InstrBuilder.cpp 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstrBuilder interface.
///
//===----------------------------------------------------------------------===//

#include "llvm/MCA/InstrBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "llvm-mca"

namespace llvm {
namespace mca {

InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
                           const llvm::MCInstrInfo &mcii,
                           const llvm::MCRegisterInfo &mri,
                           const llvm::MCInstrAnalysis *mcia)
    : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
      FirstReturnInst(true) {
  const MCSchedModel &SM = STI.getSchedModel();
  ProcResourceMasks.resize(SM.getNumProcResourceKinds());
  computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
}

static void initializeUsedResources(InstrDesc &ID,
                                    const MCSchedClassDesc &SCDesc,
                                    const MCSubtargetInfo &STI,
                                    ArrayRef<uint64_t> ProcResourceMasks) {
  const MCSchedModel &SM = STI.getSchedModel();

  // Populate resources consumed.
  using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
  std::vector<ResourcePlusCycles> Worklist;

  // Track cycles contributed by resources that are in a "Super" relationship.
  // This is required if we want to correctly match the behavior of method
  // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
  // of "consumed" processor resources and resource cycles, the logic in
  // ExpandProcResource() doesn't update the number of resource cycles
  // contributed by a "Super" resource to a group.
  // We need to take this into account when we find that a processor resource is
  // part of a group, and it is also used as the "Super" of other resources.
  // This map stores the number of cycles contributed by sub-resources that are
  // part of a "Super" resource. The key value is the "Super" resource mask ID.
  DenseMap<uint64_t, unsigned> SuperResources;

  unsigned NumProcResources = SM.getNumProcResourceKinds();
  APInt Buffers(NumProcResources, 0);

  bool AllInOrderResources = true;
  bool AnyDispatchHazards = false;
  for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
    const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
    const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
    if (!PRE->Cycles) {
#ifndef NDEBUG
      WithColor::warning()
          << "Ignoring invalid write of zero cycles on processor resource "
          << PR.Name << "\n";
      WithColor::note() << "found in scheduling class " << SCDesc.Name
                        << " (write index #" << I << ")\n";
#endif
      continue;
    }

    uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
    if (PR.BufferSize < 0) {
      AllInOrderResources = false;
    } else {
      Buffers.setBit(getResourceStateIndex(Mask));
      AnyDispatchHazards |= (PR.BufferSize == 0);
      AllInOrderResources &= (PR.BufferSize <= 1);
    }

    CycleSegment RCy(0, PRE->Cycles, false);
    Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
    if (PR.SuperIdx) {
      uint64_t Super = ProcResourceMasks[PR.SuperIdx];
      SuperResources[Super] += PRE->Cycles;
    }
  }

  ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;

  // Sort elements by mask popcount, so that we prioritize resource units over
  // resource groups, and smaller groups over larger groups.
  sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
    unsigned popcntA = countPopulation(A.first);
    unsigned popcntB = countPopulation(B.first);
    if (popcntA < popcntB)
      return true;
    if (popcntA > popcntB)
      return false;
    return A.first < B.first;
  });

  uint64_t UsedResourceUnits = 0;
  uint64_t UsedResourceGroups = 0;

  // Remove cycles contributed by smaller resources.
  for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
    ResourcePlusCycles &A = Worklist[I];
    if (!A.second.size()) {
      assert(countPopulation(A.first) > 1 && "Expected a group!");
      UsedResourceGroups |= PowerOf2Floor(A.first);
      continue;
    }

    ID.Resources.emplace_back(A);
    uint64_t NormalizedMask = A.first;
    if (countPopulation(A.first) == 1) {
      UsedResourceUnits |= A.first;
    } else {
      // Remove the leading 1 from the resource group mask.
      NormalizedMask ^= PowerOf2Floor(NormalizedMask);
      UsedResourceGroups |= (A.first ^ NormalizedMask);
    }

    for (unsigned J = I + 1; J < E; ++J) {
      ResourcePlusCycles &B = Worklist[J];
      if ((NormalizedMask & B.first) == NormalizedMask) {
        B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
        if (countPopulation(B.first) > 1)
          B.second.NumUnits++;
      }
    }
  }

