedType();
        if (!IndexedTy->isSized()) {
          TrailZ = 0;
          break;
        }
        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
        uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
        LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
        computeKnownBits(Index, LocalKnown, Depth + 1, Q);
        TrailZ = std::min(TrailZ,
                          unsigned(countTrailingZeros(TypeSize) +
                                   LocalKnown.countMinTrailingZeros()));
      }
    }

    Known.Zero.setLowBits(TrailZ);
    break;
  }
  case Instruction::PHI: {
    const PHINode *P = cast<PHINode>(I);
    // Handle the case of a simple two-predecessor recurrence PHI.
    // There's a lot more that could theoretically be done here, but
    // this is sufficient to catch some interesting cases.
    if (P->getNumIncomingValues() == 2) {
      for (unsigned i = 0; i != 2; ++i) {
        Value *L = P->getIncomingValue(i);
        Value *R = P->getIncomingValue(!i);
        Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
        Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
        Operator *LU = dyn_cast<Operator>(L);
        if (!LU)
          continue;
        unsigned Opcode = LU->getOpcode();
        // Check for operations that have the property that if
        // both their operands have low zero bits, the result
        // will have low zero bits.
        if (Opcode == Instruction::Add ||
            Opcode == Instruction::Sub ||
            Opcode == Instruction::And ||
            Opcode == Instruction::Or ||
            Opcode == Instruction::Mul) {
          Value *LL = LU->getOperand(0);
          Value *LR = LU->getOperand(1);
          // Find a recurrence.
          if (LL == I)
            L = LR;
          else if (LR == I)
            L = LL;
          else
            continue; // Check for recurrence with L and R flipped.

          // Change the context instruction to the "edge" that flows into the
          // phi. This is important because that is where the value is actually
          // "evaluated" even though it is used later somewhere else. (see also
          // D69571).
          Query RecQ = Q;

          // Ok, we have a PHI of the form L op= R. Check for low
          // zero bits.
          RecQ.CxtI = RInst;
          computeKnownBits(R, Known2, Depth + 1, RecQ);

          // We need to take the minimum number of known bits
          KnownBits Known3(Known);
          RecQ.CxtI = LInst;
          computeKnownBits(L, Known3, Depth + 1, RecQ);

          Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
                                         Known3.countMinTrailingZeros()));

          auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
          if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
            // If initial value of recurrence is nonnegative, and we are adding
            // a nonnegative number with nsw, the result can only be nonnegative
            // or poison value regardless of the number of times we execute the
            // add in phi recurrence. If initial value is negative and we are
            // adding a negative number with nsw, the result can only be
            // negative or poison value. Similar arguments apply to sub and mul.
            //
            // (add non-negative, non-negative) --> non-negative
            // (add negative, negative) --> negative
            if (Opcode == Instruction::Add) {
              if (Known2.isNonNegative() && Known3.isNonNegative())
                Known.makeNonNegative();
              else if (Known2.isNegative() && Known3.isNegative())
                Known.makeNegative();
            }

            // (sub nsw non-negative, negative) --> non-negative
            // (sub nsw negative, non-negative) --> negative
            else if (Opcode == Instruction::Sub && LL == I) {
              if (Known2.isNonNegative() && Known3.isNegative())
                Known.makeNonNegative();
              else if (Known2.isNegative() && Known3.isNonNegative())
                Known.makeNegative();
            }

            // (mul nsw non-negative, non-negative) --> non-negative
            else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
                     Known3.isNonNegative())
              Known.makeNonNegative();
          }

          break;
        }
      }
    }

    // Unreachable blocks may have zero-operand PHI nodes.
    if (P->getNumIncomingValues() == 0)
      break;

    // Otherwise take the unions of the known bit sets of the operands,
    // taking conservative care to avoid excessive recursion.
    if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
      // Skip if every incoming value references to ourself.
      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
        break;

      Known.Zero.setAllBits();
      Known.One.setAllBits();
      for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
        Value *IncValue = P->getIncomingValue(u);
        // Skip direct self references.
        if (IncValue == P) continue;

        // Change the context instruction to the "edge" that flows into the
        // phi. This is important because that is where the value is actually
        // "evaluated" even though it is used later somewhere else. (see also
        // D69571).
        Query RecQ = Q;
        RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();

        Known2 = KnownBits(BitWidth);
        // Recurse, but cap the recursion to one level, because we don't
        // want to waste time spinning around in loops.
        computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ);
        Known.Zero &= Known2.Zero;
        Known.One &= Known2.One;
        // If all bits have been ruled out, there's no need to check
        // more operands.
        if (!Known.Zero && !Known.One)
          break;
      }
    }
    break;
  }
  case Instruction::Call:
  case Instruction::Invoke:
    // If range metadata is attached to this call, set known bits from that,
    // and then intersect with known bits based on other properties of the
    // function.
    if (MDNode *MD =
            Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
      computeKnownBitsFromRangeMetadata(*MD, Known);
    if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
      computeKnownBits(RV, Known2, Depth + 1, Q);
      Known.Zero |= Known2.Zero;
      Known.One |= Known2.One;
    }
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bitreverse:
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        Known.Zero |= Known2.Zero.reverseBits();
        Known.One |= Known2.One.reverseBits();
        break;
      case Intrinsic::bswap:
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        Known.Zero |= Known2.Zero.byteSwap();
        Known.One |= Known2.One.byteSwap();
        break;
      case Intrinsic::ctlz: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // If we have a known 1, its position is our upper bound.
        unsigned PossibleLZ = Known2.One.countLeadingZeros();
        // If this call is undefined for 0, the result will be less than 2^n.
        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
          PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
        unsigned LowBits = Log2_32(PossibleLZ)+1;
        Known.Zero.setBitsFrom(LowBits);
        break;
      }
      case Intrinsic::cttz: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // If we have a known 1, its position is our upper bound.
        unsigned PossibleTZ = Known2.One.countTrailingZeros();
        // If this call is undefined for 0, the result will be less than 2^n.
        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
          PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
        unsigned LowBits = Log2_32(PossibleTZ)+1;
        Known.Zero.setBitsFrom(LowBits);
        break;
      }
      case Intrinsic::ctpop: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // We can bound the space the count needs.  Also, bits known to be zero
        // can't contribute to the population.
        unsigned BitsPossiblySet = Known2.countMaxPopulation();
        unsigned LowBits = Log2_32(BitsPossiblySet)+1;
        Known.Zero.setBitsFrom(LowBits);
        // TODO: we could bound KnownOne using the lower bound on the number
        // of bits which might be set provided by popcnt KnownOne2.
        break;
      }
      case Intrinsic::fshr:
      case Intrinsic::fshl: {
        const APInt *SA;
        if (!match(I->getOperand(2), m_APInt(SA)))
          break;

        // Normalize to funnel shift left.
        uint64_t ShiftAmt = SA->urem(BitWidth);
        if (II->getIntrinsicID() == Intrinsic::fshr)
          ShiftAmt = BitWidth - ShiftAmt;

        KnownBits Known3(Known);
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);

        Known.Zero =
            Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
        Known.One =
            Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
        break;
      }
      case Intrinsic::uadd_sat:
      case Intrinsic::usub_sat: {
        bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
        computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);

        // Add: Leading ones of either operand are preserved.
        // Sub: Leading zeros of LHS and leading ones of RHS are preserved
        // as leading zeros in the result.
        unsigned LeadingKnown;
        if (IsAdd)
          LeadingKnown = std::max(Known.countMinLeadingOnes(),
                                  Known2.countMinLeadingOnes());
        else
          LeadingKnown = std::max(Known.countMinLeadingZeros(),
                                  Known2.countMinLeadingOnes());

        Known = KnownBits::computeForAddSub(
            IsAdd, /* NSW */ false, Known, Known2);

        // We select between the operation result and all-ones/zero
        // respectively, so we can preserve known ones/zeros.
        if (IsAdd) {
          Known.One.setHighBits(LeadingKnown);
          Known.Zero.clearAllBits();
        } else {
          Known.Zero.setHighBits(LeadingKnown);
          Known.One.clearAllBits();
        }
        break;
      }
      case Intrinsic::x86_sse42_crc32_64_64:
        Known.Zero.setBitsFrom(32);
        break;
      }
    }
    break;
  case Instruction::ExtractElement:
    // Look through extract element. At the moment we keep this simple and skip
    // tracking the specific element. But at least we might find information
    // valid for all elements of the vector (for example if vector is sign
    // extended, shifted, etc).
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    break;
  case Instruction::ExtractValue:
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
      const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
      if (EVI->getNumIndices() != 1) break;
      if (EVI->getIndices()[0] == 0) {
        switch (II->getIntrinsicID()) {
        default: break;
        case Intrinsic::uadd_with_overflow:
        case Intrinsic::sadd_with_overflow:
          computeKnownBitsAddSub(true, II->getArgOperand(0),
                                 II->getArgOperand(1), false, Known, Known2,
                                 Depth, Q);
          break;
        case Intrinsic::usub_with_overflow:
        case Intrinsic::ssub_with_overflow:
          computeKnownBitsAddSub(false, II->getArgOperand(0),
                                 II->getArgOperand(1), false, Known, Known2,
                                 Depth, Q);
          break;
        case Intrinsic::umul_with_overflow:
        case Intrinsic::smul_with_overflow:
          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
                              Known, Known2, Depth, Q);
          break;
        }
      }
    }
  }
}

/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
  KnownBits Known(getBitWidth(V->getType(), Q.DL));
  computeKnownBits(V, Known, Depth, Q);
  return Known;
}

/// Determine which bits of V are known to be either zero or one and return
/// them in the Known bit set.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero.  If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
                      const Query &Q) {
  assert(V && "No Value?");
  assert(Depth <= MaxDepth && "Limit Search Depth");
  unsigned BitWidth = Known.getBitWidth();

  assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
          V->getType()->isPtrOrPtrVectorTy()) &&
         "Not integer or pointer type!");

  Type *ScalarTy = V->getType()->getScalarType();
  unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
    Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
  assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
  (void)BitWidth;
  (void)ExpectedWidth;

  const APInt *C;
  if (match(V, m_APInt(C))) {
    // We know all of the bits for a scalar constant or a splat vector constant!
    Known.One = *C;
    Known.Zero = ~Known.One;
    return;
  }
  // Null and aggregate-zero are all-zeros.
  if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
    Known.setAllZero();
    return;
  }
  // Handle a constant vector by taking the intersection of the known bits of
  // each element.
  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
    // We know that CDS must be a vector of integers. Take the intersection of
    // each element.
    Known.Zero.setAllBits(); Known.One.setAllBits();
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      APInt Elt = CDS->getElementAsAPInt(i);
      Known.Zero &= ~Elt;
      Known.One &= Elt;
    }
    return;
  }

  if (const auto *CV = dyn_cast<ConstantVector>(V)) {
    // We know that CV must be a vector of integers. Take the intersection of
    // each element.
    Known.Zero.setAllBits(); Known.One.setAllBits();
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
      Constant *Element = CV->getAggregateElement(i);
      auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
      if (!ElementCI) {
        Known.resetAll();
        return;
      }
      const APInt &Elt = ElementCI->getValue();
      Known.Zero &= ~Elt;
      Known.One &= Elt;
    }
    return;
  }

  // Start out not knowing anything.
  Known.resetAll();

  // We can't imply anything about undefs.
  if (isa<UndefValue>(V))
    return;

  // There's no point in looking through other users of ConstantData for
  // assumptions.  Confirm that we've handled them all.
  assert(!isa<ConstantData>(V) && "Unhandled constant data!");

  // Limit search depth.
  // All recursive calls that increase depth must come after this.
  if (Depth == MaxDepth)
    return;

  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
  // the bits of its aliasee.
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    if (!GA->isInterposable())
      computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
    return;
  }

  if (const Operator *I = dyn_cast<Operator>(V))
    computeKnownBitsFromOperator(I, Known, Depth, Q);

  // Aligned pointers have trailing zeros - refine Known.Zero set
  if (V->getType()->isPointerTy()) {
    const MaybeAlign Align = V->getPointerAlignment(Q.DL);
    if (Align)
      Known.Zero.setLowBits(countTrailingZeros(Align->value()));
  }

  // computeKnownBitsFromAssume strictly refines Known.
  // Therefore, we run them after computeKnownBitsFromOperator.

  // Check whether a nearby assume intrinsic can determine some known bits.
  computeKnownBitsFromAssume(V, Known, Depth, Q);

  assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}

/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
                            const Query &Q) {
  assert(Depth <= MaxDepth && "Limit Search Depth");

  // Attempt to match against constants.
  if (OrZero && match(V, m_Power2OrZero()))
      return true;
  if (match(V, m_Power2()))
      return true;

  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
  // it is shifted off the end then the result is undefined.
  if (match(V, m_Shl(m_One(), m_Value())))
    return true;

  // (signmask) >>l X is clearly a power of two if the one is not shifted off
  // the bottom.  If it is shifted off the bottom then the result is undefined.
  if (match(V, m_LShr(m_SignMask(), m_Value())))
    return true;

  // The remaining tests are all recursive, so bail out if we hit the limit.
  if (Depth++ == MaxDepth)
    return false;

  Value *X = nullptr, *Y = nullptr;
  // A shift left or a logical shift right of a power of two is a power of two
  // or zero.
  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
                 match(V, m_LShr(m_Value(X), m_Value()))))
    return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);

  if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);

  if (const SelectInst *SI = dyn_cast<SelectInst>(V))
    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
           isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);

  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
    // A power of two and'd with anything is a power of two or zero.
    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
      return true;
    // X & (-X) is always a power of two or zero.
    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
      return true;
    return false;
  }

  // Adding a power-of-two or zero to the same power-of-two or zero yields
  // either the original power-of-two, a larger power-of-two or zero.
  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
    if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
        Q.IIQ.hasNoSignedWrap(VOBO)) {
      if (match(X, m_And(m_Specific(Y), m_Value())) ||
          match(X, m_And(m_Value(), m_Specific(Y))))
        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
          return true;
      if (match(Y, m_And(m_Specific(X), m_Value())) ||
          match(Y, m_And(m_Value(), m_Specific(X))))
        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
          return true;

      unsigned BitWidth = V->getType()->getScalarSizeInBits();
      KnownBits LHSBits(BitWidth);
      computeKnownBits(X, LHSBits, Depth, Q);

      KnownBits RHSBits(BitWidth);
      computeKnownBits(Y, RHSBits, Depth, Q);
      // If i8 V is a power of two or zero:
      //  ZeroBits: 1 1 1 0 1 1 1 1
      // ~ZeroBits: 0 0 0 1 0 0 0 0
      if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
        // If OrZero isn't set, we cannot give back a zero result.
        // Make sure either the LHS or RHS has a bit set.
        if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
          return true;
    }
  }

  // An exact divide or right shift can only shift off zero bits, so the result
  // is a power of two only if the first operand is a power of two and not
  // copying a sign bit (sdiv int_min, 2).
  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
                                  Depth, Q);
  }

  return false;
}

/// Test whether a GEP's result is known to be non-null.
///
/// Uses properties inherent in a GEP to try to determine whether it is known
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
                              const Query &Q) {
  const Function *F = nullptr;
  if (const Instruction *I = dyn_cast<Instruction>(GEP))
    F = I->getFunction();

  if (!GEP->isInBounds() ||
      NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
    return false;

  // FIXME: Support vector-GEPs.
  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");

