AMDGPUCallLowering.cpp
25.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"
using namespace llvm;
namespace {
struct OutgoingValueHandler : public CallLowering::ValueHandler {
OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
MachineInstrBuilder MIB;
bool isIncomingArgumentHandler() const override { return false; }
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
llvm_unreachable("not implemented");
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
llvm_unreachable("not implemented");
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
Register ExtReg;
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to
// extend and do a 32-bit copy to avoid the verifier complaining about it.
ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
} else
ExtReg = extendRegister(ValVReg, VA);
MIRBuilder.buildCopy(PhysReg, ExtReg);
MIB.addUse(PhysReg, RegState::Implicit);
}
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info,
ISD::ArgFlagsTy Flags,
CCState &State) override {
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
}
};
struct IncomingArgHandler : public CallLowering::ValueHandler {
uint64_t StackUsed = 0;
IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: ValueHandler(B, MRI, AssignFn) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
int FI = MFI.CreateFixedObject(Size, Offset, true);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
Register AddrReg = MRI.createGenericVirtualRegister(
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
MIRBuilder.buildFrameIndex(AddrReg, FI);
StackUsed = std::max(StackUsed, Size + Offset);
return AddrReg;
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
markPhysRegUsed(PhysReg);
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to do
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
return;
}
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::SExt:
case CCValAssign::LocInfo::ZExt:
case CCValAssign::LocInfo::AExt: {
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
break;
}
default:
MIRBuilder.buildCopy(ValVReg, PhysReg);
break;
}
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
// FIXME: Get alignment
auto MMO = MIRBuilder.getMF().getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
// FIXME: What is the point of this being a callback?
bool isIncomingArgumentHandler() const override { return true; }
};
struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: IncomingArgHandler(B, MRI, AssignFn) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
}
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
: CallLowering(&TLI) {
}
void AMDGPUCallLowering::splitToValueTypes(
const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
SplitArgTy PerformArgSplit) const {
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
if (OrigArg.Ty->isVoidTy())
return;
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
assert(OrigArg.Regs.size() == SplitVTs.size());
int SplitIdx = 0;
for (EVT VT : SplitVTs) {
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
Type *Ty = VT.getTypeForEVT(Ctx);
if (NumParts == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
OrigArg.Flags, OrigArg.IsFixed);
++SplitIdx;
continue;
}
LLT LLTy = getLLTForType(*Ty, DL);
SmallVector<Register, 8> SplitRegs;
EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
Type *PartTy = PartVT.getTypeForEVT(Ctx);
LLT PartLLT = getLLTForType(*PartTy, DL);
// FIXME: Should we be reporting all of the part registers for a single
// argument, and let handleAssignments take care of the repacking?
for (unsigned i = 0; i < NumParts; ++i) {
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
SplitRegs.push_back(PartReg);
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
}
PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
++SplitIdx;
}
}
// Get the appropriate type to make \p OrigTy \p Factor times bigger.
static LLT getMultipleType(LLT OrigTy, int Factor) {
if (OrigTy.isVector()) {
return LLT::vector(OrigTy.getNumElements() * Factor,
OrigTy.getElementType());
}
return LLT::scalar(OrigTy.getSizeInBits() * Factor);
}
// TODO: Move to generic code
static void unpackRegsToOrigType(MachineIRBuilder &B,
ArrayRef<Register> DstRegs,
Register SrcReg,
LLT SrcTy,
LLT PartTy) {
assert(DstRegs.size() > 1 && "Nothing to unpack");
MachineFunction &MF = B.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
const unsigned SrcSize = SrcTy.getSizeInBits();
const unsigned PartSize = PartTy.getSizeInBits();
if (SrcTy.isVector() && !PartTy.isVector() &&
PartSize > SrcTy.getElementType().getSizeInBits()) {
// Vector was scalarized, and the elements extended.
