AMDGPUInstructions.td 24.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction defs that are common to all hw codegen
// targets.
//
//===----------------------------------------------------------------------===//

class AddressSpacesImpl {
  int Flat = 0;
  int Global = 1;
  int Region = 2;
  int Local = 3;
  int Constant = 4;
  int Private = 5;
}

def AddrSpaces : AddressSpacesImpl;


class AMDGPUInst <dag outs, dag ins, string asm = "",
  list<dag> pattern = []> : Instruction {
  field bit isRegisterLoad = 0;
  field bit isRegisterStore = 0;

  let Namespace = "AMDGPU";
  let OutOperandList = outs;
  let InOperandList = ins;
  let AsmString = asm;
  let Pattern = pattern;
  let Itinerary = NullALU;

  // SoftFail is a field the disassembler can use to provide a way for
  // instructions to not match without killing the whole decode process. It is
  // mainly used for ARM, but Tablegen expects this field to exist or it fails
  // to build the decode table.
  field bits<64> SoftFail = 0;

  let DecoderNamespace = Namespace;

  let TSFlags{63} = isRegisterLoad;
  let TSFlags{62} = isRegisterStore;
}

class AMDGPUShaderInst <dag outs, dag ins, string asm = "",
  list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> {

  field bits<32> Inst = 0xffffffff;
}

//===---------------------------------------------------------------------===//
// Return instruction
//===---------------------------------------------------------------------===//

class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction {

     let Namespace = "AMDGPU";
     dag OutOperandList = outs;
     dag InOperandList = ins;
     let Pattern = pattern;
     let AsmString = !strconcat(asmstr, "\n");
     let isPseudo = 1;
     let Itinerary = NullALU;
     bit hasIEEEFlag = 0;
     bit hasZeroOpFlag = 0;
     let mayLoad = 0;
     let mayStore = 0;
     let hasSideEffects = 0;
     let isCodeGenOnly = 1;
}

def TruePredicate : Predicate<"">;

// Add a predicate to the list if does not already exist to deduplicate it.
class PredConcat<list<Predicate> lst, Predicate pred> {
  list<Predicate> ret =
    !foldl([pred], lst, acc, cur,
           !listconcat(acc, !if(!eq(!cast<string>(cur),!cast<string>(pred)),
                                [], [cur])));
}

class PredicateControl {
  Predicate SubtargetPredicate = TruePredicate;
  Predicate AssemblerPredicate = TruePredicate;
  Predicate WaveSizePredicate = TruePredicate;
  list<Predicate> OtherPredicates = [];
  list<Predicate> Predicates = PredConcat<
                                 PredConcat<PredConcat<OtherPredicates,
                                                       SubtargetPredicate>.ret,
                                            AssemblerPredicate>.ret,
                                 WaveSizePredicate>.ret;
}

class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>,
      PredicateControl;

let RecomputePerFunction = 1 in {
def FP16Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals">;
def FP32Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP32Denormals">;
def FP64Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals">;
def NoFP16Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals">;
def NoFP32Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().FP32Denormals">;
def NoFP64Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().FP64FP16Denormals">;
def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">;
}

def FMA : Predicate<"Subtarget->hasFMA()">;

def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>;

def u16ImmTarget : AsmOperandClass {
  let Name = "U16Imm";
  let RenderMethod = "addImmOperands";
}

def s16ImmTarget : AsmOperandClass {
  let Name = "S16Imm";
  let RenderMethod = "addImmOperands";
}

let OperandType = "OPERAND_IMMEDIATE" in {

def u32imm : Operand<i32> {
  let PrintMethod = "printU32ImmOperand";
}

def u16imm : Operand<i16> {
  let PrintMethod = "printU16ImmOperand";
  let ParserMatchClass = u16ImmTarget;
}

def s16imm : Operand<i16> {
  let PrintMethod = "printU16ImmOperand";
  let ParserMatchClass = s16ImmTarget;
}

def u8imm : Operand<i8> {
  let PrintMethod = "printU8ImmOperand";
}

} // End OperandType = "OPERAND_IMMEDIATE"