  // If the base pointer is non-null, we cannot walk to a null address with an
  // inbounds GEP in address space zero.
  if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
    return true;

  // Walk the GEP operands and see if any operand introduces a non-zero offset.
  // If so, then the GEP cannot produce a null pointer, as doing so would
  // inherently violate the inbounds contract within address space zero.
  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    // Struct types are easy -- they must always be indexed by a constant.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
      unsigned ElementIdx = OpC->getZExtValue();
      const StructLayout *SL = Q.DL.getStructLayout(STy);
      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
      if (ElementOffset > 0)
        return true;
      continue;
    }

    // If we have a zero-sized type, the index doesn't matter. Keep looping.
    if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
      continue;

    // Fast path the constant operand case both for efficiency and so we don't
    // increment Depth when just zipping down an all-constant GEP.
    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
      if (!OpC->isZero())
        return true;
      continue;
    }

    // We post-increment Depth here because while isKnownNonZero increments it
    // as well, when we pop back up that increment won't persist. We don't want
    // to recurse 10k times just because we have 10k GEP operands. We don't
    // bail completely out because we want to handle constant GEPs regardless
    // of depth.
    if (Depth++ >= MaxDepth)
      continue;

    if (isKnownNonZero(GTI.getOperand(), Depth, Q))
      return true;
  }

  return false;
}

static bool isKnownNonNullFromDominatingCondition(const Value *V,
                                                  const Instruction *CtxI,
                                                  const DominatorTree *DT) {
  if (isa<Constant>(V))
    return false;

  if (!CtxI || !DT)
    return false;

  unsigned NumUsesExplored = 0;
  for (auto *U : V->users()) {
    // Avoid massive lists
    if (NumUsesExplored >= DomConditionsMaxUses)
      break;
    NumUsesExplored++;

    // If the value is used as an argument to a call or invoke, then argument
    // attributes may provide an answer about null-ness.
    if (auto CS = ImmutableCallSite(U))
      if (auto *CalledFunc = CS.getCalledFunction())
        for (const Argument &Arg : CalledFunc->args())
          if (CS.getArgOperand(Arg.getArgNo()) == V &&
              Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
            return true;

    // If the value is used as a load/store, then the pointer must be non null.
    if (V == getLoadStorePointerOperand(U)) {
      const Instruction *I = cast<Instruction>(U);
      if (!NullPointerIsDefined(I->getFunction(),
                                V->getType()->getPointerAddressSpace()) &&
          DT->dominates(I, CtxI))
        return true;
    }

    // Consider only compare instructions uniquely controlling a branch
    CmpInst::Predicate Pred;
    if (!match(const_cast<User *>(U),
               m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
        (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
      continue;

    SmallVector<const User *, 4> WorkList;
    SmallPtrSet<const User *, 4> Visited;
    for (auto *CmpU : U->users()) {
      assert(WorkList.empty() && "Should be!");
      if (Visited.insert(CmpU).second)
        WorkList.push_back(CmpU);

      while (!WorkList.empty()) {
        auto *Curr = WorkList.pop_back_val();

        // If a user is an AND, add all its users to the work list. We only
        // propagate "pred != null" condition through AND because it is only
        // correct to assume that all conditions of AND are met in true branch.
        // TODO: Support similar logic of OR and EQ predicate?
        if (Pred == ICmpInst::ICMP_NE)
          if (auto *BO = dyn_cast<BinaryOperator>(Curr))
            if (BO->getOpcode() == Instruction::And) {
              for (auto *BOU : BO->users())
                if (Visited.insert(BOU).second)
                  WorkList.push_back(BOU);
              continue;
            }

        if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
          assert(BI->isConditional() && "uses a comparison!");

          BasicBlock *NonNullSuccessor =
              BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
          BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
          if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
            return true;
        } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
                   DT->dominates(cast<Instruction>(Curr), CtxI)) {
          return true;
        }
      }
    }
  }

  return false;
}

/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value?  'RangeType' is
/// is the type of the value described by the range.
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
  const unsigned NumRanges = Ranges->getNumOperands() / 2;
  assert(NumRanges >= 1);
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
    ConstantInt *Upper =
        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
    ConstantRange Range(Lower->getValue(), Upper->getValue());
    if (Range.contains(Value))
      return false;
  }
  return true;
}

/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
  if (auto *C = dyn_cast<Constant>(V)) {
    if (C->isNullValue())
      return false;
    if (isa<ConstantInt>(C))
      // Must be non-zero due to null test above.
      return true;

    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
      // See the comment for IntToPtr/PtrToInt instructions below.
      if (CE->getOpcode() == Instruction::IntToPtr ||
          CE->getOpcode() == Instruction::PtrToInt)
        if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
            Q.DL.getTypeSizeInBits(CE->getType()))
          return isKnownNonZero(CE->getOperand(0), Depth, Q);
    }

    // For constant vectors, check that all elements are undefined or known
    // non-zero to determine that the whole vector is known non-zero.
    if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
      for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
        Constant *Elt = C->getAggregateElement(i);
        if (!Elt || Elt->isNullValue())
          return false;
        if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
          return false;
      }
      return true;
    }

    // A global variable in address space 0 is non null unless extern weak
    // or an absolute symbol reference. Other address spaces may have null as a
    // valid address for a global, so we can't assume anything.
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
      if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
          GV->getType()->getAddressSpace() == 0)
        return true;
    } else
      return false;
  }

  if (auto *I = dyn_cast<Instruction>(V)) {
    if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
      // If the possible ranges don't contain zero, then the value is
      // definitely non-zero.
      if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
        const APInt ZeroValue(Ty->getBitWidth(), 0);
        if (rangeMetadataExcludesValue(Ranges, ZeroValue))
          return true;
      }
    }
  }

  if (isKnownNonZeroFromAssume(V, Q))
    return true;

  // Some of the tests below are recursive, so bail out if we hit the limit.
  if (Depth++ >= MaxDepth)
    return false;

  // Check for pointer simplifications.
  if (V->getType()->isPointerTy()) {
    // Alloca never returns null, malloc might.
    if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
      return true;

    // A byval, inalloca, or nonnull argument is never null.
    if (const Argument *A = dyn_cast<Argument>(V))
      if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
        return true;

    // A Load tagged with nonnull metadata is never null.
    if (const LoadInst *LI = dyn_cast<LoadInst>(V))
      if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
        return true;

    if (const auto *Call = dyn_cast<CallBase>(V)) {
      if (Call->isReturnNonNull())
        return true;
      if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
        return isKnownNonZero(RP, Depth, Q);
    }
  }

  if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
    return true;

  // Check for recursive pointer simplifications.
  if (V->getType()->isPointerTy()) {
    // Look through bitcast operations, GEPs, and int2ptr instructions as they
    // do not alter the value, or at least not the nullness property of the
    // value, e.g., int2ptr is allowed to zero/sign extend the value.
    //
    // Note that we have to take special care to avoid looking through
    // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
    // as casts that can alter the value, e.g., AddrSpaceCasts.
    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
      if (isGEPKnownNonNull(GEP, Depth, Q))
        return true;

    if (auto *BCO = dyn_cast<BitCastOperator>(V))
      return isKnownNonZero(BCO->getOperand(0), Depth, Q);

    if (auto *I2P = dyn_cast<IntToPtrInst>(V))
      if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
          Q.DL.getTypeSizeInBits(I2P->getDestTy()))
        return isKnownNonZero(I2P->getOperand(0), Depth, Q);
  }

  // Similar to int2ptr above, we can look through ptr2int here if the cast
  // is a no-op or an extend and not a truncate.
  if (auto *P2I = dyn_cast<PtrToIntInst>(V))
    if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
        Q.DL.getTypeSizeInBits(P2I->getDestTy()))
      return isKnownNonZero(P2I->getOperand(0), Depth, Q);

  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);

  // X | Y != 0 if X != 0 or Y != 0.
  Value *X = nullptr, *Y = nullptr;
  if (match(V, m_Or(m_Value(X), m_Value(Y))))
    return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);

  // ext X != 0 if X != 0.
  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);

  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
  // if the lowest bit is shifted off the end.
  if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
    // shl nuw can't remove any non-zero bits.
    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    if (Q.IIQ.hasNoUnsignedWrap(BO))
      return isKnownNonZero(X, Depth, Q);

    KnownBits Known(BitWidth);
    computeKnownBits(X, Known, Depth, Q);
    if (Known.One[0])
      return true;
  }
  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
  // defined if the sign bit is shifted off the end.
  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
    // shr exact can only shift out zero bits.
    const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
    if (BO->isExact())
      return isKnownNonZero(X, Depth, Q);

    KnownBits Known = computeKnownBits(X, Depth, Q);
    if (Known.isNegative())
      return true;

    // If the shifter operand is a constant, and all of the bits shifted
    // out are known to be zero, and X is known non-zero then at least one
    // non-zero bit must remain.
    if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
      auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
      // Is there a known one in the portion not shifted out?
      if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
        return true;
      // Are all the bits to be shifted out known zero?
      if (Known.countMinTrailingZeros() >= ShiftVal)
        return isKnownNonZero(X, Depth, Q);
    }
  }
  // div exact can only produce a zero if the dividend is zero.
  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
    return isKnownNonZero(X, Depth, Q);
  }
  // X + Y.
  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    KnownBits XKnown = computeKnownBits(X, Depth, Q);
    KnownBits YKnown = computeKnownBits(Y, Depth, Q);

    // If X and Y are both non-negative (as signed values) then their sum is not
    // zero unless both X and Y are zero.
    if (XKnown.isNonNegative() && YKnown.isNonNegative())
      if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
        return true;

    // If X and Y are both negative (as signed values) then their sum is not
    // zero unless both X and Y equal INT_MIN.
    if (XKnown.isNegative() && YKnown.isNegative()) {
      APInt Mask = APInt::getSignedMaxValue(BitWidth);
      // The sign bit of X is set.  If some other bit is set then X is not equal
      // to INT_MIN.
      if (XKnown.One.intersects(Mask))
        return true;
      // The sign bit of Y is set.  If some other bit is set then Y is not equal
      // to INT_MIN.
      if (YKnown.One.intersects(Mask))
        return true;
    }

    // The sum of a non-negative number and a power of two is not zero.
    if (XKnown.isNonNegative() &&
        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
      return true;
    if (YKnown.isNonNegative() &&
        isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
      return true;
  }
  // X * Y.
  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    // If X and Y are non-zero then so is X * Y as long as the multiplication
    // does not overflow.
    if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
        isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
      return true;
  }
  // (C ? X : Y) != 0 if X != 0 and Y != 0.
  else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
        isKnownNonZero(SI->getFalseValue(), Depth, Q))
      return true;
  }
  // PHI
  else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    // Try and detect a recurrence that monotonically increases from a
    // starting value, as these are common as induction variables.
    if (PN->getNumIncomingValues() == 2) {
      Value *Start = PN->getIncomingValue(0);
      Value *Induction = PN->getIncomingValue(1);
      if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
        std::swap(Start, Induction);
      if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
        if (!C->isZero() && !C->isNegative()) {
          ConstantInt *X;
          if (Q.IIQ.UseInstrInfo &&
              (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
               match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
              !X->isNegative())
            return true;
        }
      }
    }
    // Check if all incoming values are non-zero constant.
    bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
      return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
    });
    if (AllNonZeroConstants)
      return true;
  }

  KnownBits Known(BitWidth);
  computeKnownBits(V, Known, Depth, Q);
  return Known.One != 0;
}

/// Return true if V2 == V1 + X, where X is known non-zero.
static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
  const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
  if (!BO || BO->getOpcode() != Instruction::Add)
    return false;
  Value *Op = nullptr;
  if (V2 == BO->getOperand(0))
    Op = BO->getOperand(1);
  else if (V2 == BO->getOperand(1))
    Op = BO->getOperand(0);
  else
    return false;
  return isKnownNonZero(Op, 0, Q);
}

/// Return true if it is known that V1 != V2.
static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
  if (V1 == V2)
    return false;
  if (V1->getType() != V2->getType())
    // We can't look through casts yet.
    return false;
  if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
    return true;

  if (V1->getType()->isIntOrIntVectorTy()) {
    // Are any known bits in V1 contradictory to known bits in V2? If V1
    // has a known zero where V2 has a known one, they must not be equal.
    KnownBits Known1 = computeKnownBits(V1, 0, Q);
    KnownBits Known2 = computeKnownBits(V2, 0, Q);

    if (Known1.Zero.intersects(Known2.One) ||
        Known2.Zero.intersects(Known1.One))
      return true;
  }
  return false;
}

/// Return true if 'V & Mask' is known to be zero.  We use this predicate to
/// simplify operations downstream. Mask is known to be zero for bits that V
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
                       const Query &Q) {
  KnownBits Known(Mask.getBitWidth());
  computeKnownBits(V, Known, Depth, Q);
  return Mask.isSubsetOf(Known.Zero);
}

// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
// Returns the input and lower/upper bounds.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
                                const APInt *&CLow, const APInt *&CHigh) {
  assert(isa<Operator>(Select) &&
         cast<Operator>(Select)->getOpcode() == Instruction::Select &&
         "Input should be a Select!");

  const Value *LHS = nullptr, *RHS = nullptr;
  SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
  if (SPF != SPF_SMAX && SPF != SPF_SMIN)
    return false;

  if (!match(RHS, m_APInt(CLow)))
    return false;

  const Value *LHS2 = nullptr, *RHS2 = nullptr;
  SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
  if (getInverseMinMaxFlavor(SPF) != SPF2)
    return false;

  if (!match(RHS2, m_APInt(CHigh)))
    return false;

  if (SPF == SPF_SMIN)
    std::swap(CLow, CHigh);

  In = LHS2;
  return CLow->sle(*CHigh);
}

/// For vector constants, loop over the elements and find the constant with the
/// minimum number of sign bits. Return 0 if the value is not a vector constant
/// or if any element was not analyzed; otherwise, return the count for the
/// element with the minimum number of sign bits.
static unsigned computeNumSignBitsVectorConstant(const Value *V,
                                                 unsigned TyBits) {
  const auto *CV = dyn_cast<Constant>(V);
  if (!CV || !CV->getType()->isVectorTy())
    return 0;

  unsigned MinSignBits = TyBits;
  unsigned NumElts = CV->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    // If we find a non-ConstantInt, bail out.
    auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
    if (!Elt)
      return 0;

    MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
  }

  return MinSignBits;
}

static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
                                       const Query &Q);

static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
                                   const Query &Q) {
  unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
  assert(Result > 0 && "At least one sign bit needs to be present!");
  return Result;
}

/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
/// other, so we return 3. For vectors, return the number of sign bits for the
/// vector element with the minimum number of known sign bits.
static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
                                       const Query &Q) {
  assert(Depth <= MaxDepth && "Limit Search Depth");

  // We return the minimum number of sign bits that are guaranteed to be present
  // in V, so for undef we have to conservatively return 1.  We don't have the
  // same behavior for poison though -- that's a FIXME today.

