AMDGPULegalizerInfo.cpp 83.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#if defined(_MSC_VER) || defined(__MINGW32__)
// According to Microsoft, one must set _USE_MATH_DEFINES in order to get M_PI
// from the Visual C++ cmath / math.h headers:
// https://docs.microsoft.com/en-us/cpp/c-runtime-library/math-constants?view=vs-2019
#define _USE_MATH_DEFINES
#endif

#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "amdgpu-legalinfo"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;


static LegalityPredicate isMultiple32(unsigned TypeIdx,
                                      unsigned MaxSize = 1024) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getScalarType();
    return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0;
  };
}

static LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    return Query.Types[TypeIdx].getSizeInBits() == Size;
  };
}

static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return Ty.isVector() &&
           Ty.getNumElements() % 2 != 0 &&
           Ty.getElementType().getSizeInBits() < 32 &&
           Ty.getSizeInBits() % 32 != 0;
  };
}

static LegalityPredicate isWideVec16(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getScalarType();
    return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
  };
}

static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
  };
}

static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    unsigned Size = Ty.getSizeInBits();
    unsigned Pieces = (Size + 63) / 64;
    unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
    return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
  };
}

// Increase the number of vector elements to reach the next multiple of 32-bit
// type.
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];

    const LLT EltTy = Ty.getElementType();
    const int Size = Ty.getSizeInBits();
    const int EltSize = EltTy.getSizeInBits();
    const int NextMul32 = (Size + 31) / 32;

    assert(EltSize < 32);

    const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
    return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy));
  };
}

static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
  };
}

static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
  };
}

static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
  };
}

// Any combination of 32 or 64-bit elements up to 1024 bits, and multiples of
// v2s16.
static LegalityPredicate isRegisterType(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    if (Ty.isVector()) {
      const int EltSize = Ty.getElementType().getSizeInBits();
      return EltSize == 32 || EltSize == 64 ||
            (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
             EltSize == 128 || EltSize == 256;
    }

    return Ty.getSizeInBits() % 32 == 0 && Ty.getSizeInBits() <= 1024;
  };
}

static LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT Type) {
  return [=](const LegalityQuery &Query) {
    return Query.Types[TypeIdx].getElementType() == Type;
  };
}

static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
           Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits();
  };
}

AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
                                         const GCNTargetMachine &TM)
  :  ST(ST_) {
  using namespace TargetOpcode;

  auto GetAddrSpacePtr = [&TM](unsigned AS) {
    return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
  };

  const LLT S1 = LLT::scalar(1);
  const LLT S8 = LLT::scalar(8);
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S96 = LLT::scalar(96);
  const LLT S128 = LLT::scalar(128);
  const LLT S256 = LLT::scalar(256);
  const LLT S1024 = LLT::scalar(1024);

  const LLT V2S16 = LLT::vector(2, 16);
  const LLT V4S16 = LLT::vector(4, 16);

  const LLT V2S32 = LLT::vector(2, 32);
  const LLT V3S32 = LLT::vector(3, 32);
  const LLT V4S32 = LLT::vector(4, 32);
  const LLT V5S32 = LLT::vector(5, 32);
  const LLT V6S32 = LLT::vector(6, 32);
  const LLT V7S32 = LLT::vector(7, 32);
  const LLT V8S32 = LLT::vector(8, 32);
  const LLT V9S32 = LLT::vector(9, 32);
  const LLT V10S32 = LLT::vector(10, 32);
  const LLT V11S32 = LLT::vector(11, 32);
  const LLT V12S32 = LLT::vector(12, 32);
  const LLT V13S32 = LLT::vector(13, 32);
  const LLT V14S32 = LLT::vector(14, 32);
  const LLT V15S32 = LLT::vector(15, 32);
  const LLT V16S32 = LLT::vector(16, 32);
  const LLT V32S32 = LLT::vector(32, 32);