//===--------------------------------------------------------------------===//
// Custom Operands
//===--------------------------------------------------------------------===//
def brtarget   : Operand<OtherVT>;

//===----------------------------------------------------------------------===//
// Misc. PatFrags
//===----------------------------------------------------------------------===//

class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0),
  (op $src0),
  [{ return N->hasOneUse(); }]> {

  let GISelPredicateCode = [{
    return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg());
  }];
}

class HasOneUseBinOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0, node:$src1),
  (op $src0, $src1),
  [{ return N->hasOneUse(); }]> {
  let GISelPredicateCode = [{
    return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg());
  }];
}

class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0, node:$src1, node:$src2),
  (op $src0, $src1, $src2),
  [{ return N->hasOneUse(); }]> {
  let GISelPredicateCode = [{
    return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg());
  }];
}

let Properties = [SDNPCommutative, SDNPAssociative] in {
def smax_oneuse : HasOneUseBinOp<smax>;
def smin_oneuse : HasOneUseBinOp<smin>;
def umax_oneuse : HasOneUseBinOp<umax>;
def umin_oneuse : HasOneUseBinOp<umin>;

def fminnum_oneuse : HasOneUseBinOp<fminnum>;
def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>;

def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>;
def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>;


def and_oneuse : HasOneUseBinOp<and>;
def or_oneuse : HasOneUseBinOp<or>;
def xor_oneuse : HasOneUseBinOp<xor>;
} // Properties = [SDNPCommutative, SDNPAssociative]

def not_oneuse : HasOneUseUnaryOp<not>;

def add_oneuse : HasOneUseBinOp<add>;
def sub_oneuse : HasOneUseBinOp<sub>;

def srl_oneuse : HasOneUseBinOp<srl>;
def shl_oneuse : HasOneUseBinOp<shl>;

def select_oneuse : HasOneUseTernaryOp<select>;

def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>;
def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>;

def srl_16 : PatFrag<
  (ops node:$src0), (srl_oneuse node:$src0, (i32 16))
>;


def hi_i16_elt : PatFrag<
  (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0))))
>;


def hi_f16_elt : PatLeaf<
  (vt), [{
  if (N->getOpcode() != ISD::BITCAST)
    return false;
  SDValue Tmp = N->getOperand(0);

  if (Tmp.getOpcode() != ISD::SRL)
    return false;
    if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1))
      return RHS->getZExtValue() == 16;
    return false;
}]>;

//===----------------------------------------------------------------------===//
// PatLeafs for floating-point comparisons
//===----------------------------------------------------------------------===//

def COND_OEQ : PatFrags<(ops), [(OtherVT SETOEQ), (OtherVT SETEQ)]>;
def COND_ONE : PatFrags<(ops), [(OtherVT SETONE), (OtherVT SETNE)]>;
def COND_OGT : PatFrags<(ops), [(OtherVT SETOGT), (OtherVT SETGT)]>;
def COND_OGE : PatFrags<(ops), [(OtherVT SETOGE), (OtherVT SETGE)]>;
def COND_OLT : PatFrags<(ops), [(OtherVT SETOLT), (OtherVT SETLT)]>;
def COND_OLE : PatFrags<(ops), [(OtherVT SETOLE), (OtherVT SETLE)]>;
def COND_O   : PatFrags<(ops), [(OtherVT SETO)]>;
def COND_UO  : PatFrags<(ops), [(OtherVT SETUO)]>;