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
SrcReg);
for (int i = 0, e = DstRegs.size(); i != e; ++i)
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
return;
}
if (SrcSize % PartSize == 0) {
B.buildUnmerge(DstRegs, SrcReg);
return;
}
const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
auto ImpDef = B.buildUndef(BigTy);
Register BigReg = MRI.createGenericVirtualRegister(BigTy);
B.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);
int64_t Offset = 0;
for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
B.buildExtract(DstRegs[i], BigReg, Offset);
}
/// Lower the return value for the already existing \p Ret. This assumes that
/// \p B's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
const Value *Val, ArrayRef<Register> VRegs,
MachineInstrBuilder &Ret) const {
if (!Val)
return true;
auto &MF = B.getMF();
const auto &F = MF.getFunction();
const DataLayout &DL = MF.getDataLayout();
CallingConv::ID CC = F.getCallingConv();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
MachineRegisterInfo &MRI = MF.getRegInfo();
ArgInfo OrigRetInfo(VRegs, Val->getType());
setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
SmallVector<ArgInfo, 4> SplitRetInfos;
splitToValueTypes(
OrigRetInfo, SplitRetInfos, DL, MRI, CC,
[&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
});
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
return handleAssignments(B, SplitRetInfos, RetHandler);
}
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
const Value *Val,
ArrayRef<Register> VRegs) const {
MachineFunction &MF = B.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MFI->setIfReturnsVoid(!Val);
assert(!Val == VRegs.empty() && "Return value without a vreg");
CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
const bool IsShader = AMDGPU::isShader(CC);
const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
AMDGPU::isKernel(CC);
if (IsWaveEnd) {
B.buildInstr(AMDGPU::S_ENDPGM)
.addImm(0);
return true;
}
auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();
unsigned ReturnOpc =
IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
auto Ret = B.buildInstrNoInsert(ReturnOpc);
Register ReturnAddrVReg;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
Ret.addUse(ReturnAddrVReg);
}
if (!lowerReturnVal(B, Val, VRegs, Ret))
return false;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
&AMDGPU::SGPR_64RegClass);
B.buildCopy(ReturnAddrVReg, LiveInReturn);
}
// TODO: Handle CalleeSavedRegsViaCopy.
B.insertInstr(Ret);
return true;
}
Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
Type *ParamTy,
uint64_t Offset) const {
MachineFunction &MF = B.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
LLT PtrType = getLLTForType(*PtrTy, DL);
Register DstReg = MRI.createGenericVirtualRegister(PtrType);
Register KernArgSegmentPtr =
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
B.buildConstant(OffsetReg, Offset);
B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
return DstReg;
}
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
Type *ParamTy, uint64_t Offset,
unsigned Align,
Register DstReg) const {
MachineFunction &MF = B.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
TypeSize, Align);
B.buildLoad(DstReg, PtrReg, *MMO);
}
// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
MachineIRBuilder &B,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info.hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info.hasDispatchPtr()) {
unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info.hasQueuePtr()) {
unsigned QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info.hasKernargSegmentPtr()) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register VReg = MRI.createGenericVirtualRegister(P4);
MRI.addLiveIn(InputPtrReg, VReg);
B.getMBB().addLiveIn(InputPtrReg);
B.buildCopy(VReg, InputPtrReg);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info.hasDispatchID()) {
unsigned DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (Info.hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
MachineIRBuilder &B, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
MachineFunction &MF = B.getMF();
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
unsigned i = 0;
const unsigned KernArgBaseAlign = 16;
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
uint64_t ExplicitArgOffset = 0;
// TODO: Align down to dword alignment and extract bits for extending loads.
for (auto &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
if (AllocSize == 0)
continue;
unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
ArrayRef<Register> OrigArgRegs = VRegs[i];
Register ArgReg =
OrigArgRegs.size() == 1
? OrigArgRegs[0]
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
if (OrigArgRegs.size() > 1)
unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
++i;
}
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
return true;
}
// TODO: Move this to generic code
static void packSplitRegsToOrigType(MachineIRBuilder &B,
ArrayRef<Register> OrigRegs,
ArrayRef<Register> Regs,
LLT LLTy,
LLT PartLLT) {
if (!LLTy.isVector() && !PartLLT.isVector()) {
B.buildMerge(OrigRegs[0], Regs);
return;
}
if (LLTy.isVector() && PartLLT.isVector()) {
assert(LLTy.getElementType() == PartLLT.getElementType());
int DstElts = LLTy.getNumElements();
int PartElts = PartLLT.getNumElements();
if (DstElts % PartElts == 0)
B.buildConcatVectors(OrigRegs[0], Regs);
else {
// Deal with v3s16 split into v2s16
assert(PartElts == 2 && DstElts % 2 != 0);
int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
auto RoundedConcat = B.buildConcatVectors(RoundedDestTy, Regs);
B.buildExtract(OrigRegs[0], RoundedConcat, 0);
}
return;
}
MachineRegisterInfo &MRI = *B.getMRI();
assert(LLTy.isVector() && !PartLLT.isVector());
LLT DstEltTy = LLTy.getElementType();
// Pointer information was discarded. We'll need to coerce some register types
// to avoid violating type constraints.