  Type *ScalarTy = V->getType()->getScalarType();
  unsigned TyBits = ScalarTy->isPointerTy() ?
    Q.DL.getPointerTypeSizeInBits(ScalarTy) :
    Q.DL.getTypeSizeInBits(ScalarTy);

  unsigned Tmp, Tmp2;
  unsigned FirstAnswer = 1;

  // Note that ConstantInt is handled by the general computeKnownBits case
  // below.

  if (Depth == MaxDepth)
    return 1;  // Limit search depth.

  if (auto *U = dyn_cast<Operator>(V)) {
    switch (Operator::getOpcode(V)) {
    default: break;
    case Instruction::SExt:
      Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;

    case Instruction::SDiv: {
      const APInt *Denominator;
      // sdiv X, C -> adds log(C) sign bits.
      if (match(U->getOperand(1), m_APInt(Denominator))) {

        // Ignore non-positive denominator.
        if (!Denominator->isStrictlyPositive())
          break;

        // Calculate the incoming numerator bits.
        unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);

        // Add floor(log(C)) bits to the numerator bits.
        return std::min(TyBits, NumBits + Denominator->logBase2());
      }
      break;
    }

    case Instruction::SRem: {
      const APInt *Denominator;
      // srem X, C -> we know that the result is within [-C+1,C) when C is a
      // positive constant.  This let us put a lower bound on the number of sign
      // bits.
      if (match(U->getOperand(1), m_APInt(Denominator))) {

        // Ignore non-positive denominator.
        if (!Denominator->isStrictlyPositive())
          break;

        // Calculate the incoming numerator bits. SRem by a positive constant
        // can't lower the number of sign bits.
        unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);

        // Calculate the leading sign bit constraints by examining the
        // denominator.  Given that the denominator is positive, there are two
        // cases:
        //
        //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
        //     (1 << ceilLogBase2(C)).
        //
        //  2. the numerator is negative. Then the result range is (-C,0] and
        //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
        //
        // Thus a lower bound on the number of sign bits is `TyBits -
        // ceilLogBase2(C)`.

        unsigned ResBits = TyBits - Denominator->ceilLogBase2();
        return std::max(NumrBits, ResBits);
      }
      break;
    }

    case Instruction::AShr: {
      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      // ashr X, C   -> adds C sign bits.  Vectors too.
      const APInt *ShAmt;
      if (match(U->getOperand(1), m_APInt(ShAmt))) {
        if (ShAmt->uge(TyBits))
          break; // Bad shift.
        unsigned ShAmtLimited = ShAmt->getZExtValue();
        Tmp += ShAmtLimited;
        if (Tmp > TyBits) Tmp = TyBits;
      }
      return Tmp;
    }
    case Instruction::Shl: {
      const APInt *ShAmt;
      if (match(U->getOperand(1), m_APInt(ShAmt))) {
        // shl destroys sign bits.
        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
        if (ShAmt->uge(TyBits) ||   // Bad shift.
            ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
        Tmp2 = ShAmt->getZExtValue();
        return Tmp - Tmp2;
      }
      break;
    }
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: // NOT is handled here.
      // Logical binary ops preserve the number of sign bits at the worst.
      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      if (Tmp != 1) {
        Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
        FirstAnswer = std::min(Tmp, Tmp2);
        // We computed what we know about the sign bits as our first
        // answer. Now proceed to the generic code that uses
        // computeKnownBits, and pick whichever answer is better.
      }
      break;

    case Instruction::Select: {
      // If we have a clamp pattern, we know that the number of sign bits will
      // be the minimum of the clamp min/max range.
      const Value *X;
      const APInt *CLow, *CHigh;
      if (isSignedMinMaxClamp(U, X, CLow, CHigh))
        return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());

      Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
      if (Tmp == 1) break;
      Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
      return std::min(Tmp, Tmp2);
    }

    case Instruction::Add:
      // Add can have at most one carry bit.  Thus we know that the output
      // is, at worst, one more bit than the inputs.
      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      if (Tmp == 1) break;

      // Special case decrementing a value (ADD X, -1):
      if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
        if (CRHS->isAllOnesValue()) {
          KnownBits Known(TyBits);
          computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);

          // If the input is known to be 0 or 1, the output is 0/-1, which is
          // all sign bits set.
          if ((Known.Zero | 1).isAllOnesValue())
            return TyBits;

          // If we are subtracting one from a positive number, there is no carry
          // out of the result.
          if (Known.isNonNegative())
            return Tmp;
        }

      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
      if (Tmp2 == 1) break;
      return std::min(Tmp, Tmp2) - 1;

    case Instruction::Sub:
      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
      if (Tmp2 == 1) break;

      // Handle NEG.
      if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
        if (CLHS->isNullValue()) {
          KnownBits Known(TyBits);
          computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
          // If the input is known to be 0 or 1, the output is 0/-1, which is
          // all sign bits set.
          if ((Known.Zero | 1).isAllOnesValue())
            return TyBits;

          // If the input is known to be positive (the sign bit is known clear),
          // the output of the NEG has the same number of sign bits as the
          // input.
          if (Known.isNonNegative())
            return Tmp2;

          // Otherwise, we treat this like a SUB.
        }

      // Sub can have at most one carry bit.  Thus we know that the output
      // is, at worst, one more bit than the inputs.
      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      if (Tmp == 1) break;
      return std::min(Tmp, Tmp2) - 1;

    case Instruction::Mul: {
      // The output of the Mul can be at most twice the valid bits in the
      // inputs.
      unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      if (SignBitsOp0 == 1) break;
      unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
      if (SignBitsOp1 == 1) break;
      unsigned OutValidBits =
          (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
      return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
    }

    case Instruction::PHI: {
      const PHINode *PN = cast<PHINode>(U);
      unsigned NumIncomingValues = PN->getNumIncomingValues();
      // Don't analyze large in-degree PHIs.
      if (NumIncomingValues > 4) break;
      // Unreachable blocks may have zero-operand PHI nodes.
      if (NumIncomingValues == 0) break;

      // Take the minimum of all incoming values.  This can't infinitely loop
      // because of our depth threshold.
      Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
      for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
        if (Tmp == 1) return Tmp;
        Tmp = std::min(
            Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
      }
      return Tmp;
    }

    case Instruction::Trunc:
      // FIXME: it's tricky to do anything useful for this, but it is an
      // important case for targets like X86.
      break;

    case Instruction::ExtractElement:
      // Look through extract element. At the moment we keep this simple and
      // skip tracking the specific element. But at least we might find
      // information valid for all elements of the vector (for example if vector
      // is sign extended, shifted, etc).
      return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);

    case Instruction::ShuffleVector: {
      // TODO: This is copied almost directly from the SelectionDAG version of
      //       ComputeNumSignBits. It would be better if we could share common
      //       code. If not, make sure that changes are translated to the DAG.

      // Collect the minimum number of sign bits that are shared by every vector
      // element referenced by the shuffle.
      auto *Shuf = cast<ShuffleVectorInst>(U);
      int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
      int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
      APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
      for (int i = 0; i != NumMaskElts; ++i) {
        int M = Shuf->getMaskValue(i);
        assert(M < NumElts * 2 && "Invalid shuffle mask constant");
        // For undef elements, we don't know anything about the common state of
        // the shuffle result.
        if (M == -1)
          return 1;
        if (M < NumElts)
          DemandedLHS.setBit(M % NumElts);
        else
          DemandedRHS.setBit(M % NumElts);
      }
      Tmp = std::numeric_limits<unsigned>::max();
      if (!!DemandedLHS)
        Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
      if (!!DemandedRHS) {
        Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
        Tmp = std::min(Tmp, Tmp2);
      }
      // If we don't know anything, early out and try computeKnownBits
      // fall-back.
      if (Tmp == 1)
        break;
      assert(Tmp <= V->getType()->getScalarSizeInBits() &&
             "Failed to determine minimum sign bits");
      return Tmp;
    }
    }
  }

  // Finally, if we can prove that the top bits of the result are 0's or 1's,
  // use this information.

  // If we can examine all elements of a vector constant successfully, we're
  // done (we can't do any better than that). If not, keep trying.
  if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
    return VecSignBits;

  KnownBits Known(TyBits);
  computeKnownBits(V, Known, Depth, Q);

  // If we know that the sign bit is either zero or one, determine the number of
  // identical bits in the top of the input value.
  return std::max(FirstAnswer, Known.countMinSignBits());
}

/// This function computes the integer multiple of Base that equals V.
/// If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
                           bool LookThroughSExt, unsigned Depth) {
  assert(V && "No Value?");
  assert(Depth <= MaxDepth && "Limit Search Depth");
  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");

  Type *T = V->getType();

  ConstantInt *CI = dyn_cast<ConstantInt>(V);

  if (Base == 0)
    return false;

  if (Base == 1) {
    Multiple = V;
    return true;
  }

  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
  Constant *BaseVal = ConstantInt::get(T, Base);
  if (CO && CO == BaseVal) {
    // Multiple is 1.
    Multiple = ConstantInt::get(T, 1);
    return true;
  }

  if (CI && CI->getZExtValue() % Base == 0) {
    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
    return true;
  }

  if (Depth == MaxDepth) return false;  // Limit search depth.

  Operator *I = dyn_cast<Operator>(V);
  if (!I) return false;

  switch (I->getOpcode()) {
  default: break;
  case Instruction::SExt:
    if (!LookThroughSExt) return false;
    // otherwise fall through to ZExt
    LLVM_FALLTHROUGH;
  case Instruction::ZExt:
    return ComputeMultiple(I->getOperand(0), Base, Multiple,
                           LookThroughSExt, Depth+1);
  case Instruction::Shl:
  case Instruction::Mul: {
    Value *Op0 = I->getOperand(0);
    Value *Op1 = I->getOperand(1);

    if (I->getOpcode() == Instruction::Shl) {
      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
      if (!Op1CI) return false;
      // Turn Op0 << Op1 into Op0 * 2^Op1
      APInt Op1Int = Op1CI->getValue();
      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
      APInt API(Op1Int.getBitWidth(), 0);
      API.setBit(BitToSet);
      Op1 = ConstantInt::get(V->getContext(), API);
    }

    Value *Mul0 = nullptr;
    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
      if (Constant *Op1C = dyn_cast<Constant>(Op1))
        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
          if (Op1C->getType()->getPrimitiveSizeInBits() <
              MulC->getType()->getPrimitiveSizeInBits())
            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
          if (Op1C->getType()->getPrimitiveSizeInBits() >
              MulC->getType()->getPrimitiveSizeInBits())
            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());

          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
          Multiple = ConstantExpr::getMul(MulC, Op1C);
          return true;
        }

      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
        if (Mul0CI->getValue() == 1) {
          // V == Base * Op1, so return Op1
          Multiple = Op1;
          return true;
        }
    }

    Value *Mul1 = nullptr;
    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
      if (Constant *Op0C = dyn_cast<Constant>(Op0))
        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
          if (Op0C->getType()->getPrimitiveSizeInBits() <
              MulC->getType()->getPrimitiveSizeInBits())
            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
          if (Op0C->getType()->getPrimitiveSizeInBits() >
              MulC->getType()->getPrimitiveSizeInBits())
            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());

          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
          Multiple = ConstantExpr::getMul(MulC, Op0C);
          return true;
        }

      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
        if (Mul1CI->getValue() == 1) {
          // V == Base * Op0, so return Op0
          Multiple = Op0;
          return true;
        }
    }
  }
  }

  // We could not determine if V is a multiple of Base.
  return false;
}

Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
                                            const TargetLibraryInfo *TLI) {
  const Function *F = ICS.getCalledFunction();
  if (!F)
    return Intrinsic::not_intrinsic;

  if (F->isIntrinsic())
    return F->getIntrinsicID();

  if (!TLI)
    return Intrinsic::not_intrinsic;

  LibFunc Func;
  // We're going to make assumptions on the semantics of the functions, check
  // that the target knows that it's available in this environment and it does
  // not have local linkage.
  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
    return Intrinsic::not_intrinsic;

  if (!ICS.onlyReadsMemory())
    return Intrinsic::not_intrinsic;

  // Otherwise check if we have a call to a function that can be turned into a
  // vector intrinsic.
  switch (Func) {
  default:
    break;
  case LibFunc_sin:
  case LibFunc_sinf:
  case LibFunc_sinl:
    return Intrinsic::sin;
  case LibFunc_cos:
  case LibFunc_cosf:
  case LibFunc_cosl:
    return Intrinsic::cos;
  case LibFunc_exp:
  case LibFunc_expf:
  case LibFunc_expl:
    return Intrinsic::exp;
  case LibFunc_exp2:
  case LibFunc_exp2f:
  case LibFunc_exp2l:
    return Intrinsic::exp2;
  case LibFunc_log:
  case LibFunc_logf:
  case LibFunc_logl:
    return Intrinsic::log;
  case LibFunc_log10:
  case LibFunc_log10f:
  case LibFunc_log10l:
    return Intrinsic::log10;
  case LibFunc_log2:
  case LibFunc_log2f:
  case LibFunc_log2l:
    return Intrinsic::log2;
  case LibFunc_fabs:
  case LibFunc_fabsf:
  case LibFunc_fabsl:
    return Intrinsic::fabs;
  case LibFunc_fmin:
  case LibFunc_fminf:
  case LibFunc_fminl:
    return Intrinsic::minnum;
  case LibFunc_fmax:
  case LibFunc_fmaxf:
  case LibFunc_fmaxl:
    return Intrinsic::maxnum;
  case LibFunc_copysign:
  case LibFunc_copysignf:
  case LibFunc_copysignl:
    return Intrinsic::copysign;
  case LibFunc_floor:
  case LibFunc_floorf:
  case LibFunc_floorl:
    return Intrinsic::floor;
  case LibFunc_ceil:
  case LibFunc_ceilf:
  case LibFunc_ceill:
    return Intrinsic::ceil;
  case LibFunc_trunc:
  case LibFunc_truncf:
  case LibFunc_truncl:
    return Intrinsic::trunc;
  case LibFunc_rint:
  case LibFunc_rintf:
  case LibFunc_rintl:
    return Intrinsic::rint;
  case LibFunc_nearbyint:
  case LibFunc_nearbyintf:
  case LibFunc_nearbyintl:
    return Intrinsic::nearbyint;
  case LibFunc_round:
  case LibFunc_roundf:
  case LibFunc_roundl:
    return Intrinsic::round;
  case LibFunc_pow:
  case LibFunc_powf:
  case LibFunc_powl:
    return Intrinsic::pow;
  case LibFunc_sqrt:
  case LibFunc_sqrtf:
  case LibFunc_sqrtl:
    return Intrinsic::sqrt;
  }

  return Intrinsic::not_intrinsic;
}

/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
                                unsigned Depth) {
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    return !CFP->getValueAPF().isNegZero();

  // Limit search depth.
  if (Depth == MaxDepth)
    return false;

  auto *Op = dyn_cast<Operator>(V);
  if (!Op)
    return false;

  // Check if the nsz fast-math flag is set.
  if (auto *FPO = dyn_cast<FPMathOperator>(Op))
    if (FPO->hasNoSignedZeros())
      return true;

  // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
  if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
    return true;

  // sitofp and uitofp turn into +0.0 for zero.
  if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
    return true;

  if (auto *Call = dyn_cast<CallInst>(Op)) {
    Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
    switch (IID) {
    default:
      break;
    // sqrt(-0.0) = -0.0, no other negative results are possible.
    case Intrinsic::sqrt:
    case Intrinsic::canonicalize:
      return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
    // fabs(x) != -0.0
    case Intrinsic::fabs:
      return true;
    }
  }

  return false;
}

/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
/// bit despite comparing equal.
static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
                                            const TargetLibraryInfo *TLI,
                                            bool SignBitOnly,
                                            unsigned Depth) {
  // TODO: This function does not do the right thing when SignBitOnly is true
  // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
  // which flips the sign bits of NaNs.  See
  // https://llvm.org/bugs/show_bug.cgi?id=31702.