//===----------------------------------------------------------------------===//
// PatLeafs for unsigned / unordered comparisons
//===----------------------------------------------------------------------===//

def COND_UEQ : PatFrag<(ops), (OtherVT SETUEQ)>;
def COND_UNE : PatFrag<(ops), (OtherVT SETUNE)>;
def COND_UGT : PatFrag<(ops), (OtherVT SETUGT)>;
def COND_UGE : PatFrag<(ops), (OtherVT SETUGE)>;
def COND_ULT : PatFrag<(ops), (OtherVT SETULT)>;
def COND_ULE : PatFrag<(ops), (OtherVT SETULE)>;

// XXX - For some reason R600 version is preferring to use unordered
// for setne?
def COND_UNE_NE  : PatFrags<(ops), [(OtherVT SETUNE), (OtherVT SETNE)]>;

//===----------------------------------------------------------------------===//
// PatLeafs for signed comparisons
//===----------------------------------------------------------------------===//

def COND_SGT : PatFrag<(ops), (OtherVT SETGT)>;
def COND_SGE : PatFrag<(ops), (OtherVT SETGE)>;
def COND_SLT : PatFrag<(ops), (OtherVT SETLT)>;
def COND_SLE : PatFrag<(ops), (OtherVT SETLE)>;

//===----------------------------------------------------------------------===//
// PatLeafs for integer equality
//===----------------------------------------------------------------------===//

def COND_EQ : PatFrags<(ops), [(OtherVT SETEQ), (OtherVT SETUEQ)]>;
def COND_NE : PatFrags<(ops), [(OtherVT SETNE), (OtherVT SETUNE)]>;

// FIXME: Should not need code predicate
//def COND_NULL : PatLeaf<(OtherVT null_frag)>;
def COND_NULL : PatLeaf <
  (cond),
  [{(void)N; return false;}]
>;

//===----------------------------------------------------------------------===//
// PatLeafs for Texture Constants
//===----------------------------------------------------------------------===//

def TEX_ARRAY : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 9 || TType == 10 || TType == 16;
  }]
>;

def TEX_RECT : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 5;
  }]
>;

def TEX_SHADOW : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return (TType >= 6 && TType <= 8) || TType == 13;
  }]
>;

def TEX_SHADOW_ARRAY : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 11 || TType == 12 || TType == 17;
  }]
>;

//===----------------------------------------------------------------------===//
// Load/Store Pattern Fragments
//===----------------------------------------------------------------------===//

def atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3,
  [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue]
>;

class AddressSpaceList<list<int> AS> {
  list<int> AddrSpaces = AS;
}

class Aligned<int Bytes> {
  int MinAlignment = Bytes;
}

class StoreHi16<SDPatternOperator op> : PatFrag <
  (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr)> {
  let IsStore = 1;
}

def LoadAddress_constant : AddressSpaceList<[  AddrSpaces.Constant ]>;
def LoadAddress_global : AddressSpaceList<[  AddrSpaces.Global, AddrSpaces.Constant ]>;
def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>;

def LoadAddress_flat : AddressSpaceList<[  AddrSpaces.Flat,
                                           AddrSpaces.Global,
                                           AddrSpaces.Constant ]>;
def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>;

def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>;
def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>;

def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>;
def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>;

def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>;
def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>;



foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in {
let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in {

def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
  let IsLoad = 1;
  let IsNonExtLoad = 1;
}

def extloadi8_#as  : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i8;
}

def extloadi16_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i16;
}

def sextloadi8_#as  : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i8;
}

def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i16;
}

def zextloadi8_#as  : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i8;
}

def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
  let IsLoad = 1;
  let MemoryVT = i16;
}

def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> {
  let IsAtomic = 1;
  let MemoryVT = i32;
}

def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> {
  let IsAtomic = 1;
  let MemoryVT = i64;
}

def store_#as : PatFrag<(ops node:$val, node:$ptr),
                    (unindexedstore node:$val, node:$ptr)> {
  let IsStore = 1;
  let IsTruncStore = 0;
}

// truncstore fragments.
def truncstore_#as : PatFrag<(ops node:$val, node:$ptr),
                             (unindexedstore node:$val, node:$ptr)> {
  let IsStore = 1;
  let IsTruncStore = 1;
}