  const LLT V2S64 = LLT::vector(2, 64);
  const LLT V3S64 = LLT::vector(3, 64);
  const LLT V4S64 = LLT::vector(4, 64);
  const LLT V5S64 = LLT::vector(5, 64);
  const LLT V6S64 = LLT::vector(6, 64);
  const LLT V7S64 = LLT::vector(7, 64);
  const LLT V8S64 = LLT::vector(8, 64);
  const LLT V16S64 = LLT::vector(16, 64);

  std::initializer_list<LLT> AllS32Vectors =
    {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
     V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
  std::initializer_list<LLT> AllS64Vectors =
    {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};

  const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
  const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
  const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
  const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
  const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
  const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
  const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);

  const LLT CodePtr = FlatPtr;

  const std::initializer_list<LLT> AddrSpaces64 = {
    GlobalPtr, ConstantPtr, FlatPtr
  };

  const std::initializer_list<LLT> AddrSpaces32 = {
    LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
  };

  const std::initializer_list<LLT> FPTypesBase = {
    S32, S64
  };

  const std::initializer_list<LLT> FPTypes16 = {
    S32, S64, S16
  };

  const std::initializer_list<LLT> FPTypesPK16 = {
    S32, S64, S16, V2S16
  };

  setAction({G_BRCOND, S1}, Legal); // VCC branches
  setAction({G_BRCOND, S32}, Legal); // SCC branches

  // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
  // elements for v3s16
  getActionDefinitionsBuilder(G_PHI)
    .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256})
    .legalFor(AllS32Vectors)
    .legalFor(AllS64Vectors)
    .legalFor(AddrSpaces64)
    .legalFor(AddrSpaces32)
    .clampScalar(0, S32, S256)
    .widenScalarToNextPow2(0, 32)
    .clampMaxNumElements(0, S32, 16)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .legalIf(isPointer(0));

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32, S16})
      .clampScalar(0, S16, S32)
      .scalarize(0);
  } else {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32})
      .clampScalar(0, S32, S32)
      .scalarize(0);
  }

  // FIXME: Not really legal. Placeholder for custom lowering.
  getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM})
    .legalFor({S32, S64})
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0, 32)
    .scalarize(0);

  getActionDefinitionsBuilder({G_UMULH, G_SMULH})
    .legalFor({S32})
    .clampScalar(0, S32, S32)
    .scalarize(0);

  // Report legal for any types we can handle anywhere. For the cases only legal
  // on the SALU, RegBankSelect will be able to re-legalize.
  getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
    .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
    .clampScalar(0, S32, S64)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
    .widenScalarToNextPow2(0)
    .scalarize(0);

  getActionDefinitionsBuilder({G_UADDO, G_USUBO,
                               G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
    .legalFor({{S32, S1}, {S32, S32}})
    .clampScalar(0, S32, S32)
    .scalarize(0); // TODO: Implement.

  getActionDefinitionsBuilder({G_SADDO, G_SSUBO})
    .lower();

  getActionDefinitionsBuilder(G_BITCAST)
    // Don't worry about the size constraint.
    .legalIf(all(isRegisterType(0), isRegisterType(1)))
    // FIXME: Testing hack
    .legalForCartesianProduct({S16, LLT::vector(2, 8), });

  getActionDefinitionsBuilder(G_FCONSTANT)
    .legalFor({S32, S64, S16})
    .clampScalar(0, S16, S64);

  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalFor({S1, S32, S64, S16, V2S32, V4S32, V2S16, V4S16, GlobalPtr,
               ConstantPtr, LocalPtr, FlatPtr, PrivatePtr})
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .clampScalarOrElt(0, S32, S1024)
    .legalIf(isMultiple32(0))
    .widenScalarToNextPow2(0, 32)
    .clampMaxNumElements(0, S32, 16);