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    return !CFP->getValueAPF().isNegative() ||
           (!SignBitOnly && CFP->getValueAPF().isZero());
  }

  // Handle vector of constants.
  if (auto *CV = dyn_cast<Constant>(V)) {
    if (CV->getType()->isVectorTy()) {
      unsigned NumElts = CV->getType()->getVectorNumElements();
      for (unsigned i = 0; i != NumElts; ++i) {
        auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
        if (!CFP)
          return false;
        if (CFP->getValueAPF().isNegative() &&
            (SignBitOnly || !CFP->getValueAPF().isZero()))
          return false;
      }

      // All non-negative ConstantFPs.
      return true;
    }
  }

  if (Depth == MaxDepth)
    return false; // Limit search depth.

  const Operator *I = dyn_cast<Operator>(V);
  if (!I)
    return false;

  switch (I->getOpcode()) {
  default:
    break;
  // Unsigned integers are always nonnegative.
  case Instruction::UIToFP:
    return true;
  case Instruction::FMul:
    // x*x is always non-negative or a NaN.
    if (I->getOperand(0) == I->getOperand(1) &&
        (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
      return true;

    LLVM_FALLTHROUGH;
  case Instruction::FAdd:
  case Instruction::FDiv:
  case Instruction::FRem:
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                           Depth + 1) &&
           cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::Select:
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                           Depth + 1) &&
           cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::FPExt:
  case Instruction::FPTrunc:
    // Widening/narrowing never change sign.
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::ExtractElement:
    // Look through extract element. At the moment we keep this simple and skip
    // tracking the specific element. But at least we might find information
    // valid for all elements of the vector.
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::Call:
    const auto *CI = cast<CallInst>(I);
    Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
    switch (IID) {
    default:
      break;
    case Intrinsic::maxnum:
      return (isKnownNeverNaN(I->getOperand(0), TLI) &&
              cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
                                              SignBitOnly, Depth + 1)) ||
            (isKnownNeverNaN(I->getOperand(1), TLI) &&
              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
                                              SignBitOnly, Depth + 1));

    case Intrinsic::maximum:
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1) ||
             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                             Depth + 1);
    case Intrinsic::minnum:
    case Intrinsic::minimum:
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1) &&
             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                             Depth + 1);
    case Intrinsic::exp:
    case Intrinsic::exp2:
    case Intrinsic::fabs:
      return true;

    case Intrinsic::sqrt:
      // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
      if (!SignBitOnly)
        return true;
      return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
                                 CannotBeNegativeZero(CI->getOperand(0), TLI));

    case Intrinsic::powi:
      if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
        // powi(x,n) is non-negative if n is even.
        if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
          return true;
      }
      // TODO: This is not correct.  Given that exp is an integer, here are the
      // ways that pow can return a negative value:
      //
      //   pow(x, exp)    --> negative if exp is odd and x is negative.
      //   pow(-0, exp)   --> -inf if exp is negative odd.
      //   pow(-0, exp)   --> -0 if exp is positive odd.
      //   pow(-inf, exp) --> -0 if exp is negative odd.
      //   pow(-inf, exp) --> -inf if exp is positive odd.
      //
      // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
      // but we must return false if x == -0.  Unfortunately we do not currently
      // have a way of expressing this constraint.  See details in
      // https://llvm.org/bugs/show_bug.cgi?id=31702.
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1);

    case Intrinsic::fma:
    case Intrinsic::fmuladd:
      // x*x+y is non-negative if y is non-negative.
      return I->getOperand(0) == I->getOperand(1) &&
             (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
             cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
                                             Depth + 1);
    }
    break;
  }
  return false;
}

bool llvm::CannotBeOrderedLessThanZero(const Value *V,
                                       const TargetLibraryInfo *TLI) {
  return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
}

bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
  return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
}

bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
                                unsigned Depth) {
  assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");

  // If we're told that infinities won't happen, assume they won't.
  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
    if (FPMathOp->hasNoInfs())
      return true;

  // Handle scalar constants.
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    return !CFP->isInfinity();

  if (Depth == MaxDepth)
    return false;

  if (auto *Inst = dyn_cast<Instruction>(V)) {
    switch (Inst->getOpcode()) {
    case Instruction::Select: {
      return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
             isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
    }
    case Instruction::UIToFP:
      // If the input type fits into the floating type the result is finite.
      return ilogb(APFloat::getLargest(
                 Inst->getType()->getScalarType()->getFltSemantics())) >=
             (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
    default:
      break;
    }
  }

  // Bail out for constant expressions, but try to handle vector constants.
  if (!V->getType()->isVectorTy() || !isa<Constant>(V))
    return false;

  // For vectors, verify that each element is not infinity.
  unsigned NumElts = V->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
    if (!Elt)
      return false;
    if (isa<UndefValue>(Elt))
      continue;
    auto *CElt = dyn_cast<ConstantFP>(Elt);
    if (!CElt || CElt->isInfinity())
      return false;
  }
  // All elements were confirmed non-infinity or undefined.
  return true;
}

bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
                           unsigned Depth) {
  assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");

  // If we're told that NaNs won't happen, assume they won't.
  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
    if (FPMathOp->hasNoNaNs())
      return true;

  // Handle scalar constants.
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    return !CFP->isNaN();

  if (Depth == MaxDepth)
    return false;

  if (auto *Inst = dyn_cast<Instruction>(V)) {
    switch (Inst->getOpcode()) {
    case Instruction::FAdd:
    case Instruction::FSub:
      // Adding positive and negative infinity produces NaN.
      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
             (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));

    case Instruction::FMul:
      // Zero multiplied with infinity produces NaN.
      // FIXME: If neither side can be zero fmul never produces NaN.
      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
             isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
             isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
             isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);

    case Instruction::FDiv:
    case Instruction::FRem:
      // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
      return false;

    case Instruction::Select: {
      return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
             isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
    }
    case Instruction::SIToFP:
    case Instruction::UIToFP:
      return true;
    case Instruction::FPTrunc:
    case Instruction::FPExt:
      return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
    default:
      break;
    }
  }

  if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::canonicalize:
    case Intrinsic::fabs:
    case Intrinsic::copysign:
    case Intrinsic::exp:
    case Intrinsic::exp2:
    case Intrinsic::floor:
    case Intrinsic::ceil:
    case Intrinsic::trunc:
    case Intrinsic::rint:
    case Intrinsic::nearbyint:
    case Intrinsic::round:
      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
    case Intrinsic::sqrt:
      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
             CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
    case Intrinsic::minnum:
    case Intrinsic::maxnum:
      // If either operand is not NaN, the result is not NaN.
      return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
             isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
    default:
      return false;
    }
  }

  // Bail out for constant expressions, but try to handle vector constants.
  if (!V->getType()->isVectorTy() || !isa<Constant>(V))
    return false;

  // For vectors, verify that each element is not NaN.
  unsigned NumElts = V->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
    if (!Elt)
      return false;
    if (isa<UndefValue>(Elt))
      continue;
    auto *CElt = dyn_cast<ConstantFP>(Elt);
    if (!CElt || CElt->isNaN())
      return false;
  }
  // All elements were confirmed not-NaN or undefined.
  return true;
}

Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {

  // All byte-wide stores are splatable, even of arbitrary variables.
  if (V->getType()->isIntegerTy(8))
    return V;

  LLVMContext &Ctx = V->getContext();

  // Undef don't care.
  auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
  if (isa<UndefValue>(V))
    return UndefInt8;

  const uint64_t Size = DL.getTypeStoreSize(V->getType());
  if (!Size)
    return UndefInt8;

  Constant *C = dyn_cast<Constant>(V);
  if (!C) {
    // Conceptually, we could handle things like:
    //   %a = zext i8 %X to i16
    //   %b = shl i16 %a, 8
    //   %c = or i16 %a, %b
    // but until there is an example that actually needs this, it doesn't seem
    // worth worrying about.
    return nullptr;
  }

  // Handle 'null' ConstantArrayZero etc.
  if (C->isNullValue())
    return Constant::getNullValue(Type::getInt8Ty(Ctx));

  // Constant floating-point values can be handled as integer values if the
  // corresponding integer value is "byteable".  An important case is 0.0.
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    Type *Ty = nullptr;
    if (CFP->getType()->isHalfTy())
      Ty = Type::getInt16Ty(Ctx);
    else if (CFP->getType()->isFloatTy())
      Ty = Type::getInt32Ty(Ctx);
    else if (CFP->getType()->isDoubleTy())
      Ty = Type::getInt64Ty(Ctx);
    // Don't handle long double formats, which have strange constraints.
    return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
              : nullptr;
  }

  // We can handle constant integers that are multiple of 8 bits.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    if (CI->getBitWidth() % 8 == 0) {
      assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
      if (!CI->getValue().isSplat(8))
        return nullptr;
      return ConstantInt::get(Ctx, CI->getValue().trunc(8));
    }
  }

  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
    if (CE->getOpcode() == Instruction::IntToPtr) {
      auto PS = DL.getPointerSizeInBits(
          cast<PointerType>(CE->getType())->getAddressSpace());
      return isBytewiseValue(
          ConstantExpr::getIntegerCast(CE->getOperand(0),
                                       Type::getIntNTy(Ctx, PS), false),
          DL);
    }
  }

  auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
    if (LHS == RHS)
      return LHS;
    if (!LHS || !RHS)
      return nullptr;
    if (LHS == UndefInt8)
      return RHS;
    if (RHS == UndefInt8)
      return LHS;
    return nullptr;
  };

  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
    Value *Val = UndefInt8;
    for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
      if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
        return nullptr;
    return Val;
  }

  if (isa<ConstantAggregate>(C)) {
    Value *Val = UndefInt8;
    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
      if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
        return nullptr;
    return Val;
  }

  // Don't try to handle the handful of other constants.
  return nullptr;
}

// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
                                SmallVectorImpl<unsigned> &Idxs,
                                unsigned IdxSkip,
                                Instruction *InsertBefore) {
  StructType *STy = dyn_cast<StructType>(IndexedType);
  if (STy) {
    // Save the original To argument so we can modify it
    Value *OrigTo = To;
    // General case, the type indexed by Idxs is a struct
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      // Process each struct element recursively
      Idxs.push_back(i);
      Value *PrevTo = To;
      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
                             InsertBefore);
      Idxs.pop_back();
      if (!To) {
        // Couldn't find any inserted value for this index? Cleanup
        while (PrevTo != OrigTo) {
          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
          PrevTo = Del->getAggregateOperand();
          Del->eraseFromParent();
        }
        // Stop processing elements
        break;
      }
    }
    // If we successfully found a value for each of our subaggregates
    if (To)
      return To;
  }
  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
  // the struct's elements had a value that was inserted directly. In the latter
  // case, perhaps we can't determine each of the subelements individually, but
  // we might be able to find the complete struct somewhere.

  // Find the value that is at that particular spot
  Value *V = FindInsertedValue(From, Idxs);

  if (!V)
    return nullptr;

  // Insert the value in the new (sub) aggregate
  return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
                                 "tmp", InsertBefore);
}

// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
                                Instruction *InsertBefore) {
  assert(InsertBefore && "Must have someplace to insert!");
  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
                                                             idx_range);
  Value *To = UndefValue::get(IndexedType);
  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
  unsigned IdxSkip = Idxs.size();

  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}

/// Given an aggregate and a sequence of indices, see if the scalar value
/// indexed is already around as a register, for example if it was inserted
/// directly into the aggregate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
                               Instruction *InsertBefore) {
  // Nothing to index? Just return V then (this is useful at the end of our
  // recursion).
  if (idx_range.empty())
    return V;
  // We have indices, so V should have an indexable type.
  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
         "Not looking at a struct or array?");
  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
         "Invalid indices for type?");

  if (Constant *C = dyn_cast<Constant>(V)) {
    C = C->getAggregateElement(idx_range[0]);
    if (!C) return nullptr;
    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
  }

  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
    // Loop the indices for the insertvalue instruction in parallel with the
    // requested indices
    const unsigned *req_idx = idx_range.begin();
    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
         i != e; ++i, ++req_idx) {
      if (req_idx == idx_range.end()) {
        // We can't handle this without inserting insertvalues
        if (!InsertBefore)
          return nullptr;

        // The requested index identifies a part of a nested aggregate. Handle
        // this specially. For example,
        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
        // %C = extractvalue {i32, { i32, i32 } } %B, 1
        // This can be changed into
        // %A = insertvalue {i32, i32 } undef, i32 10, 0
        // %C = insertvalue {i32, i32 } %A, i32 11, 1
        // which allows the unused 0,0 element from the nested struct to be
        // removed.
        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
                                 InsertBefore);
      }

      // This insert value inserts something else than what we are looking for.
      // See if the (aggregate) value inserted into has the value we are
      // looking for, then.
      if (*req_idx != *i)
        return FindInsertedValue(I->getAggregateOperand(), idx_range,
                                 InsertBefore);
    }
    // If we end up here, the indices of the insertvalue match with those
    // requested (though possibly only partially). Now we recursively look at
    // the inserted value, passing any remaining indices.
    return FindInsertedValue(I->getInsertedValueOperand(),
                             makeArrayRef(req_idx, idx_range.end()),
                             InsertBefore);
  }

  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
    // If we're extracting a value from an aggregate that was extracted from
    // something else, we can extract from that something else directly instead.
    // However, we will need to chain I's indices with the requested indices.

    // Calculate the number of indices required
    unsigned size = I->getNumIndices() + idx_range.size();
    // Allocate some space to put the new indices in
    SmallVector<unsigned, 5> Idxs;
    Idxs.reserve(size);
    // Add indices from the extract value instruction
    Idxs.append(I->idx_begin(), I->idx_end());

    // Add requested indices
    Idxs.append(idx_range.begin(), idx_range.end());

    assert(Idxs.size() == size
           && "Number of indices added not correct?");

    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
  }
  // Otherwise, we don't know (such as, extracting from a function return value
  // or load instruction)
  return nullptr;
}

bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
                                       unsigned CharSize) {
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return false;

  // Make sure the index-ee is a pointer to array of \p CharSize integers.
  // CharSize.
  ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
  if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
    return false;

  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
  if (!FirstIdx || !FirstIdx->isZero())
    return false;

  return true;
}

bool llvm::getConstantDataArrayInfo(const Value *V,
                                    ConstantDataArraySlice &Slice,
                                    unsigned ElementSize, uint64_t Offset) {
  assert(V);

  // Look through bitcast instructions and geps.
  V = V->stripPointerCasts();

  // If the value is a GEP instruction or constant expression, treat it as an
  // offset.
  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    // The GEP operator should be based on a pointer to string constant, and is
    // indexing into the string constant.
    if (!isGEPBasedOnPointerToString(GEP, ElementSize))
      return false;

    // If the second index isn't a ConstantInt, then this is a variable index
    // into the array.  If this occurs, we can't say anything meaningful about
    // the string.
    uint64_t StartIdx = 0;
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
      StartIdx = CI->getZExtValue();
    else
      return false;
    return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
                                    StartIdx + Offset);
  }

  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
    return false;

  const ConstantDataArray *Array;
  ArrayType *ArrayTy;
  if (GV->getInitializer()->isNullValue()) {
    Type *GVTy = GV->getValueType();
    if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
      // A zeroinitializer for the array; there is no ConstantDataArray.
      Array = nullptr;
    } else {
      const DataLayout &DL = GV->getParent()->getDataLayout();
      uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
      uint64_t Length = SizeInBytes / (ElementSize / 8);
      if (Length <= Offset)
        return false;

      Slice.Array = nullptr;
      Slice.Offset = 0;
      Slice.Length = Length - Offset;
      return true;
    }
  } else {
    // This must be a ConstantDataArray.
    Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
    if (!Array)
      return false;
    ArrayTy = Array->getType();
  }
  if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
    return false;

  uint64_t NumElts = ArrayTy->getArrayNumElements();
  if (Offset > NumElts)
    return false;

  Slice.Array = Array;
  Slice.Offset = Offset;
  Slice.Length = NumElts - Offset;
  return true;
}

/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
                                 uint64_t Offset, bool TrimAtNul) {
  ConstantDataArraySlice Slice;
  if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
    return false;

  if (Slice.Array == nullptr) {
    if (TrimAtNul) {
      Str = StringRef();
      return true;
    }
    if (Slice.Length == 1) {
      Str = StringRef("", 1);
      return true;
    }
    // We cannot instantiate a StringRef as we do not have an appropriate string
    // of 0s at hand.
    return false;
  }

  // Start out with the entire array in the StringRef.
  Str = Slice.Array->getAsString();
  // Skip over 'offset' bytes.
  Str = Str.substr(Slice.Offset);

  if (TrimAtNul) {
    // Trim off the \0 and anything after it.  If the array is not nul
    // terminated, we just return the whole end of string.  The client may know
    // some other way that the string is length-bound.
    Str = Str.substr(0, Str.find('\0'));
  }
  return true;
}

// These next two are very similar to the above, but also look through PHI
// nodes.
// TODO: See if we can integrate these two together.