// TODO: We don't really need the truncstore here. We can use
// unindexedstore with MemoryVT directly, which will save an
// unnecessary check that the memory size is less than the value type
// in the generated matcher table.
def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr),
                               (truncstore node:$val, node:$ptr)> {
  let IsStore = 1;
  let MemoryVT = i8;
}

def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr),
                                (truncstore node:$val, node:$ptr)> {
  let IsStore = 1;
  let MemoryVT = i16;
}

def store_hi16_#as : StoreHi16 <truncstorei16>;
def truncstorei8_hi16_#as : StoreHi16<truncstorei8>;
def truncstorei16_hi16_#as : StoreHi16<truncstorei16>;

defm atomic_store_#as : binary_atomic_op<atomic_store>;

} // End let AddressSpaces = ...
} // End foreach AddrSpace


multiclass ret_noret_binary_atomic_op<SDNode atomic_op, bit IsInt = 1> {
  foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in {
    let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in {
      defm "_"#as : binary_atomic_op<atomic_op, IsInt>;

      let PredicateCode = [{return (SDValue(N, 0).use_empty());}] in {
        defm "_"#as#"_noret" : binary_atomic_op<atomic_op, IsInt>;
      }

      let PredicateCode = [{return !(SDValue(N, 0).use_empty());}] in {
        defm "_"#as#"_ret" : binary_atomic_op<atomic_op, IsInt>;
      }
    }
  }
}

defm atomic_swap : ret_noret_binary_atomic_op<atomic_swap>;
defm atomic_load_add : ret_noret_binary_atomic_op<atomic_load_add>;
defm atomic_load_and : ret_noret_binary_atomic_op<atomic_load_and>;
defm atomic_load_max : ret_noret_binary_atomic_op<atomic_load_max>;
defm atomic_load_min : ret_noret_binary_atomic_op<atomic_load_min>;
defm atomic_load_or : ret_noret_binary_atomic_op<atomic_load_or>;
defm atomic_load_sub : ret_noret_binary_atomic_op<atomic_load_sub>;
defm atomic_load_umax : ret_noret_binary_atomic_op<atomic_load_umax>;
defm atomic_load_umin : ret_noret_binary_atomic_op<atomic_load_umin>;
defm atomic_load_xor : ret_noret_binary_atomic_op<atomic_load_xor>;
defm atomic_load_fadd : ret_noret_binary_atomic_op<atomic_load_fadd, 0>;
defm AMDGPUatomic_cmp_swap : ret_noret_binary_atomic_op<AMDGPUatomic_cmp_swap>;


def load_align8_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> {
  let IsLoad = 1;
  let IsNonExtLoad = 1;
  let MinAlignment = 8;
}

def load_align16_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> {
  let IsLoad = 1;
  let IsNonExtLoad = 1;
  let MinAlignment = 16;
}

def store_align8_local: PatFrag<(ops node:$val, node:$ptr),
                                (store_local node:$val, node:$ptr)>, Aligned<8> {
  let IsStore = 1;
  let IsTruncStore = 0;
}

def store_align16_local: PatFrag<(ops node:$val, node:$ptr),
                                (store_local node:$val, node:$ptr)>, Aligned<16> {
  let IsStore = 1;
  let IsTruncStore = 0;
}

let AddressSpaces = StoreAddress_local.AddrSpaces in {
defm atomic_cmp_swap_local : ternary_atomic_op<atomic_cmp_swap>;
defm atomic_cmp_swap_local_m0 : ternary_atomic_op<atomic_cmp_swap_glue>;
}

let AddressSpaces = StoreAddress_region.AddrSpaces in {
defm atomic_cmp_swap_region : ternary_atomic_op<atomic_cmp_swap>;
defm atomic_cmp_swap_region_m0 : ternary_atomic_op<atomic_cmp_swap_glue>;
}