  // FIXME: i1 operands to intrinsics should always be legal, but other i1
  // values may not be legal.  We need to figure out how to distinguish
  // between these two scenarios.
  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({S1, S32, S64, S16, GlobalPtr,
               LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0)
    .legalIf(isPointer(0));

  setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
  getActionDefinitionsBuilder(G_GLOBAL_VALUE)
    .customFor({LocalPtr, GlobalPtr, ConstantPtr, Constant32Ptr});


  auto &FPOpActions = getActionDefinitionsBuilder(
    { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
    .legalFor({S32, S64});
  auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
    .customFor({S32, S64});
  auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
    .customFor({S32, S64});

  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts())
      FPOpActions.legalFor({S16, V2S16});
    else
      FPOpActions.legalFor({S16});

    TrigActions.customFor({S16});
    FDIVActions.customFor({S16});
  }

  auto &MinNumMaxNum = getActionDefinitionsBuilder({
      G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});

  if (ST.hasVOP3PInsts()) {
    MinNumMaxNum.customFor(FPTypesPK16)
      .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
      .clampMaxNumElements(0, S16, 2)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else if (ST.has16BitInsts()) {
    MinNumMaxNum.customFor(FPTypes16)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else {
    MinNumMaxNum.customFor(FPTypesBase)
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  if (ST.hasVOP3PInsts())
    FPOpActions.clampMaxNumElements(0, S16, 2);

  FPOpActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  TrigActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  FDIVActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  getActionDefinitionsBuilder({G_FNEG, G_FABS})
    .legalFor(FPTypesPK16)
    .clampMaxNumElements(0, S16, 2)
    .scalarize(0)
    .clampScalar(0, S16, S64);

  // TODO: Implement
  getActionDefinitionsBuilder({G_FMINIMUM, G_FMAXIMUM}).lower();

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
      .legalFor({S32, S64, S16})
      .scalarize(0)
      .clampScalar(0, S16, S64);
  } else {
    getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
      .legalFor({S32, S64})
      .scalarize(0)
      .clampScalar(0, S32, S64);
  }

  getActionDefinitionsBuilder(G_FPTRUNC)
    .legalFor({{S32, S64}, {S16, S32}})
    .scalarize(0);

  getActionDefinitionsBuilder(G_FPEXT)
    .legalFor({{S64, S32}, {S32, S16}})
    .lowerFor({{S64, S16}}) // FIXME: Implement
    .scalarize(0);

  // TODO: Verify V_BFI_B32 is generated from expanded bit ops.
  getActionDefinitionsBuilder(G_FCOPYSIGN).lower();

  getActionDefinitionsBuilder(G_FSUB)
      // Use actual fsub instruction
      .legalFor({S32})
      // Must use fadd + fneg
      .lowerFor({S64, S16, V2S16})
      .scalarize(0)
      .clampScalar(0, S32, S64);

  // Whether this is legal depends on the floating point mode for the function.
  auto &FMad = getActionDefinitionsBuilder(G_FMAD);
  if (ST.hasMadF16())
    FMad.customFor({S32, S16});
  else
    FMad.customFor({S32});
  FMad.scalarize(0)
      .lower();

  getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
    .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
               {S32, S1}, {S64, S1}, {S16, S1},
               {S96, S32},
               // FIXME: Hack
               {S64, LLT::scalar(33)},
               {S32, S8}, {S32, LLT::scalar(24)}})
    .scalarize(0)
    .clampScalar(0, S32, S64);

  // TODO: Split s1->s64 during regbankselect for VALU.
  auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
    .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
    .lowerFor({{S32, S64}})
    .lowerIf(typeIs(1, S1))
    .customFor({{S64, S64}});
  if (ST.has16BitInsts())
    IToFP.legalFor({{S16, S16}});
  IToFP.clampScalar(1, S32, S64)
       .scalarize(0);

  auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
    .legalFor({{S32, S32}, {S32, S64}, {S32, S16}});
  if (ST.has16BitInsts())
    FPToI.legalFor({{S16, S16}});
  else
    FPToI.minScalar(1, S32);