/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLengthH(const Value *V,
                                 SmallPtrSetImpl<const PHINode*> &PHIs,
                                 unsigned CharSize) {
  // Look through noop bitcast instructions.
  V = V->stripPointerCasts();

  // If this is a PHI node, there are two cases: either we have already seen it
  // or we haven't.
  if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    if (!PHIs.insert(PN).second)
      return ~0ULL;  // already in the set.

    // If it was new, see if all the input strings are the same length.
    uint64_t LenSoFar = ~0ULL;
    for (Value *IncValue : PN->incoming_values()) {
      uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
      if (Len == 0) return 0; // Unknown length -> unknown.

      if (Len == ~0ULL) continue;

      if (Len != LenSoFar && LenSoFar != ~0ULL)
        return 0;    // Disagree -> unknown.
      LenSoFar = Len;
    }

    // Success, all agree.
    return LenSoFar;
  }

  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
    if (Len1 == 0) return 0;
    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
    if (Len2 == 0) return 0;
    if (Len1 == ~0ULL) return Len2;
    if (Len2 == ~0ULL) return Len1;
    if (Len1 != Len2) return 0;
    return Len1;
  }

  // Otherwise, see if we can read the string.
  ConstantDataArraySlice Slice;
  if (!getConstantDataArrayInfo(V, Slice, CharSize))
    return 0;

  if (Slice.Array == nullptr)
    return 1;

  // Search for nul characters
  unsigned NullIndex = 0;
  for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
    if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
      break;
  }

  return NullIndex + 1;
}

/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
  if (!V->getType()->isPointerTy())
    return 0;

  SmallPtrSet<const PHINode*, 32> PHIs;
  uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
  // an empty string as a length.
  return Len == ~0ULL ? 1 : Len;
}

const Value *
llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
                                           bool MustPreserveNullness) {
  assert(Call &&
         "getArgumentAliasingToReturnedPointer only works on nonnull calls");
  if (const Value *RV = Call->getReturnedArgOperand())
    return RV;
  // This can be used only as a aliasing property.
  if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
          Call, MustPreserveNullness))
    return Call->getArgOperand(0);
  return nullptr;
}

bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
    const CallBase *Call, bool MustPreserveNullness) {
  return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
         Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
         Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
         Call->getIntrinsicID() == Intrinsic::aarch64_tagp ||
         (!MustPreserveNullness &&
          Call->getIntrinsicID() == Intrinsic::ptrmask);
}

/// \p PN defines a loop-variant pointer to an object.  Check if the
/// previous iteration of the loop was referring to the same object as \p PN.
static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
                                         const LoopInfo *LI) {
  // Find the loop-defined value.
  Loop *L = LI->getLoopFor(PN->getParent());
  if (PN->getNumIncomingValues() != 2)
    return true;

  // Find the value from previous iteration.
  auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
    PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
    return true;

  // If a new pointer is loaded in the loop, the pointer references a different
  // object in every iteration.  E.g.:
  //    for (i)
  //       int *p = a[i];
  //       ...
  if (auto *Load = dyn_cast<LoadInst>(PrevValue))
    if (!L->isLoopInvariant(Load->getPointerOperand()))
      return false;
  return true;
}

Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
                                 unsigned MaxLookup) {
  if (!V->getType()->isPointerTy())
    return V;
  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
      if (GA->isInterposable())
        return V;
      V = GA->getAliasee();
    } else if (isa<AllocaInst>(V)) {
      // An alloca can't be further simplified.
      return V;
    } else {
      if (auto *Call = dyn_cast<CallBase>(V)) {
        // CaptureTracking can know about special capturing properties of some
        // intrinsics like launder.invariant.group, that can't be expressed with
        // the attributes, but have properties like returning aliasing pointer.
        // Because some analysis may assume that nocaptured pointer is not
        // returned from some special intrinsic (because function would have to
        // be marked with returns attribute), it is crucial to use this function
        // because it should be in sync with CaptureTracking. Not using it may
        // cause weird miscompilations where 2 aliasing pointers are assumed to
        // noalias.
        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
          V = RP;
          continue;
        }
      }

      // See if InstructionSimplify knows any relevant tricks.
      if (Instruction *I = dyn_cast<Instruction>(V))
        // TODO: Acquire a DominatorTree and AssumptionCache and use them.
        if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
          V = Simplified;
          continue;
        }

      return V;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  }
  return V;
}

void llvm::GetUnderlyingObjects(const Value *V,
                                SmallVectorImpl<const Value *> &Objects,
                                const DataLayout &DL, LoopInfo *LI,
                                unsigned MaxLookup) {
  SmallPtrSet<const Value *, 4> Visited;
  SmallVector<const Value *, 4> Worklist;
  Worklist.push_back(V);
  do {
    const Value *P = Worklist.pop_back_val();
    P = GetUnderlyingObject(P, DL, MaxLookup);

    if (!Visited.insert(P).second)
      continue;

    if (auto *SI = dyn_cast<SelectInst>(P)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    if (auto *PN = dyn_cast<PHINode>(P)) {
      // If this PHI changes the underlying object in every iteration of the
      // loop, don't look through it.  Consider:
      //   int **A;
      //   for (i) {
      //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
      //     Curr = A[i];
      //     *Prev, *Curr;
      //
      // Prev is tracking Curr one iteration behind so they refer to different
      // underlying objects.
      if (!LI || !LI->isLoopHeader(PN->getParent()) ||
          isSameUnderlyingObjectInLoop(PN, LI))
        for (Value *IncValue : PN->incoming_values())
          Worklist.push_back(IncValue);
      continue;
    }

    Objects.push_back(P);
  } while (!Worklist.empty());
}

/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
  do {
    if (const Operator *U = dyn_cast<Operator>(V)) {
      // If we find a ptrtoint, we can transfer control back to the
      // regular getUnderlyingObjectFromInt.
      if (U->getOpcode() == Instruction::PtrToInt)
        return U->getOperand(0);
      // If we find an add of a constant, a multiplied value, or a phi, it's
      // likely that the other operand will lead us to the base
      // object. We don't have to worry about the case where the
      // object address is somehow being computed by the multiply,
      // because our callers only care when the result is an
      // identifiable object.
      if (U->getOpcode() != Instruction::Add ||
          (!isa<ConstantInt>(U->getOperand(1)) &&
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
           !isa<PHINode>(U->getOperand(1))))
        return V;
      V = U->getOperand(0);
    } else {
      return V;
    }
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
  } while (true);
}

/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
/// It returns false if unidentified object is found in GetUnderlyingObjects.
bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
                          SmallVectorImpl<Value *> &Objects,
                          const DataLayout &DL) {
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 4> Working(1, V);
  do {
    V = Working.pop_back_val();

    SmallVector<const Value *, 4> Objs;
    GetUnderlyingObjects(V, Objs, DL);

    for (const Value *V : Objs) {
      if (!Visited.insert(V).second)
        continue;
      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
        const Value *O =
          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
        if (O->getType()->isPointerTy()) {
          Working.push_back(O);
          continue;
        }
      }
      // If GetUnderlyingObjects fails to find an identifiable object,
      // getUnderlyingObjectsForCodeGen also fails for safety.
      if (!isIdentifiedObject(V)) {
        Objects.clear();
        return false;
      }
      Objects.push_back(const_cast<Value *>(V));
    }
  } while (!Working.empty());
  return true;
}

/// Return true if the only users of this pointer are lifetime markers.
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
  for (const User *U : V->users()) {
    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
    if (!II) return false;

    if (!II->isLifetimeStartOrEnd())
      return false;
  }
  return true;
}

bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
  if (!LI.isUnordered())
    return true;
  const Function &F = *LI.getFunction();
  // Speculative load may create a race that did not exist in the source.
  return F.hasFnAttribute(Attribute::SanitizeThread) ||
    // Speculative load may load data from dirty regions.
    F.hasFnAttribute(Attribute::SanitizeAddress) ||
    F.hasFnAttribute(Attribute::SanitizeHWAddress);
}


bool llvm::isSafeToSpeculativelyExecute(const Value *V,
                                        const Instruction *CtxI,
                                        const DominatorTree *DT) {
  const Operator *Inst = dyn_cast<Operator>(V);
  if (!Inst)
    return false;

  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
      if (C->canTrap())
        return false;

  switch (Inst->getOpcode()) {
  default:
    return true;
  case Instruction::UDiv:
  case Instruction::URem: {
    // x / y is undefined if y == 0.
    const APInt *V;
    if (match(Inst->getOperand(1), m_APInt(V)))
      return *V != 0;
    return false;
  }
  case Instruction::SDiv:
  case Instruction::SRem: {
    // x / y is undefined if y == 0 or x == INT_MIN and y == -1
    const APInt *Numerator, *Denominator;
    if (!match(Inst->getOperand(1), m_APInt(Denominator)))
      return false;
    // We cannot hoist this division if the denominator is 0.
    if (*Denominator == 0)
      return false;
    // It's safe to hoist if the denominator is not 0 or -1.
    if (*Denominator != -1)
      return true;
    // At this point we know that the denominator is -1.  It is safe to hoist as
    // long we know that the numerator is not INT_MIN.
    if (match(Inst->getOperand(0), m_APInt(Numerator)))
      return !Numerator->isMinSignedValue();
    // The numerator *might* be MinSignedValue.
    return false;
  }
  case Instruction::Load: {
    const LoadInst *LI = cast<LoadInst>(Inst);
    if (mustSuppressSpeculation(*LI))
      return false;
    const DataLayout &DL = LI->getModule()->getDataLayout();
    return isDereferenceableAndAlignedPointer(
        LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
        DL, CtxI, DT);
  }
  case Instruction::Call: {
    auto *CI = cast<const CallInst>(Inst);
    const Function *Callee = CI->getCalledFunction();

    // The called function could have undefined behavior or side-effects, even
    // if marked readnone nounwind.
    return Callee && Callee->isSpeculatable();
  }
  case Instruction::VAArg:
  case Instruction::Alloca:
  case Instruction::Invoke:
  case Instruction::CallBr:
  case Instruction::PHI:
  case Instruction::Store:
  case Instruction::Ret:
  case Instruction::Br:
  case Instruction::IndirectBr:
  case Instruction::Switch:
  case Instruction::Unreachable:
  case Instruction::Fence:
  case Instruction::AtomicRMW:
  case Instruction::AtomicCmpXchg:
  case Instruction::LandingPad:
  case Instruction::Resume:
  case Instruction::CatchSwitch:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
  case Instruction::CleanupPad:
  case Instruction::CleanupRet:
    return false; // Misc instructions which have effects
  }
}

bool llvm::mayBeMemoryDependent(const Instruction &I) {
  return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
}

/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
  switch (OR) {
    case ConstantRange::OverflowResult::MayOverflow:
      return OverflowResult::MayOverflow;
    case ConstantRange::OverflowResult::AlwaysOverflowsLow:
      return OverflowResult::AlwaysOverflowsLow;
    case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
      return OverflowResult::AlwaysOverflowsHigh;
    case ConstantRange::OverflowResult::NeverOverflows:
      return OverflowResult::NeverOverflows;
  }
  llvm_unreachable("Unknown OverflowResult");
}

/// Combine constant ranges from computeConstantRange() and computeKnownBits().
static ConstantRange computeConstantRangeIncludingKnownBits(
    const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
    OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
  KnownBits Known = computeKnownBits(
      V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
  ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
  ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
  ConstantRange::PreferredRangeType RangeType =
      ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
  return CR1.intersectWith(CR2, RangeType);
}

OverflowResult llvm::computeOverflowForUnsignedMul(
    const Value *LHS, const Value *RHS, const DataLayout &DL,
    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
    bool UseInstrInfo) {
  KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
                                        nullptr, UseInstrInfo);
  KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
                                        nullptr, UseInstrInfo);
  ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
  ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
  return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
}

OverflowResult
llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
                                  const DataLayout &DL, AssumptionCache *AC,
                                  const Instruction *CxtI,
                                  const DominatorTree *DT, bool UseInstrInfo) {
  // Multiplying n * m significant bits yields a result of n + m significant
  // bits. If the total number of significant bits does not exceed the
  // result bit width (minus 1), there is no overflow.
  // This means if we have enough leading sign bits in the operands
  // we can guarantee that the result does not overflow.
  // Ref: "Hacker's Delight" by Henry Warren
  unsigned BitWidth = LHS->getType()->getScalarSizeInBits();

  // Note that underestimating the number of sign bits gives a more
  // conservative answer.
  unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
                      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);

  // First handle the easy case: if we have enough sign bits there's
  // definitely no overflow.
  if (SignBits > BitWidth + 1)
    return OverflowResult::NeverOverflows;

  // There are two ambiguous cases where there can be no overflow:
  //   SignBits == BitWidth + 1    and
  //   SignBits == BitWidth
  // The second case is difficult to check, therefore we only handle the
  // first case.
  if (SignBits == BitWidth + 1) {
    // It overflows only when both arguments are negative and the true
    // product is exactly the minimum negative number.
    // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
    // For simplicity we just check if at least one side is not negative.
    KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
                                          nullptr, UseInstrInfo);
    KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
                                          nullptr, UseInstrInfo);
    if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
      return OverflowResult::NeverOverflows;
  }
  return OverflowResult::MayOverflow;
}

OverflowResult llvm::computeOverflowForUnsignedAdd(
    const Value *LHS, const Value *RHS, const DataLayout &DL,
    AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
    bool UseInstrInfo) {
  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
      nullptr, UseInstrInfo);
  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
      nullptr, UseInstrInfo);
  return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
}

static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
                                                  const Value *RHS,
                                                  const AddOperator *Add,
                                                  const DataLayout &DL,
                                                  AssumptionCache *AC,
                                                  const Instruction *CxtI,
                                                  const DominatorTree *DT) {
  if (Add && Add->hasNoSignedWrap()) {
    return OverflowResult::NeverOverflows;
  }