  // A SchedWrite may specify a number of cycles in which a resource group
  // is reserved. For example (on target x86; cpu Haswell):
  //
  //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
  //    let ResourceCycles = [2, 2, 3];
  //  }
  //
  // This means:
  // Resource units HWPort0 and HWPort1 are both used for 2cy.
  // Resource group HWPort01 is the union of HWPort0 and HWPort1.
  // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
  // will not be usable for 2 entire cycles from instruction issue.
  //
  // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
  // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
  // extra delay on top of the 2 cycles latency.
  // During those extra cycles, HWPort01 is not usable by other instructions.
  for (ResourcePlusCycles &RPC : ID.Resources) {
    if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
      // Remove the leading 1 from the resource group mask.
      uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
      if ((Mask & UsedResourceUnits) == Mask)
        RPC.second.setReserved();
    }
  }

  // Identify extra buffers that are consumed through super resources.
  for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
    for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
      const MCProcResourceDesc &PR = *SM.getProcResource(I);
      if (PR.BufferSize == -1)
        continue;

      uint64_t Mask = ProcResourceMasks[I];
      if (Mask != SR.first && ((Mask & SR.first) == SR.first))
        Buffers.setBit(getResourceStateIndex(Mask));
    }
  }

  ID.UsedBuffers = Buffers.getZExtValue();
  ID.UsedProcResUnits = UsedResourceUnits;
  ID.UsedProcResGroups = UsedResourceGroups;

  LLVM_DEBUG({
    for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
      dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
             << "Reserved=" << R.second.isReserved() << ", "
             << "#Units=" << R.second.NumUnits << ", "
             << "cy=" << R.second.size() << '\n';
    uint64_t BufferIDs = ID.UsedBuffers;
    while (BufferIDs) {
      uint64_t Current = BufferIDs & (-BufferIDs);
      dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
      BufferIDs ^= Current;
    }
    dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
    dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
           << '\n';
  });
}

static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
                              const MCSchedClassDesc &SCDesc,
                              const MCSubtargetInfo &STI) {
  if (MCDesc.isCall()) {
    // We cannot estimate how long this call will take.
    // Artificially set an arbitrarily high latency (100cy).
    ID.MaxLatency = 100U;
    return;
  }

  int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
  // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
  ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
}

static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
  // Count register definitions, and skip non register operands in the process.
  unsigned I, E;
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
    const MCOperand &Op = MCI.getOperand(I);
    if (Op.isReg())
      --NumExplicitDefs;
  }

  if (NumExplicitDefs) {
    return make_error<InstructionError<MCInst>>(
        "Expected more register operand definitions.", MCI);
  }

  if (MCDesc.hasOptionalDef()) {
    // Always assume that the optional definition is the last operand.
    const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
    if (I == MCI.getNumOperands() || !Op.isReg()) {
      std::string Message =
          "expected a register operand for an optional definition. Instruction "
          "has not been correctly analyzed.";
      return make_error<InstructionError<MCInst>>(Message, MCI);
    }
  }

  return ErrorSuccess();
}

void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
                                  unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  const MCSchedModel &SM = STI.getSchedModel();
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);

