InlineAsm.cpp
9.56 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//===- InlineAsm.cpp - Implement the InlineAsm class ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the InlineAsm class.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/InlineAsm.h"
#include "ConstantsContext.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdlib>
using namespace llvm;
InlineAsm::InlineAsm(FunctionType *FTy, const std::string &asmString,
const std::string &constraints, bool hasSideEffects,
bool isAlignStack, AsmDialect asmDialect)
: Value(PointerType::getUnqual(FTy), Value::InlineAsmVal),
AsmString(asmString), Constraints(constraints), FTy(FTy),
HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack),
Dialect(asmDialect) {
// Do various checks on the constraint string and type.
assert(Verify(getFunctionType(), constraints) &&
"Function type not legal for constraints!");
}
InlineAsm *InlineAsm::get(FunctionType *FTy, StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack, AsmDialect asmDialect) {
InlineAsmKeyType Key(AsmString, Constraints, FTy, hasSideEffects,
isAlignStack, asmDialect);
LLVMContextImpl *pImpl = FTy->getContext().pImpl;
return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(FTy), Key);
}
void InlineAsm::destroyConstant() {
getType()->getContext().pImpl->InlineAsms.remove(this);
delete this;
}
FunctionType *InlineAsm::getFunctionType() const {
return FTy;
}
/// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
StringRef::iterator I = Str.begin(), E = Str.end();
unsigned multipleAlternativeCount = Str.count('|') + 1;
unsigned multipleAlternativeIndex = 0;
ConstraintCodeVector *pCodes = &Codes;
// Initialize
isMultipleAlternative = multipleAlternativeCount > 1;
if (isMultipleAlternative) {
multipleAlternatives.resize(multipleAlternativeCount);
pCodes = &multipleAlternatives[0].Codes;
}
Type = isInput;
isEarlyClobber = false;
MatchingInput = -1;
isCommutative = false;
isIndirect = false;
currentAlternativeIndex = 0;
// Parse prefixes.
if (*I == '~') {
Type = isClobber;
++I;
// '{' must immediately follow '~'.
if (I != E && *I != '{')
return true;
} else if (*I == '=') {
++I;
Type = isOutput;
}
if (*I == '*') {
isIndirect = true;
++I;
}
if (I == E) return true; // Just a prefix, like "==" or "~".
// Parse the modifiers.
bool DoneWithModifiers = false;
while (!DoneWithModifiers) {
switch (*I) {
default:
DoneWithModifiers = true;
break;
case '&': // Early clobber.
if (Type != isOutput || // Cannot early clobber anything but output.
isEarlyClobber) // Reject &&&&&&
return true;
isEarlyClobber = true;
break;
case '%': // Commutative.
if (Type == isClobber || // Cannot commute clobbers.
isCommutative) // Reject %%%%%
return true;
isCommutative = true;
break;
case '#': // Comment.
case '*': // Register preferencing.
return true; // Not supported.
}
if (!DoneWithModifiers) {
++I;
if (I == E) return true; // Just prefixes and modifiers!
}
}
// Parse the various constraints.
while (I != E) {
if (*I == '{') { // Physical register reference.
// Find the end of the register name.
StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
if (ConstraintEnd == E) return true; // "{foo"
pCodes->push_back(StringRef(I, ConstraintEnd+1 - I));
I = ConstraintEnd+1;
} else if (isdigit(static_cast<unsigned char>(*I))) { // Matching Constraint
// Maximal munch numbers.
StringRef::iterator NumStart = I;
while (I != E && isdigit(static_cast<unsigned char>(*I)))
++I;
pCodes->push_back(StringRef(NumStart, I - NumStart));
unsigned N = atoi(pCodes->back().c_str());
// Check that this is a valid matching constraint!
if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
Type != isInput)
return true; // Invalid constraint number.
// If Operand N already has a matching input, reject this. An output
// can't be constrained to the same value as multiple inputs.
if (isMultipleAlternative) {
if (multipleAlternativeIndex >=
ConstraintsSoFar[N].multipleAlternatives.size())
return true;
InlineAsm::SubConstraintInfo &scInfo =
ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
if (scInfo.MatchingInput != -1)
return true;
// Note that operand #n has a matching input.
scInfo.MatchingInput = ConstraintsSoFar.size();
assert(scInfo.MatchingInput >= 0);
} else {
if (ConstraintsSoFar[N].hasMatchingInput() &&
(size_t)ConstraintsSoFar[N].MatchingInput !=
ConstraintsSoFar.size())
return true;
// Note that operand #n has a matching input.
ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
assert(ConstraintsSoFar[N].MatchingInput >= 0);
}
} else if (*I == '|') {
multipleAlternativeIndex++;
pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
++I;
} else if (*I == '^') {
// Multi-letter constraint
// FIXME: For now assuming these are 2-character constraints.
pCodes->push_back(StringRef(I+1, 2));
I += 3;
} else if (*I == '@') {
// Multi-letter constraint
++I;
unsigned char C = static_cast<unsigned char>(*I);
assert(isdigit(C) && "Expected a digit!");
int N = C - '0';
assert(N > 0 && "Found a zero letter constraint!");
++I;
pCodes->push_back(StringRef(I, N));
I += N;
} else {
// Single letter constraint.
pCodes->push_back(StringRef(I, 1));
++I;
}
}
return false;
}
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
if (index < multipleAlternatives.size()) {
currentAlternativeIndex = index;
InlineAsm::SubConstraintInfo &scInfo =
multipleAlternatives[currentAlternativeIndex];
MatchingInput = scInfo.MatchingInput;
Codes = scInfo.Codes;
}
}
InlineAsm::ConstraintInfoVector
InlineAsm::ParseConstraints(StringRef Constraints) {
ConstraintInfoVector Result;
// Scan the constraints string.
for (StringRef::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ) {
ConstraintInfo Info;
// Find the end of this constraint.
StringRef::iterator ConstraintEnd = std::find(I, E, ',');
if (ConstraintEnd == I || // Empty constraint like ",,"
Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
Result.clear(); // Erroneous constraint?
break;
}
Result.push_back(Info);
// ConstraintEnd may be either the next comma or the end of the string. In
// the former case, we skip the comma.
I = ConstraintEnd;
if (I != E) {
++I;
if (I == E) {
Result.clear();
break;
} // don't allow "xyz,"
}
}
return Result;
}
/// Verify - Verify that the specified constraint string is reasonable for the
/// specified function type, and otherwise validate the constraint string.
bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
if (Ty->isVarArg()) return false;
ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
// Error parsing constraints.
if (Constraints.empty() && !ConstStr.empty()) return false;
unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
unsigned NumIndirect = 0;
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
switch (Constraints[i].Type) {
case InlineAsm::isOutput:
if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
return false; // outputs before inputs and clobbers.
if (!Constraints[i].isIndirect) {
++NumOutputs;
break;
}
++NumIndirect;
LLVM_FALLTHROUGH; // We fall through for Indirect Outputs.
case InlineAsm::isInput:
if (NumClobbers) return false; // inputs before clobbers.
++NumInputs;
break;
case InlineAsm::isClobber:
++NumClobbers;
break;
}
}
switch (NumOutputs) {
case 0:
if (!Ty->getReturnType()->isVoidTy()) return false;
break;
case 1:
if (Ty->getReturnType()->isStructTy()) return false;
break;
default:
StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
if (!STy || STy->getNumElements() != NumOutputs)
return false;
break;
}
if (Ty->getNumParams() != NumInputs) return false;
return true;
}