//===----------------------------------------------------------------------===//
// Misc Pattern Fragments
//===----------------------------------------------------------------------===//

class Constants {
int TWO_PI = 0x40c90fdb;
int PI = 0x40490fdb;
int TWO_PI_INV = 0x3e22f983;
int FP_UINT_MAX_PLUS_1 = 0x4f800000;    // 1 << 32 in floating point encoding
int FP16_ONE = 0x3C00;
int FP16_NEG_ONE = 0xBC00;
int FP32_ONE = 0x3f800000;
int FP32_NEG_ONE = 0xbf800000;
int FP64_ONE = 0x3ff0000000000000;
int FP64_NEG_ONE = 0xbff0000000000000;
}
def CONST : Constants;

def FP_ZERO : PatLeaf <
  (fpimm),
  [{return N->getValueAPF().isZero();}]
>;

def FP_ONE : PatLeaf <
  (fpimm),
  [{return N->isExactlyValue(1.0);}]
>;

def FP_HALF : PatLeaf <
  (fpimm),
  [{return N->isExactlyValue(0.5);}]
>;

/* Generic helper patterns for intrinsics */
/* -------------------------------------- */

class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul>
  : AMDGPUPat <
  (fpow f32:$src0, f32:$src1),
  (exp_ieee (mul f32:$src1, (log_ieee f32:$src0)))
>;

/* Other helper patterns */
/* --------------------- */

/* Extract element pattern */
class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx,
                       SubRegIndex sub_reg>
  : AMDGPUPat<
  (sub_type (extractelt vec_type:$src, sub_idx)),
  (EXTRACT_SUBREG $src, sub_reg)
>;

/* Insert element pattern */
class Insert_Element <ValueType elem_type, ValueType vec_type,
                      int sub_idx, SubRegIndex sub_reg>
  : AMDGPUPat <
  (insertelt vec_type:$vec, elem_type:$elem, sub_idx),
  (INSERT_SUBREG $vec, $elem, sub_reg)
>;

// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
// bitconvert pattern
class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat <
  (dt (bitconvert (st rc:$src0))),
  (dt rc:$src0)
>;

// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat <
  (vt (AMDGPUdwordaddr (vt rc:$addr))),
  (vt rc:$addr)
>;

// BFI_INT patterns

multiclass BFIPatterns <Instruction BFI_INT,
                        Instruction LoadImm32,
                        RegisterClass RC64> {
  // Definition from ISA doc:
  // (y & x) | (z & ~x)
  def : AMDGPUPat <
    (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
    (BFI_INT $x, $y, $z)
  >;

  // 64-bit version
  def : AMDGPUPat <
    (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
    (REG_SEQUENCE RC64,
      (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub0)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub0)),
               (i32 (EXTRACT_SUBREG RC64:$z, sub0))), sub0,
      (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$z, sub1))), sub1)
  >;

  // SHA-256 Ch function
  // z ^ (x & (y ^ z))
  def : AMDGPUPat <
    (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
    (BFI_INT $x, $y, $z)
  >;

  // 64-bit version
  def : AMDGPUPat <
    (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
    (REG_SEQUENCE RC64,
      (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub0)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub0)),
               (i32 (EXTRACT_SUBREG RC64:$z, sub0))), sub0,
      (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$z, sub1))), sub1)
  >;

  def : AMDGPUPat <
    (fcopysign f32:$src0, f32:$src1),
    (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1)
  >;

  def : AMDGPUPat <
    (f32 (fcopysign f32:$src0, f64:$src1)),
    (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0,
             (i32 (EXTRACT_SUBREG RC64:$src1, sub1)))
  >;

  def : AMDGPUPat <
    (f64 (fcopysign f64:$src0, f64:$src1)),
    (REG_SEQUENCE RC64,
      (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
      (BFI_INT (LoadImm32 (i32 0x7fffffff)),
               (i32 (EXTRACT_SUBREG RC64:$src0, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$src1, sub1))), sub1)
  >;

  def : AMDGPUPat <
    (f64 (fcopysign f64:$src0, f32:$src1)),
    (REG_SEQUENCE RC64,
      (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
      (BFI_INT (LoadImm32 (i32 0x7fffffff)),
               (i32 (EXTRACT_SUBREG RC64:$src0, sub1)),
               $src1), sub1)
  >;
}