  // Assumptions made by this algorithm:
  //  1. The number of explicit and implicit register definitions in a MCInst
  //     matches the number of explicit and implicit definitions according to
  //     the opcode descriptor (MCInstrDesc).
  //  2. Uses start at index #(MCDesc.getNumDefs()).
  //  3. There can only be a single optional register definition, an it is
  //     always the last operand of the sequence (excluding extra operands
  //     contributed by variadic opcodes).
  //
  // These assumptions work quite well for most out-of-order in-tree targets
  // like x86. This is mainly because the vast majority of instructions is
  // expanded to MCInst using a straightforward lowering logic that preserves
  // the ordering of the operands.
  //
  // About assumption 1.
  // The algorithm allows non-register operands between register operand
  // definitions. This helps to handle some special ARM instructions with
  // implicit operand increment (-mtriple=armv7):
  //
  // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
  //                             @  <MCOperand Reg:59>
  //                             @  <MCOperand Imm:0>     (!!)
  //                             @  <MCOperand Reg:67>
  //                             @  <MCOperand Imm:0>
  //                             @  <MCOperand Imm:14>
  //                             @  <MCOperand Reg:0>>
  //
  // MCDesc reports:
  //  6 explicit operands.
  //  1 optional definition
  //  2 explicit definitions (!!)
  //
  // The presence of an 'Imm' operand between the two register definitions
  // breaks the assumption that "register definitions are always at the
  // beginning of the operand sequence".
  //
  // To workaround this issue, this algorithm ignores (i.e. skips) any
  // non-register operands between register definitions.  The optional
  // definition is still at index #(NumOperands-1).
  //
  // According to assumption 2. register reads start at #(NumExplicitDefs-1).
  // That means, register R1 from the example is both read and written.
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
  unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
  unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
  if (MCDesc.hasOptionalDef())
    TotalDefs++;

  unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
  ID.Writes.resize(TotalDefs + NumVariadicOps);
  // Iterate over the operands list, and skip non-register operands.
  // The first NumExplicitDefs register operands are expected to be register
  // definitions.
  unsigned CurrentDef = 0;
  unsigned i = 0;
  for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (!Op.isReg())
      continue;

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = i;
    if (CurrentDef < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }
    Write.IsOptionalDef = false;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
    CurrentDef++;
  }

  assert(CurrentDef == NumExplicitDefs &&
         "Expected more register operand definitions.");
  for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
    unsigned Index = NumExplicitDefs + CurrentDef;
    WriteDescriptor &Write = ID.Writes[Index];
    Write.OpIndex = ~CurrentDef;
    Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
    if (Index < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, Index);
      // Conservatively default to MaxLatency.
      Write.Latency =
          WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }

    Write.IsOptionalDef = false;
    assert(Write.RegisterID != 0 && "Expected a valid phys register!");
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
             << ", PhysReg=" << MRI.getName(Write.RegisterID)
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  if (MCDesc.hasOptionalDef()) {
    WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
    Write.OpIndex = MCDesc.getNumOperands() - 1;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = true;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  if (!NumVariadicOps)
    return;

  // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
  // "unmodeledSideEffects', then this logic optimistically assumes that any
  // extra register operands in the variadic sequence is not a register
  // definition.
  //
  // Otherwise, we conservatively assume that any register operand from the
  // variadic sequence is both a register read and a register write.
  bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
                        !MCDesc.hasUnmodeledSideEffects();
  CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
  for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
       I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = OpIndex;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = false;
    ++CurrentDef;
    LLVM_DEBUG({
      dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
             << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
  }

  ID.Writes.resize(CurrentDef);
}

void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
                                 unsigned SchedClassID) {
  const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
  unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
  unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
  // Remove the optional definition.
  if (MCDesc.hasOptionalDef())
    --NumExplicitUses;
  unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
  unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
  ID.Reads.resize(TotalUses);
  unsigned CurrentUse = 0;
  for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
       ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = OpIndex;
    Read.UseIndex = I;
    Read.SchedClassID = SchedClassID;
    ++CurrentUse;
    LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << '\n');
  }

  // For the purpose of ReadAdvance, implicit uses come directly after explicit
  // uses. The "UseIndex" must be updated according to that implicit layout.
  for (unsigned I = 0; I < NumImplicitUses; ++I) {
    ReadDescriptor &Read = ID.Reads[CurrentUse + I];
    Read.OpIndex = ~I;
    Read.UseIndex = NumExplicitUses + I;
    Read.RegisterID = MCDesc.getImplicitUses()[I];
    Read.SchedClassID = SchedClassID;
    LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << ", RegisterID="
                      << MRI.getName(Read.RegisterID) << '\n');
  }