  // If LHS and RHS each have at least two sign bits, the addition will look
  // like
  //
  // XX..... +
  // YY.....
  //
  // If the carry into the most significant position is 0, X and Y can't both
  // be 1 and therefore the carry out of the addition is also 0.
  //
  // If the carry into the most significant position is 1, X and Y can't both
  // be 0 and therefore the carry out of the addition is also 1.
  //
  // Since the carry into the most significant position is always equal to
  // the carry out of the addition, there is no signed overflow.
  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
    return OverflowResult::NeverOverflows;

  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
  OverflowResult OR =
      mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
  if (OR != OverflowResult::MayOverflow)
    return OR;

  // The remaining code needs Add to be available. Early returns if not so.
  if (!Add)
    return OverflowResult::MayOverflow;

  // If the sign of Add is the same as at least one of the operands, this add
  // CANNOT overflow. If this can be determined from the known bits of the
  // operands the above signedAddMayOverflow() check will have already done so.
  // The only other way to improve on the known bits is from an assumption, so
  // call computeKnownBitsFromAssume() directly.
  bool LHSOrRHSKnownNonNegative =
      (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
  bool LHSOrRHSKnownNegative =
      (LHSRange.isAllNegative() || RHSRange.isAllNegative());
  if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
    KnownBits AddKnown(LHSRange.getBitWidth());
    computeKnownBitsFromAssume(
        Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
    if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
        (AddKnown.isNegative() && LHSOrRHSKnownNegative))
      return OverflowResult::NeverOverflows;
  }

  return OverflowResult::MayOverflow;
}

OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
                                                   const Value *RHS,
                                                   const DataLayout &DL,
                                                   AssumptionCache *AC,
                                                   const Instruction *CxtI,
                                                   const DominatorTree *DT) {
  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
      LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
      RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
  return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
}

OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
                                                 const Value *RHS,
                                                 const DataLayout &DL,
                                                 AssumptionCache *AC,
                                                 const Instruction *CxtI,
                                                 const DominatorTree *DT) {
  // If LHS and RHS each have at least two sign bits, the subtraction
  // cannot overflow.
  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
    return OverflowResult::NeverOverflows;

  ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
      LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
  ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
      RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
  return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
}

bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
                                     const DominatorTree &DT) {
  SmallVector<const BranchInst *, 2> GuardingBranches;
  SmallVector<const ExtractValueInst *, 2> Results;

  for (const User *U : WO->users()) {
    if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
      assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");

      if (EVI->getIndices()[0] == 0)
        Results.push_back(EVI);
      else {
        assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");

        for (const auto *U : EVI->users())
          if (const auto *B = dyn_cast<BranchInst>(U)) {
            assert(B->isConditional() && "How else is it using an i1?");
            GuardingBranches.push_back(B);
          }
      }
    } else {
      // We are using the aggregate directly in a way we don't want to analyze
      // here (storing it to a global, say).
      return false;
    }
  }

  auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
    BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
    if (!NoWrapEdge.isSingleEdge())
      return false;

    // Check if all users of the add are provably no-wrap.
    for (const auto *Result : Results) {
      // If the extractvalue itself is not executed on overflow, the we don't
      // need to check each use separately, since domination is transitive.
      if (DT.dominates(NoWrapEdge, Result->getParent()))
        continue;

      for (auto &RU : Result->uses())
        if (!DT.dominates(NoWrapEdge, RU))
          return false;
    }

    return true;
  };

  return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
}

bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) {
  // If the value is a freeze instruction, then it can never
  // be undef or poison.
  if (isa<FreezeInst>(V))
    return true;
  // TODO: Some instructions are guaranteed to return neither undef
  // nor poison if their arguments are not poison/undef.

  // TODO: Deal with other Constant subclasses.
  if (isa<ConstantInt>(V) || isa<GlobalVariable>(V))
    return true;

  return false;
}

OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
                                                 const DataLayout &DL,
                                                 AssumptionCache *AC,
                                                 const Instruction *CxtI,
                                                 const DominatorTree *DT) {
  return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
                                       Add, DL, AC, CxtI, DT);
}

OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
                                                 const Value *RHS,
                                                 const DataLayout &DL,
                                                 AssumptionCache *AC,
                                                 const Instruction *CxtI,
                                                 const DominatorTree *DT) {
  return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
}

bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
  // Note: An atomic operation isn't guaranteed to return in a reasonable amount
  // of time because it's possible for another thread to interfere with it for an
  // arbitrary length of time, but programs aren't allowed to rely on that.

  // If there is no successor, then execution can't transfer to it.
  if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
    return !CRI->unwindsToCaller();
  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
    return !CatchSwitch->unwindsToCaller();
  if (isa<ResumeInst>(I))
    return false;
  if (isa<ReturnInst>(I))
    return false;
  if (isa<UnreachableInst>(I))
    return false;

  // Calls can throw, or contain an infinite loop, or kill the process.
  if (auto CS = ImmutableCallSite(I)) {
    // Call sites that throw have implicit non-local control flow.
    if (!CS.doesNotThrow())
      return false;

    // A function which doens't throw and has "willreturn" attribute will
    // always return.
    if (CS.hasFnAttr(Attribute::WillReturn))
      return true;

    // Non-throwing call sites can loop infinitely, call exit/pthread_exit
    // etc. and thus not return.  However, LLVM already assumes that
    //
    //  - Thread exiting actions are modeled as writes to memory invisible to
    //    the program.
    //
    //  - Loops that don't have side effects (side effects are volatile/atomic
    //    stores and IO) always terminate (see http://llvm.org/PR965).
    //    Furthermore IO itself is also modeled as writes to memory invisible to
    //    the program.
    //
    // We rely on those assumptions here, and use the memory effects of the call
    // target as a proxy for checking that it always returns.

    // FIXME: This isn't aggressive enough; a call which only writes to a global
    // is guaranteed to return.
    return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory();
  }

  // Other instructions return normally.
  return true;
}

bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
  // TODO: This is slightly conservative for invoke instruction since exiting
  // via an exception *is* normal control for them.
  for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
    if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
      return false;
  return true;
}

bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
                                                  const Loop *L) {
  // The loop header is guaranteed to be executed for every iteration.
  //
  // FIXME: Relax this constraint to cover all basic blocks that are
  // guaranteed to be executed at every iteration.
  if (I->getParent() != L->getHeader()) return false;

  for (const Instruction &LI : *L->getHeader()) {
    if (&LI == I) return true;
    if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
  }
  llvm_unreachable("Instruction not contained in its own parent basic block.");
}

bool llvm::propagatesFullPoison(const Instruction *I) {
  // TODO: This should include all instructions apart from phis, selects and
  // call-like instructions.
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Xor:
  case Instruction::Trunc:
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::GetElementPtr:
    // These operations all propagate poison unconditionally. Note that poison
    // is not any particular value, so xor or subtraction of poison with
    // itself still yields poison, not zero.
    return true;

  case Instruction::AShr:
  case Instruction::SExt:
    // For these operations, one bit of the input is replicated across
    // multiple output bits. A replicated poison bit is still poison.
    return true;

  case Instruction::ICmp:
    // Comparing poison with any value yields poison.  This is why, for
    // instance, x s< (x +nsw 1) can be folded to true.
    return true;

  default:
    return false;
  }
}

const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
  switch (I->getOpcode()) {
    case Instruction::Store:
      return cast<StoreInst>(I)->getPointerOperand();

    case Instruction::Load:
      return cast<LoadInst>(I)->getPointerOperand();

    case Instruction::AtomicCmpXchg:
      return cast<AtomicCmpXchgInst>(I)->getPointerOperand();

    case Instruction::AtomicRMW:
      return cast<AtomicRMWInst>(I)->getPointerOperand();

    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      return I->getOperand(1);

    default:
      // Note: It's really tempting to think that a conditional branch or
      // switch should be listed here, but that's incorrect.  It's not
      // branching off of poison which is UB, it is executing a side effecting
      // instruction which follows the branch.
      return nullptr;
  }
}

bool llvm::mustTriggerUB(const Instruction *I,
                         const SmallSet<const Value *, 16>& KnownPoison) {
  auto *NotPoison = getGuaranteedNonFullPoisonOp(I);
  return (NotPoison && KnownPoison.count(NotPoison));
}


bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
  // We currently only look for uses of poison values within the same basic
  // block, as that makes it easier to guarantee that the uses will be
  // executed given that PoisonI is executed.
  //
  // FIXME: Expand this to consider uses beyond the same basic block. To do
  // this, look out for the distinction between post-dominance and strong
  // post-dominance.
  const BasicBlock *BB = PoisonI->getParent();

  // Set of instructions that we have proved will yield poison if PoisonI
  // does.
  SmallSet<const Value *, 16> YieldsPoison;
  SmallSet<const BasicBlock *, 4> Visited;
  YieldsPoison.insert(PoisonI);
  Visited.insert(PoisonI->getParent());

  BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();

  unsigned Iter = 0;
  while (Iter++ < MaxDepth) {
    for (auto &I : make_range(Begin, End)) {
      if (&I != PoisonI) {
        if (mustTriggerUB(&I, YieldsPoison))
          return true;
        if (!isGuaranteedToTransferExecutionToSuccessor(&I))
          return false;
      }

      // Mark poison that propagates from I through uses of I.
      if (YieldsPoison.count(&I)) {
        for (const User *User : I.users()) {
          const Instruction *UserI = cast<Instruction>(User);
          if (propagatesFullPoison(UserI))
            YieldsPoison.insert(User);
        }
      }
    }

    if (auto *NextBB = BB->getSingleSuccessor()) {
      if (Visited.insert(NextBB).second) {
        BB = NextBB;
        Begin = BB->getFirstNonPHI()->getIterator();
        End = BB->end();
        continue;
      }
    }

    break;
  }
  return false;
}

static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
  if (FMF.noNaNs())
    return true;

  if (auto *C = dyn_cast<ConstantFP>(V))
    return !C->isNaN();

  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
    if (!C->getElementType()->isFloatingPointTy())
      return false;
    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
      if (C->getElementAsAPFloat(I).isNaN())
        return false;
    }
    return true;
  }

  return false;
}

static bool isKnownNonZero(const Value *V) {
  if (auto *C = dyn_cast<ConstantFP>(V))
    return !C->isZero();

  if (auto *C = dyn_cast<ConstantDataVector>(V)) {
    if (!C->getElementType()->isFloatingPointTy())
      return false;
    for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
      if (C->getElementAsAPFloat(I).isZero())
        return false;
    }
    return true;
  }

  return false;
}

/// Match clamp pattern for float types without care about NaNs or signed zeros.
/// Given non-min/max outer cmp/select from the clamp pattern this
/// function recognizes if it can be substitued by a "canonical" min/max
/// pattern.
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
                                               Value *CmpLHS, Value *CmpRHS,
                                               Value *TrueVal, Value *FalseVal,
                                               Value *&LHS, Value *&RHS) {
  // Try to match
  //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
  //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
  // and return description of the outer Max/Min.

  // First, check if select has inverse order:
  if (CmpRHS == FalseVal) {
    std::swap(TrueVal, FalseVal);
    Pred = CmpInst::getInversePredicate(Pred);
  }

  // Assume success now. If there's no match, callers should not use these anyway.
  LHS = TrueVal;
  RHS = FalseVal;

  const APFloat *FC1;
  if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
    return {SPF_UNKNOWN, SPNB_NA, false};

  const APFloat *FC2;
  switch (Pred) {
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULT:
  case CmpInst::FCMP_ULE:
    if (match(FalseVal,
              m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
                          m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
        FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
      return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
    break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGT:
  case CmpInst::FCMP_UGE:
    if (match(FalseVal,
              m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
                          m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
        FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
      return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
    break;
  default:
    break;
  }

  return {SPF_UNKNOWN, SPNB_NA, false};
}

/// Recognize variations of:
///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
                                      Value *CmpLHS, Value *CmpRHS,
                                      Value *TrueVal, Value *FalseVal) {
  // Swap the select operands and predicate to match the patterns below.
  if (CmpRHS != TrueVal) {
    Pred = ICmpInst::getSwappedPredicate(Pred);
    std::swap(TrueVal, FalseVal);
  }
  const APInt *C1;
  if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
    const APInt *C2;
    // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
    if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
      return {SPF_SMAX, SPNB_NA, false};

    // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
    if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
      return {SPF_SMIN, SPNB_NA, false};

    // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
    if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
      return {SPF_UMAX, SPNB_NA, false};

    // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
    if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
      return {SPF_UMIN, SPNB_NA, false};
  }
  return {SPF_UNKNOWN, SPNB_NA, false};
}

/// Recognize variations of:
///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
                                               Value *CmpLHS, Value *CmpRHS,
                                               Value *TVal, Value *FVal,
                                               unsigned Depth) {
  // TODO: Allow FP min/max with nnan/nsz.
  assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");

  Value *A = nullptr, *B = nullptr;
  SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
  if (!SelectPatternResult::isMinOrMax(L.Flavor))
    return {SPF_UNKNOWN, SPNB_NA, false};

  Value *C = nullptr, *D = nullptr;
  SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
  if (L.Flavor != R.Flavor)
    return {SPF_UNKNOWN, SPNB_NA, false};

  // We have something like: x Pred y ? min(a, b) : min(c, d).
  // Try to match the compare to the min/max operations of the select operands.
  // First, make sure we have the right compare predicate.
  switch (L.Flavor) {
  case SPF_SMIN:
    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
      Pred = ICmpInst::getSwappedPredicate(Pred);
      std::swap(CmpLHS, CmpRHS);
    }
    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
      break;
    return {SPF_UNKNOWN, SPNB_NA, false};
  case SPF_SMAX:
    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
      Pred = ICmpInst::getSwappedPredicate(Pred);
      std::swap(CmpLHS, CmpRHS);
    }
    if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
      break;
    return {SPF_UNKNOWN, SPNB_NA, false};
  case SPF_UMIN:
    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
      Pred = ICmpInst::getSwappedPredicate(Pred);
      std::swap(CmpLHS, CmpRHS);
    }
    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
      break;
    return {SPF_UNKNOWN, SPNB_NA, false};
  case SPF_UMAX:
    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
      Pred = ICmpInst::getSwappedPredicate(Pred);
      std::swap(CmpLHS, CmpRHS);
    }
    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
      break;
    return {SPF_UNKNOWN, SPNB_NA, false};
  default:
    return {SPF_UNKNOWN, SPNB_NA, false};
  }

  // If there is a common operand in the already matched min/max and the other
  // min/max operands match the compare operands (either directly or inverted),
  // then this is min/max of the same flavor.

  // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
  // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
  if (D == B) {
    if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
                                         match(A, m_Not(m_Specific(CmpRHS)))))
      return {L.Flavor, SPNB_NA, false};
  }
  // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
  // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
  if (C == B) {
    if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
                                         match(A, m_Not(m_Specific(CmpRHS)))))
      return {L.Flavor, SPNB_NA, false};
  }
  // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
  // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
  if (D == A) {
    if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
                                         match(B, m_Not(m_Specific(CmpRHS)))))
      return {L.Flavor, SPNB_NA, false};
  }
  // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
  // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
  if (C == A) {
    if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
                                         match(B, m_Not(m_Specific(CmpRHS)))))
      return {L.Flavor, SPNB_NA, false};
  }

  return {SPF_UNKNOWN, SPNB_NA, false};
}

/// Match non-obvious integer minimum and maximum sequences.
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
                                       Value *CmpLHS, Value *CmpRHS,
                                       Value *TrueVal, Value *FalseVal,
                                       Value *&LHS, Value *&RHS,
                                       unsigned Depth) {
  // Assume success. If there's no match, callers should not use these anyway.
  LHS = TrueVal;
  RHS = FalseVal;

  SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
    return SPR;

  SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
    return SPR;

  if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
    return {SPF_UNKNOWN, SPNB_NA, false};

  // Z = X -nsw Y
  // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
  // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
  if (match(TrueVal, m_Zero()) &&
      match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};

  // Z = X -nsw Y
  // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
  // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
  if (match(FalseVal, m_Zero()) &&
      match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};

  const APInt *C1;
  if (!match(CmpRHS, m_APInt(C1)))
    return {SPF_UNKNOWN, SPNB_NA, false};

  // An unsigned min/max can be written with a signed compare.
  const APInt *C2;
  if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
      (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
    // Is the sign bit set?
    // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
    // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
    if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
        C2->isMaxSignedValue())
      return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};

    // Is the sign bit clear?
    // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
    // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
    if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
        C2->isMinSignedValue())
      return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
  }

  // Look through 'not' ops to find disguised signed min/max.
  // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
  // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
  if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
      match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};

  // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
  // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
  if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
      match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};

  return {SPF_UNKNOWN, SPNB_NA, false};
}

bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
  assert(X && Y && "Invalid operand");

  // X = sub (0, Y) || X = sub nsw (0, Y)
  if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
      (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
    return true;

  // Y = sub (0, X) || Y = sub nsw (0, X)
  if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
      (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
    return true;

  // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
  Value *A, *B;
  return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
                        match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
         (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
                       match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
}

static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
                                              FastMathFlags FMF,
                                              Value *CmpLHS, Value *CmpRHS,
                                              Value *TrueVal, Value *FalseVal,
                                              Value *&LHS, Value *&RHS,
                                              unsigned Depth) {
  if (CmpInst::isFPPredicate(Pred)) {
    // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
    // 0.0 operand, set the compare's 0.0 operands to that same value for the
    // purpose of identifying min/max. Disregard vector constants with undefined
    // elements because those can not be back-propagated for analysis.
    Value *OutputZeroVal = nullptr;
    if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
        !cast<Constant>(TrueVal)->containsUndefElement())
      OutputZeroVal = TrueVal;
    else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
             !cast<Constant>(FalseVal)->containsUndefElement())
      OutputZeroVal = FalseVal;

    if (OutputZeroVal) {
      if (match(CmpLHS, m_AnyZeroFP()))
        CmpLHS = OutputZeroVal;
      if (match(CmpRHS, m_AnyZeroFP()))
        CmpRHS = OutputZeroVal;
    }
  }

  LHS = CmpLHS;
  RHS = CmpRHS;

  // Signed zero may return inconsistent results between implementations.
  //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
  //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
  // Therefore, we behave conservatively and only proceed if at least one of the
  // operands is known to not be zero or if we don't care about signed zero.
  switch (Pred) {
  default: break;
  // FIXME: Include OGT/OLT/UGT/ULT.
  case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
    if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
        !isKnownNonZero(CmpRHS))
      return {SPF_UNKNOWN, SPNB_NA, false};
  }

  SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
  bool Ordered = false;

  // When given one NaN and one non-NaN input:
  //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
  //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
  //     ordered comparison fails), which could be NaN or non-NaN.
  // so here we discover exactly what NaN behavior is required/accepted.
  if (CmpInst::isFPPredicate(Pred)) {
    bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
    bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);

    if (LHSSafe && RHSSafe) {
      // Both operands are known non-NaN.
      NaNBehavior = SPNB_RETURNS_ANY;
    } else if (CmpInst::isOrdered(Pred)) {
      // An ordered comparison will return false when given a NaN, so it
      // returns the RHS.
      Ordered = true;
      if (LHSSafe)
        // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
        NaNBehavior = SPNB_RETURNS_NAN;
      else if (RHSSafe)
        NaNBehavior = SPNB_RETURNS_OTHER;
      else
        // Completely unsafe.
        return {SPF_UNKNOWN, SPNB_NA, false};
    } else {
      Ordered = false;
      // An unordered comparison will return true when given a NaN, so it
      // returns the LHS.
      if (LHSSafe)
        // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
        NaNBehavior = SPNB_RETURNS_OTHER;
      else if (RHSSafe)
        NaNBehavior = SPNB_RETURNS_NAN;
      else
        // Completely unsafe.
        return {SPF_UNKNOWN, SPNB_NA, false};
    }
  }

  if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
    std::swap(CmpLHS, CmpRHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
    if (NaNBehavior == SPNB_RETURNS_NAN)
      NaNBehavior = SPNB_RETURNS_OTHER;
    else if (NaNBehavior == SPNB_RETURNS_OTHER)
      NaNBehavior = SPNB_RETURNS_NAN;
    Ordered = !Ordered;
  }

  // ([if]cmp X, Y) ? X : Y
  if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
    switch (Pred) {
    default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
    case FCmpInst::FCMP_UGT:
    case FCmpInst::FCMP_UGE:
    case FCmpInst::FCMP_OGT:
    case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
    case FCmpInst::FCMP_ULT:
    case FCmpInst::FCMP_ULE:
    case FCmpInst::FCMP_OLT:
    case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
    }
  }

  if (isKnownNegation(TrueVal, FalseVal)) {
    // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
    // match against either LHS or sext(LHS).
    auto MaybeSExtCmpLHS =
        m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
    auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
    auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
    if (match(TrueVal, MaybeSExtCmpLHS)) {
      // Set the return values. If the compare uses the negated value (-X >s 0),
      // swap the return values because the negated value is always 'RHS'.
      LHS = TrueVal;
      RHS = FalseVal;
      if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
        std::swap(LHS, RHS);

      // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
      // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
        return {SPF_ABS, SPNB_NA, false};

      // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
      if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
        return {SPF_ABS, SPNB_NA, false};

      // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
      // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
        return {SPF_NABS, SPNB_NA, false};
    }
    else if (match(FalseVal, MaybeSExtCmpLHS)) {
      // Set the return values. If the compare uses the negated value (-X >s 0),
      // swap the return values because the negated value is always 'RHS'.
      LHS = FalseVal;
      RHS = TrueVal;
      if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
        std::swap(LHS, RHS);

      // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
      // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
      if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
        return {SPF_NABS, SPNB_NA, false};

      // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
      // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
      if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
        return {SPF_ABS, SPNB_NA, false};
    }
  }

  if (CmpInst::isIntPredicate(Pred))
    return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);

  // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
  // may return either -0.0 or 0.0, so fcmp/select pair has stricter
  // semantics than minNum. Be conservative in such case.
  if (NaNBehavior != SPNB_RETURNS_ANY ||
      (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
       !isKnownNonZero(CmpRHS)))
    return {SPF_UNKNOWN, SPNB_NA, false};

  return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
}

/// Helps to match a select pattern in case of a type mismatch.
///
/// The function processes the case when type of true and false values of a
/// select instruction differs from type of the cmp instruction operands because
/// of a cast instruction. The function checks if it is legal to move the cast
/// operation after "select". If yes, it returns the new second value of
/// "select" (with the assumption that cast is moved):
/// 1. As operand of cast instruction when both values of "select" are same cast
/// instructions.
/// 2. As restored constant (by applying reverse cast operation) when the first
/// value of the "select" is a cast operation and the second value is a
/// constant.
/// NOTE: We return only the new second value because the first value could be
/// accessed as operand of cast instruction.
static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
                              Instruction::CastOps *CastOp) {
  auto *Cast1 = dyn_cast<CastInst>(V1);
  if (!Cast1)
    return nullptr;

  *CastOp = Cast1->getOpcode();
  Type *SrcTy = Cast1->getSrcTy();
  if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
    // If V1 and V2 are both the same cast from the same type, look through V1.
    if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
      return Cast2->getOperand(0);
    return nullptr;
  }

  auto *C = dyn_cast<Constant>(V2);
  if (!C)
    return nullptr;

  Constant *CastedTo = nullptr;
  switch (*CastOp) {
  case Instruction::ZExt:
    if (CmpI->isUnsigned())
      CastedTo = ConstantExpr::getTrunc(C, SrcTy);
    break;
  case Instruction::SExt:
    if (CmpI->isSigned())
      CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
    break;
  case Instruction::Trunc:
    Constant *CmpConst;
    if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
        CmpConst->getType() == SrcTy) {
      // Here we have the following case:
      //
      //   %cond = cmp iN %x, CmpConst
      //   %tr = trunc iN %x to iK
      //   %narrowsel = select i1 %cond, iK %t, iK C
      //
      // We can always move trunc after select operation:
      //
      //   %cond = cmp iN %x, CmpConst
      //   %widesel = select i1 %cond, iN %x, iN CmpConst
      //   %tr = trunc iN %widesel to iK
      //
      // Note that C could be extended in any way because we don't care about
      // upper bits after truncation. It can't be abs pattern, because it would
      // look like:
      //
      //   select i1 %cond, x, -x.
      //
      // So only min/max pattern could be matched. Such match requires widened C
      // == CmpConst. That is why set widened C = CmpConst, condition trunc
      // CmpConst == C is checked below.
      CastedTo = CmpConst;
    } else {
      CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
    }
    break;
  case Instruction::FPTrunc:
    CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
    break;
  case Instruction::FPExt:
    CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
    break;
  case Instruction::FPToUI:
    CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
    break;
  case Instruction::FPToSI:
    CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
    break;
  case Instruction::UIToFP:
    CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
    break;
  case Instruction::SIToFP:
    CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
    break;
  default:
    break;
  }

  if (!CastedTo)
    return nullptr;

  // Make sure the cast doesn't lose any information.
  Constant *CastedBack =
      ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
  if (CastedBack != C)
    return nullptr;

  return CastedTo;
}

SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
                                             Instruction::CastOps *CastOp,
                                             unsigned Depth) {
  if (Depth >= MaxDepth)
    return {SPF_UNKNOWN, SPNB_NA, false};

  SelectInst *SI = dyn_cast<SelectInst>(V);
  if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};

  CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
  if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};

  Value *TrueVal = SI->getTrueValue();
  Value *FalseVal = SI->getFalseValue();

  return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
                                            CastOp, Depth);
}

SelectPatternResult llvm::matchDecomposedSelectPattern(
    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
    Instruction::CastOps *CastOp, unsigned Depth) {
  CmpInst::Predicate Pred = CmpI->getPredicate();
  Value *CmpLHS = CmpI->getOperand(0);
  Value *CmpRHS = CmpI->getOperand(1);
  FastMathFlags FMF;
  if (isa<FPMathOperator>(CmpI))
    FMF = CmpI->getFastMathFlags();

  // Bail out early.
  if (CmpI->isEquality())
    return {SPF_UNKNOWN, SPNB_NA, false};

  // Deal with type mismatches.
  if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
    if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
      // If this is a potential fmin/fmax with a cast to integer, then ignore
      // -0.0 because there is no corresponding integer value.
      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
        FMF.setNoSignedZeros();
      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
                                  cast<CastInst>(TrueVal)->getOperand(0), C,
                                  LHS, RHS, Depth);
    }
    if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
      // If this is a potential fmin/fmax with a cast to integer, then ignore
      // -0.0 because there is no corresponding integer value.
      if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
        FMF.setNoSignedZeros();
      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
                                  C, cast<CastInst>(FalseVal)->getOperand(0),
                                  LHS, RHS, Depth);
    }
  }
  return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
                              LHS, RHS, Depth);
}

CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
  if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
  if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
  if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
  if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
  if (SPF == SPF_FMINNUM)
    return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
  if (SPF == SPF_FMAXNUM)
    return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
  llvm_unreachable("unhandled!");
}

SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
  if (SPF == SPF_SMIN) return SPF_SMAX;
  if (SPF == SPF_UMIN) return SPF_UMAX;
  if (SPF == SPF_SMAX) return SPF_SMIN;
  if (SPF == SPF_UMAX) return SPF_UMIN;
  llvm_unreachable("unhandled!");
}

CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
  return getMinMaxPred(getInverseMinMaxFlavor(SPF));
}

/// Return true if "icmp Pred LHS RHS" is always true.
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
                            const Value *RHS, const DataLayout &DL,
                            unsigned Depth) {
  assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
  if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
    return true;

  switch (Pred) {
  default:
    return false;

  case CmpInst::ICMP_SLE: {
    const APInt *C;

    // LHS s<= LHS +_{nsw} C   if C >= 0
    if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
      return !C->isNegative();
    return false;
  }

  case CmpInst::ICMP_ULE: {
    const APInt *C;

    // LHS u<= LHS +_{nuw} C   for any C
    if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
      return true;

    // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
    auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
                                       const Value *&X,
                                       const APInt *&CA, const APInt *&CB) {
      if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
          match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
        return true;

      // If X & C == 0 then (X | C) == X +_{nuw} C
      if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
          match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
        KnownBits Known(CA->getBitWidth());
        computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
                         /*CxtI*/ nullptr, /*DT*/ nullptr);
        if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
          return true;
      }

      return false;
    };

    const Value *X;
    const APInt *CLHS, *CRHS;
    if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
      return CLHS->ule(*CRHS);

    return false;
  }
  }
}

/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
/// ALHS ARHS" is true.  Otherwise, return None.
static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
                      const Value *ARHS, const Value *BLHS, const Value *BRHS,
                      const DataLayout &DL, unsigned Depth) {
  switch (Pred) {
  default:
    return None;

  case CmpInst::ICMP_SLT:
  case CmpInst::ICMP_SLE:
    if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
        isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
      return true;
    return None;

  case CmpInst::ICMP_ULT:
  case CmpInst::ICMP_ULE:
    if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
        isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
      return true;
    return None;
  }
}

/// Return true if the operands of the two compares match.  IsSwappedOps is true
/// when the operands match, but are swapped.
static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
                          const Value *BLHS, const Value *BRHS,
                          bool &IsSwappedOps) {

  bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
  IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
  return IsMatchingOps || IsSwappedOps;
}

/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
                                                    CmpInst::Predicate BPred,
                                                    bool AreSwappedOps) {
  // Canonicalize the predicate as if the operands were not commuted.
  if (AreSwappedOps)
    BPred = ICmpInst::getSwappedPredicate(BPred);

  if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
    return true;
  if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
    return false;

  return None;
}

/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
                                 const ConstantInt *C1,
                                 CmpInst::Predicate BPred,
                                 const ConstantInt *C2) {
  ConstantRange DomCR =
      ConstantRange::makeExactICmpRegion(APred, C1->getValue());
  ConstantRange CR =
      ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
  ConstantRange Intersection = DomCR.intersectWith(CR);
  ConstantRange Difference = DomCR.difference(CR);
  if (Intersection.isEmptySet())
    return false;
  if (Difference.isEmptySet())
    return true;
  return None;
}

/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
/// false.  Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
                                         const ICmpInst *RHS,
                                         const DataLayout &DL, bool LHSIsTrue,
                                         unsigned Depth) {
  Value *ALHS = LHS->getOperand(0);
  Value *ARHS = LHS->getOperand(1);
  // The rest of the logic assumes the LHS condition is true.  If that's not the
  // case, invert the predicate to make it so.
  ICmpInst::Predicate APred =
      LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();