// SHA-256 Ma patterns

// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y
multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> {
  def : AMDGPUPat <
    (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))),
    (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y)
  >;

  def : AMDGPUPat <
    (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))),
    (REG_SEQUENCE RC64,
      (BFI_INT (XOR (i32 (EXTRACT_SUBREG RC64:$x, sub0)),
                    (i32 (EXTRACT_SUBREG RC64:$y, sub0))),
               (i32 (EXTRACT_SUBREG RC64:$z, sub0)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub0))), sub0,
      (BFI_INT (XOR (i32 (EXTRACT_SUBREG RC64:$x, sub1)),
                    (i32 (EXTRACT_SUBREG RC64:$y, sub1))),
               (i32 (EXTRACT_SUBREG RC64:$z, sub1)),
               (i32 (EXTRACT_SUBREG RC64:$y, sub1))), sub1)
  >;
}

// Bitfield extract patterns

def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
  return isMask_32(Imm);
}]>;

def IMMPopCount : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
                                   MVT::i32);
}]>;

multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> {
  def : AMDGPUPat <
    (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)),
    (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask))))
  >;

  // x & ((1 << y) - 1)
  def : AMDGPUPat <
    (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x & ~(-1 << y)
  def : AMDGPUPat <
    (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x & (-1 >> (bitwidth - y))
  def : AMDGPUPat <
    (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x << (bitwidth - y) >> (bitwidth - y)
  def : AMDGPUPat <
    (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  def : AMDGPUPat <
    (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
    (SBFE $src, (MOV (i32 0)), $width)
  >;
}

// rotr pattern
class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat <
  (rotr i32:$src0, i32:$src1),
  (BIT_ALIGN $src0, $src0, $src1)
>;

// Special conversion patterns

def cvt_rpi_i32_f32 : PatFrag <
  (ops node:$src),
  (fp_to_sint (ffloor (fadd $src, FP_HALF))),
  [{ (void) N; return TM.Options.NoNaNsFPMath; }]
>;

def cvt_flr_i32_f32 : PatFrag <
  (ops node:$src),
  (fp_to_sint (ffloor $src)),
  [{ (void)N; return TM.Options.NoNaNsFPMath; }]
>;

let AddedComplexity = 2 in {
class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
  (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2),
  !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
                (Inst $src0, $src1, $src2))
>;

class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
  (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2),
  !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
                (Inst $src0, $src1, $src2))
>;
} // AddedComplexity.

class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat <
  (fdiv FP_ONE, vt:$src),
  (RcpInst $src)
>;

class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat <
  (AMDGPUrcp (fsqrt vt:$src)),
  (RsqInst $src)
>;

// Instructions which select to the same v_min_f*
def fminnum_like : PatFrags<(ops node:$src0, node:$src1),
  [(fminnum_ieee node:$src0, node:$src1),
   (fminnum node:$src0, node:$src1)]
>;

// Instructions which select to the same v_max_f*
def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1),
  [(fmaxnum_ieee node:$src0, node:$src1),
   (fmaxnum node:$src0, node:$src1)]
>;

def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
  [(fminnum_ieee_oneuse node:$src0, node:$src1),
   (fminnum_oneuse node:$src0, node:$src1)]
>;

def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
  [(fmaxnum_ieee_oneuse node:$src0, node:$src1),
   (fmaxnum_oneuse node:$src0, node:$src1)]
>;