  CurrentUse += NumImplicitUses;

  // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
  // "unmodeledSideEffects", then this logic optimistically assumes that any
  // extra register operand in the variadic sequence is not a register
  // definition.
  bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
                        !MCDesc.hasUnmodeledSideEffects();
  for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
       I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
    const MCOperand &Op = MCI.getOperand(OpIndex);
    if (!Op.isReg())
      continue;

    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = OpIndex;
    Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
    Read.SchedClassID = SchedClassID;
    ++CurrentUse;
    LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
                      << ", UseIndex=" << Read.UseIndex << '\n');
  }

  ID.Reads.resize(CurrentUse);
}

Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
                                    const MCInst &MCI) const {
  if (ID.NumMicroOps != 0)
    return ErrorSuccess();

  bool UsesMemory = ID.MayLoad || ID.MayStore;
  bool UsesBuffers = ID.UsedBuffers;
  bool UsesResources = !ID.Resources.empty();
  if (!UsesMemory && !UsesBuffers && !UsesResources)
    return ErrorSuccess();

  StringRef Message;
  if (UsesMemory) {
    Message = "found an inconsistent instruction that decodes "
              "into zero opcodes and that consumes load/store "
              "unit resources.";
  } else {
    Message = "found an inconsistent instruction that decodes "
              "to zero opcodes and that consumes scheduler "
              "resources.";
  }

  return make_error<InstructionError<MCInst>>(Message, MCI);
}

Expected<const InstrDesc &>
InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
  assert(STI.getSchedModel().hasInstrSchedModel() &&
         "Itineraries are not yet supported!");

  // Obtain the instruction descriptor from the opcode.
  unsigned short Opcode = MCI.getOpcode();
  const MCInstrDesc &MCDesc = MCII.get(Opcode);
  const MCSchedModel &SM = STI.getSchedModel();

  // Then obtain the scheduling class information from the instruction.
  unsigned SchedClassID = MCDesc.getSchedClass();
  bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();

  // Try to solve variant scheduling classes.
  if (IsVariant) {
    unsigned CPUID = SM.getProcessorID();
    while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
      SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);

    if (!SchedClassID) {
      return make_error<InstructionError<MCInst>>(
          "unable to resolve scheduling class for write variant.", MCI);
    }
  }

  // Check if this instruction is supported. Otherwise, report an error.
  const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
  if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
    return make_error<InstructionError<MCInst>>(
        "found an unsupported instruction in the input assembly sequence.",
        MCI);
  }

  LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
  LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');

  // Create a new empty descriptor.
  std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
  ID->NumMicroOps = SCDesc.NumMicroOps;
  ID->SchedClassID = SchedClassID;

  if (MCDesc.isCall() && FirstCallInst) {
    // We don't correctly model calls.
    WithColor::warning() << "found a call in the input assembly sequence.\n";
    WithColor::note() << "call instructions are not correctly modeled. "
                      << "Assume a latency of 100cy.\n";
    FirstCallInst = false;
  }

  if (MCDesc.isReturn() && FirstReturnInst) {
    WithColor::warning() << "found a return instruction in the input"
                         << " assembly sequence.\n";
    WithColor::note() << "program counter updates are ignored.\n";
    FirstReturnInst = false;
  }

  ID->MayLoad = MCDesc.mayLoad();
  ID->MayStore = MCDesc.mayStore();
  ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
  ID->BeginGroup = SCDesc.BeginGroup;
  ID->EndGroup = SCDesc.EndGroup;

  initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
  computeMaxLatency(*ID, MCDesc, SCDesc, STI);

  if (Error Err = verifyOperands(MCDesc, MCI))
    return std::move(Err);

  populateWrites(*ID, MCI, SchedClassID);
  populateReads(*ID, MCI, SchedClassID);

  LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
  LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');