  Value *BLHS = RHS->getOperand(0);
  Value *BRHS = RHS->getOperand(1);
  ICmpInst::Predicate BPred = RHS->getPredicate();

  // Can we infer anything when the two compares have matching operands?
  bool AreSwappedOps;
  if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
    if (Optional<bool> Implication = isImpliedCondMatchingOperands(
            APred, BPred, AreSwappedOps))
      return Implication;
    // No amount of additional analysis will infer the second condition, so
    // early exit.
    return None;
  }

  // Can we infer anything when the LHS operands match and the RHS operands are
  // constants (not necessarily matching)?
  if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
    if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
            APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
      return Implication;
    // No amount of additional analysis will infer the second condition, so
    // early exit.
    return None;
  }

  if (APred == BPred)
    return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
  return None;
}

/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
/// false.  Otherwise, return None if we can't infer anything.  We expect the
/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
                                         const ICmpInst *RHS,
                                         const DataLayout &DL, bool LHSIsTrue,
                                         unsigned Depth) {
  // The LHS must be an 'or' or an 'and' instruction.
  assert((LHS->getOpcode() == Instruction::And ||
          LHS->getOpcode() == Instruction::Or) &&
         "Expected LHS to be 'and' or 'or'.");

  assert(Depth <= MaxDepth && "Hit recursion limit");

  // If the result of an 'or' is false, then we know both legs of the 'or' are
  // false.  Similarly, if the result of an 'and' is true, then we know both
  // legs of the 'and' are true.
  Value *ALHS, *ARHS;
  if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
      (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
    // FIXME: Make this non-recursion.
    if (Optional<bool> Implication =
            isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
      return Implication;
    if (Optional<bool> Implication =
            isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
      return Implication;
    return None;
  }
  return None;
}

Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
                                        const DataLayout &DL, bool LHSIsTrue,
                                        unsigned Depth) {
  // Bail out when we hit the limit.
  if (Depth == MaxDepth)
    return None;

  // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
  // example.
  if (LHS->getType() != RHS->getType())
    return None;

  Type *OpTy = LHS->getType();
  assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");

  // LHS ==> RHS by definition
  if (LHS == RHS)
    return LHSIsTrue;

  // FIXME: Extending the code below to handle vectors.
  if (OpTy->isVectorTy())
    return None;

  assert(OpTy->isIntegerTy(1) && "implied by above");

  // Both LHS and RHS are icmps.
  const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
  const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
  if (LHSCmp && RHSCmp)
    return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);

  // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
  // an icmp. FIXME: Add support for and/or on the RHS.
  const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
  if (LHSBO && RHSCmp) {
    if ((LHSBO->getOpcode() == Instruction::And ||
         LHSBO->getOpcode() == Instruction::Or))
      return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
  }
  return None;
}

Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
                                             const Instruction *ContextI,
                                             const DataLayout &DL) {
  assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
  if (!ContextI || !ContextI->getParent())
    return None;

  // TODO: This is a poor/cheap way to determine dominance. Should we use a
  // dominator tree (eg, from a SimplifyQuery) instead?
  const BasicBlock *ContextBB = ContextI->getParent();
  const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
  if (!PredBB)
    return None;

  // We need a conditional branch in the predecessor.
  Value *PredCond;
  BasicBlock *TrueBB, *FalseBB;
  if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
    return None;

  // The branch should get simplified. Don't bother simplifying this condition.
  if (TrueBB == FalseBB)
    return None;

  assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
         "Predecessor block does not point to successor?");

  // Is this condition implied by the predecessor condition?
  bool CondIsTrue = TrueBB == ContextBB;
  return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
}

static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
                              APInt &Upper, const InstrInfoQuery &IIQ) {
  unsigned Width = Lower.getBitWidth();
  const APInt *C;
  switch (BO.getOpcode()) {
  case Instruction::Add:
    if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
      // FIXME: If we have both nuw and nsw, we should reduce the range further.
      if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
        // 'add nuw x, C' produces [C, UINT_MAX].
        Lower = *C;
      } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
        if (C->isNegative()) {
          // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
          Lower = APInt::getSignedMinValue(Width);
          Upper = APInt::getSignedMaxValue(Width) + *C + 1;
        } else {
          // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
          Lower = APInt::getSignedMinValue(Width) + *C;
          Upper = APInt::getSignedMaxValue(Width) + 1;
        }
      }
    }
    break;

  case Instruction::And:
    if (match(BO.getOperand(1), m_APInt(C)))
      // 'and x, C' produces [0, C].
      Upper = *C + 1;
    break;

  case Instruction::Or:
    if (match(BO.getOperand(1), m_APInt(C)))
      // 'or x, C' produces [C, UINT_MAX].
      Lower = *C;
    break;

  case Instruction::AShr:
    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
      // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
      Lower = APInt::getSignedMinValue(Width).ashr(*C);
      Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
    } else if (match(BO.getOperand(0), m_APInt(C))) {
      unsigned ShiftAmount = Width - 1;
      if (!C->isNullValue() && IIQ.isExact(&BO))
        ShiftAmount = C->countTrailingZeros();
      if (C->isNegative()) {
        // 'ashr C, x' produces [C, C >> (Width-1)]
        Lower = *C;
        Upper = C->ashr(ShiftAmount) + 1;
      } else {
        // 'ashr C, x' produces [C >> (Width-1), C]
        Lower = C->ashr(ShiftAmount);
        Upper = *C + 1;
      }
    }
    break;

  case Instruction::LShr:
    if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
      // 'lshr x, C' produces [0, UINT_MAX >> C].
      Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
    } else if (match(BO.getOperand(0), m_APInt(C))) {
      // 'lshr C, x' produces [C >> (Width-1), C].
      unsigned ShiftAmount = Width - 1;
      if (!C->isNullValue() && IIQ.isExact(&BO))
        ShiftAmount = C->countTrailingZeros();
      Lower = C->lshr(ShiftAmount);
      Upper = *C + 1;
    }
    break;

  case Instruction::Shl:
    if (match(BO.getOperand(0), m_APInt(C))) {
      if (IIQ.hasNoUnsignedWrap(&BO)) {
        // 'shl nuw C, x' produces [C, C << CLZ(C)]
        Lower = *C;
        Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
      } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
        if (C->isNegative()) {
          // 'shl nsw C, x' produces [C << CLO(C)-1, C]
          unsigned ShiftAmount = C->countLeadingOnes() - 1;
          Lower = C->shl(ShiftAmount);
          Upper = *C + 1;
        } else {
          // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
          unsigned ShiftAmount = C->countLeadingZeros() - 1;
          Lower = *C;
          Upper = C->shl(ShiftAmount) + 1;
        }
      }
    }
    break;

  case Instruction::SDiv:
    if (match(BO.getOperand(1), m_APInt(C))) {
      APInt IntMin = APInt::getSignedMinValue(Width);
      APInt IntMax = APInt::getSignedMaxValue(Width);
      if (C->isAllOnesValue()) {
        // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
        //    where C != -1 and C != 0 and C != 1
        Lower = IntMin + 1;
        Upper = IntMax + 1;
      } else if (C->countLeadingZeros() < Width - 1) {
        // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
        //    where C != -1 and C != 0 and C != 1
        Lower = IntMin.sdiv(*C);
        Upper = IntMax.sdiv(*C);
        if (Lower.sgt(Upper))
          std::swap(Lower, Upper);
        Upper = Upper + 1;
        assert(Upper != Lower && "Upper part of range has wrapped!");
      }
    } else if (match(BO.getOperand(0), m_APInt(C))) {
      if (C->isMinSignedValue()) {
        // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
        Lower = *C;
        Upper = Lower.lshr(1) + 1;
      } else {
        // 'sdiv C, x' produces [-|C|, |C|].
        Upper = C->abs() + 1;
        Lower = (-Upper) + 1;
      }
    }
    break;

  case Instruction::UDiv:
    if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
      // 'udiv x, C' produces [0, UINT_MAX / C].
      Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
    } else if (match(BO.getOperand(0), m_APInt(C))) {
      // 'udiv C, x' produces [0, C].
      Upper = *C + 1;
    }
    break;

  case Instruction::SRem:
    if (match(BO.getOperand(1), m_APInt(C))) {
      // 'srem x, C' produces (-|C|, |C|).
      Upper = C->abs();
      Lower = (-Upper) + 1;
    }
    break;

  case Instruction::URem:
    if (match(BO.getOperand(1), m_APInt(C)))
      // 'urem x, C' produces [0, C).
      Upper = *C;
    break;

  default:
    break;
  }
}

static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
                                  APInt &Upper) {
  unsigned Width = Lower.getBitWidth();
  const APInt *C;
  switch (II.getIntrinsicID()) {
  case Intrinsic::uadd_sat:
    // uadd.sat(x, C) produces [C, UINT_MAX].
    if (match(II.getOperand(0), m_APInt(C)) ||
        match(II.getOperand(1), m_APInt(C)))
      Lower = *C;
    break;
  case Intrinsic::sadd_sat:
    if (match(II.getOperand(0), m_APInt(C)) ||
        match(II.getOperand(1), m_APInt(C))) {
      if (C->isNegative()) {
        // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
        Lower = APInt::getSignedMinValue(Width);
        Upper = APInt::getSignedMaxValue(Width) + *C + 1;
      } else {
        // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
        Lower = APInt::getSignedMinValue(Width) + *C;
        Upper = APInt::getSignedMaxValue(Width) + 1;
      }
    }
    break;
  case Intrinsic::usub_sat:
    // usub.sat(C, x) produces [0, C].
    if (match(II.getOperand(0), m_APInt(C)))
      Upper = *C + 1;
    // usub.sat(x, C) produces [0, UINT_MAX - C].
    else if (match(II.getOperand(1), m_APInt(C)))
      Upper = APInt::getMaxValue(Width) - *C + 1;
    break;
  case Intrinsic::ssub_sat:
    if (match(II.getOperand(0), m_APInt(C))) {
      if (C->isNegative()) {
        // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
        Lower = APInt::getSignedMinValue(Width);
        Upper = *C - APInt::getSignedMinValue(Width) + 1;
      } else {
        // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
        Lower = *C - APInt::getSignedMaxValue(Width);
        Upper = APInt::getSignedMaxValue(Width) + 1;
      }
    } else if (match(II.getOperand(1), m_APInt(C))) {
      if (C->isNegative()) {
        // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
        Lower = APInt::getSignedMinValue(Width) - *C;
        Upper = APInt::getSignedMaxValue(Width) + 1;
      } else {
        // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
        Lower = APInt::getSignedMinValue(Width);
        Upper = APInt::getSignedMaxValue(Width) - *C + 1;
      }
    }
    break;
  default:
    break;
  }
}

static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
                                      APInt &Upper, const InstrInfoQuery &IIQ) {
  const Value *LHS = nullptr, *RHS = nullptr;
  SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
  if (R.Flavor == SPF_UNKNOWN)
    return;

  unsigned BitWidth = SI.getType()->getScalarSizeInBits();

  if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
    // If the negation part of the abs (in RHS) has the NSW flag,
    // then the result of abs(X) is [0..SIGNED_MAX],
    // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
    Lower = APInt::getNullValue(BitWidth);
    if (match(RHS, m_Neg(m_Specific(LHS))) &&
        IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
    else
      Upper = APInt::getSignedMinValue(BitWidth) + 1;
    return;
  }

  if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
    // The result of -abs(X) is <= 0.
    Lower = APInt::getSignedMinValue(BitWidth);
    Upper = APInt(BitWidth, 1);
    return;
  }

  const APInt *C;
  if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
    return;

  switch (R.Flavor) {
    case SPF_UMIN:
      Upper = *C + 1;
      break;
    case SPF_UMAX:
      Lower = *C;
      break;
    case SPF_SMIN:
      Lower = APInt::getSignedMinValue(BitWidth);
      Upper = *C + 1;
      break;
    case SPF_SMAX:
      Lower = *C;
      Upper = APInt::getSignedMaxValue(BitWidth) + 1;
      break;
    default:
      break;
  }
}

ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
  assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");

  const APInt *C;
  if (match(V, m_APInt(C)))
    return ConstantRange(*C);

  InstrInfoQuery IIQ(UseInstrInfo);
  unsigned BitWidth = V->getType()->getScalarSizeInBits();
  APInt Lower = APInt(BitWidth, 0);
  APInt Upper = APInt(BitWidth, 0);
  if (auto *BO = dyn_cast<BinaryOperator>(V))
    setLimitsForBinOp(*BO, Lower, Upper, IIQ);
  else if (auto *II = dyn_cast<IntrinsicInst>(V))
    setLimitsForIntrinsic(*II, Lower, Upper);
  else if (auto *SI = dyn_cast<SelectInst>(V))
    setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);

  ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);

  if (auto *I = dyn_cast<Instruction>(V))
    if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
      CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));

  return CR;
}

static Optional<int64_t>
getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
  // Skip over the first indices.
  gep_type_iterator GTI = gep_type_begin(GEP);
  for (unsigned i = 1; i != Idx; ++i, ++GTI)
    /*skip along*/;

  // Compute the offset implied by the rest of the indices.
  int64_t Offset = 0;
  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (!OpC)
      return None;
    if (OpC->isZero())
      continue; // No offset.

    // Handle struct indices, which add their field offset to the pointer.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
      continue;
    }

    // Otherwise, we have a sequential type like an array or vector.  Multiply
    // the index by the ElementSize.
    uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    Offset += Size * OpC->getSExtValue();
  }

  return Offset;
}

Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
                                        const DataLayout &DL) {
  Ptr1 = Ptr1->stripPointerCasts();
  Ptr2 = Ptr2->stripPointerCasts();

  // Handle the trivial case first.
  if (Ptr1 == Ptr2) {
    return 0;
  }

  const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
  const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);

  // If one pointer is a GEP see if the GEP is a constant offset from the base,
  // as in "P" and "gep P, 1".
  // Also do this iteratively to handle the the following case:
  //   Ptr_t1 = GEP Ptr1, c1
  //   Ptr_t2 = GEP Ptr_t1, c2
  //   Ptr2 = GEP Ptr_t2, c3
  // where we will return c1+c2+c3.
  // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
  // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
  // are the same, and return the difference between offsets.
  auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
                                 const Value *Ptr) -> Optional<int64_t> {
    const GEPOperator *GEP_T = GEP;
    int64_t OffsetVal = 0;
    bool HasSameBase = false;
    while (GEP_T) {
      auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
      if (!Offset)
        return None;
      OffsetVal += *Offset;
      auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
      if (Op0 == Ptr) {
        HasSameBase = true;
        break;
      }
      GEP_T = dyn_cast<GEPOperator>(Op0);
    }
    if (!HasSameBase)
      return None;
    return OffsetVal;
  };

  if (GEP1) {
    auto Offset = getOffsetFromBase(GEP1, Ptr2);
    if (Offset)
      return -*Offset;
  }
  if (GEP2) {
    auto Offset = getOffsetFromBase(GEP2, Ptr1);
    if (Offset)
      return Offset;
  }

  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
  // base.  After that base, they may have some number of common (and
  // potentially variable) indices.  After that they handle some constant
  // offset, which determines their offset from each other.  At this point, we
  // handle no other case.
  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    return None;

  // Skip any common indices and track the GEP types.
  unsigned Idx = 1;
  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
      break;

  auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
  auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
  if (!Offset1 || !Offset2)
    return None;
  return *Offset2 - *Offset1;
}