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
if (DstEltTy == PartLLT) {
// Vector was trivially scalarized.
if (RealDstEltTy.isPointer()) {
for (Register Reg : Regs)
MRI.setType(Reg, RealDstEltTy);
}
B.buildBuildVector(OrigRegs[0], Regs);
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
// Deal with vector with 64-bit elements decomposed to 32-bit
// registers. Need to create intermediate 64-bit elements.
SmallVector<Register, 8> EltMerges;
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
// Fix the type in case this is really a vector of pointers.
MRI.setType(Merge.getReg(0), RealDstEltTy);
EltMerges.push_back(Merge.getReg(0));
Regs = Regs.drop_front(PartsPerElt);
}
B.buildBuildVector(OrigRegs[0], EltMerges);
} else {
// Vector was split, and elements promoted to a wider type.
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
auto BV = B.buildBuildVector(BVType, Regs);
B.buildTrunc(OrigRegs[0], BV);
}
}
bool AMDGPUCallLowering::lowerFormalArguments(
MachineIRBuilder &B, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
CallingConv::ID CC = F.getCallingConv();
// The infrastructure for normal calling convention lowering is essentially
// useless for kernels. We want to avoid any kind of legalization or argument
// splitting.
if (CC == CallingConv::AMDGPU_KERNEL)
return lowerFormalArgumentsKernel(B, F, VRegs);
const bool IsShader = AMDGPU::isShader(CC);
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
MachineFunction &MF = B.getMF();
MachineBasicBlock &MBB = B.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
if (!IsEntryFunc) {
Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
&AMDGPU::SGPR_64RegClass);
MBB.addLiveIn(ReturnAddrReg);
B.buildCopy(LiveInReturn, ReturnAddrReg);
}
if (Info->hasImplicitBufferPtr()) {
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
SmallVector<ArgInfo, 32> SplitArgs;
unsigned Idx = 0;
unsigned PSInputNum = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()) == 0)
continue;
const bool InReg = Arg.hasAttribute(Attribute::InReg);
// SGPR arguments to functions not implemented.
if (!IsShader && InReg)
return false;
if (Arg.hasAttribute(Attribute::SwiftSelf) ||
Arg.hasAttribute(Attribute::SwiftError) ||
Arg.hasAttribute(Attribute::Nest))
return false;
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
const bool ArgUsed = !Arg.use_empty();
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
if (!SkipArg) {
Info->markPSInputAllocated(PSInputNum);
if (ArgUsed)
Info->markPSInputEnabled(PSInputNum);
}
++PSInputNum;
if (SkipArg) {
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
B.buildUndef(VRegs[Idx][I]);
++Idx;
continue;
}
}
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
splitToValueTypes(
OrigArg, SplitArgs, DL, MRI, CC,
// FIXME: We should probably be passing multiple registers to
// handleAssignments to do this
[&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
LLTy, PartLLT);
});
++Idx;
}
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CC == CallingConv::AMDGPU_PS) {
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget.isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
// set up an input arg for a particular interpolation mode, but nothing
// uses that input arg. Really we should have an earlier pass that removes
// such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 &&
(PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
}
}
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
if (!MBB.empty())
B.setInstr(*MBB.begin());
FormalArgHandler Handler(B, MRI, AssignFn);
if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
return false;
if (!IsEntryFunc) {
// Special inputs come after user arguments.
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
}
// Start adding system SGPRs.
if (IsEntryFunc) {
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
} else {
CCInfo.AllocateReg(Info->getScratchRSrcReg());
CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
CCInfo.AllocateReg(Info->getFrameOffsetReg());
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
// Move back to the end of the basic block.
B.setMBB(MBB);
return true;
}