  // Sanity check on the instruction descriptor.
  if (Error Err = verifyInstrDesc(*ID, MCI))
    return std::move(Err);

  // Now add the new descriptor.
  bool IsVariadic = MCDesc.isVariadic();
  if (!IsVariadic && !IsVariant) {
    Descriptors[MCI.getOpcode()] = std::move(ID);
    return *Descriptors[MCI.getOpcode()];
  }

  VariantDescriptors[&MCI] = std::move(ID);
  return *VariantDescriptors[&MCI];
}

Expected<const InstrDesc &>
InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
  if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
    return *Descriptors[MCI.getOpcode()];

  if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
    return *VariantDescriptors[&MCI];

  return createInstrDescImpl(MCI);
}

Expected<std::unique_ptr<Instruction>>
InstrBuilder::createInstruction(const MCInst &MCI) {
  Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
  if (!DescOrErr)
    return DescOrErr.takeError();
  const InstrDesc &D = *DescOrErr;
  std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);

  // Check if this is a dependency breaking instruction.
  APInt Mask;

  bool IsZeroIdiom = false;
  bool IsDepBreaking = false;
  if (MCIA) {
    unsigned ProcID = STI.getSchedModel().getProcessorID();
    IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
    IsDepBreaking =
        IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
    if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
      NewIS->setOptimizableMove();
  }

  // Initialize Reads first.
  MCPhysReg RegID = 0;
  for (const ReadDescriptor &RD : D.Reads) {
    if (!RD.isImplicitRead()) {
      // explicit read.
      const MCOperand &Op = MCI.getOperand(RD.OpIndex);
      // Skip non-register operands.
      if (!Op.isReg())
        continue;
      RegID = Op.getReg();
    } else {
      // Implicit read.
      RegID = RD.RegisterID;
    }

    // Skip invalid register operands.
    if (!RegID)
      continue;

    // Okay, this is a register operand. Create a ReadState for it.
    NewIS->getUses().emplace_back(RD, RegID);
    ReadState &RS = NewIS->getUses().back();

    if (IsDepBreaking) {
      // A mask of all zeroes means: explicit input operands are not
      // independent.
      if (Mask.isNullValue()) {
        if (!RD.isImplicitRead())
          RS.setIndependentFromDef();
      } else {
        // Check if this register operand is independent according to `Mask`.
        // Note that Mask may not have enough bits to describe all explicit and
        // implicit input operands. If this register operand doesn't have a
        // corresponding bit in Mask, then conservatively assume that it is
        // dependent.
        if (Mask.getBitWidth() > RD.UseIndex) {
          // Okay. This map describe register use `RD.UseIndex`.
          if (Mask[RD.UseIndex])
            RS.setIndependentFromDef();
        }
      }
    }
  }

  // Early exit if there are no writes.
  if (D.Writes.empty())
    return std::move(NewIS);

  // Track register writes that implicitly clear the upper portion of the
  // underlying super-registers using an APInt.
  APInt WriteMask(D.Writes.size(), 0);

  // Now query the MCInstrAnalysis object to obtain information about which
  // register writes implicitly clear the upper portion of a super-register.
  if (MCIA)
    MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);

  // Initialize writes.
  unsigned WriteIndex = 0;
  for (const WriteDescriptor &WD : D.Writes) {
    RegID = WD.isImplicitWrite() ? WD.RegisterID
                                 : MCI.getOperand(WD.OpIndex).getReg();
    // Check if this is a optional definition that references NoReg.
    if (WD.IsOptionalDef && !RegID) {
      ++WriteIndex;
      continue;
    }

    assert(RegID && "Expected a valid register ID!");
    NewIS->getDefs().emplace_back(WD, RegID,
                                  /* ClearsSuperRegs */ WriteMask[WriteIndex],
                                  /* WritesZero */ IsZeroIdiom);
    ++WriteIndex;
  }

  return std::move(NewIS);
}
} // namespace mca
} // namespace llvm