  FPToI.minScalar(0, S32)
       .scalarize(0);

  getActionDefinitionsBuilder(G_INTRINSIC_ROUND)
    .scalarize(0)
    .lower();

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S16, S32, S64})
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32, S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  } else {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32})
      .customFor({S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  getActionDefinitionsBuilder(G_PTR_ADD)
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0);

  getActionDefinitionsBuilder(G_PTR_MASK)
    .scalarize(0)
    .alwaysLegal();

  setAction({G_BLOCK_ADDR, CodePtr}, Legal);

  auto &CmpBuilder =
    getActionDefinitionsBuilder(G_ICMP)
    // The compare output type differs based on the register bank of the output,
    // so make both s1 and s32 legal.
    //
    // Scalar compares producing output in scc will be promoted to s32, as that
    // is the allocatable register type that will be needed for the copy from
    // scc. This will be promoted during RegBankSelect, and we assume something
    // before that won't try to use s32 result types.
    //
    // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
    // bank.
    .legalForCartesianProduct(
      {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
    .legalForCartesianProduct(
      {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
  if (ST.has16BitInsts()) {
    CmpBuilder.legalFor({{S1, S16}});
  }

  CmpBuilder
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));

  getActionDefinitionsBuilder(G_FCMP)
    .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0);

  // FIXME: fexp, flog2, flog10 needs to be custom lowered.
  getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2,
                               G_FLOG, G_FLOG2, G_FLOG10})
    .legalFor({S32})
    .scalarize(0);

  // The 64-bit versions produce 32-bit results, but only on the SALU.
  getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF,
                               G_CTTZ, G_CTTZ_ZERO_UNDEF,
                               G_CTPOP})
    .legalFor({{S32, S32}, {S32, S64}})
    .clampScalar(0, S32, S32)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .widenScalarToNextPow2(0, 32)
    .widenScalarToNextPow2(1, 32);

  // TODO: Expand for > s32
  getActionDefinitionsBuilder({G_BSWAP, G_BITREVERSE})
    .legalFor({S32})
    .clampScalar(0, S32, S32)
    .scalarize(0);

  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts()) {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16, V2S16})
        .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
        .clampMaxNumElements(0, S16, 2)
        .clampScalar(0, S16, S32)
        .widenScalarToNextPow2(0)
        .scalarize(0);
    } else {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16})
        .widenScalarToNextPow2(0)
        .clampScalar(0, S16, S32)
        .scalarize(0);
    }
  } else {
    getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
      .legalFor({S32})
      .clampScalar(0, S32, S32)
      .widenScalarToNextPow2(0)
      .scalarize(0);
  }

  auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
    return [=](const LegalityQuery &Query) {
      return Query.Types[TypeIdx0].getSizeInBits() <
             Query.Types[TypeIdx1].getSizeInBits();
    };
  };

  auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
    return [=](const LegalityQuery &Query) {
      return Query.Types[TypeIdx0].getSizeInBits() >
             Query.Types[TypeIdx1].getSizeInBits();
    };
  };

  getActionDefinitionsBuilder(G_INTTOPTR)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      })
    .narrowScalarIf(greaterThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_PTRTOINT)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      })
    .narrowScalarIf(
      greaterThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
    .scalarize(0)
    .custom();

  // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
  // handle some operations by just promoting the register during
  // selection. There are also d16 loads on GFX9+ which preserve the high bits.
  auto maxSizeForAddrSpace = [this](unsigned AS) -> unsigned {
    switch (AS) {
    // FIXME: Private element size.
    case AMDGPUAS::PRIVATE_ADDRESS:
      return 32;
    // FIXME: Check subtarget
    case AMDGPUAS::LOCAL_ADDRESS:
      return ST.useDS128() ? 128 : 64;

    // Treat constant and global as identical. SMRD loads are sometimes usable
    // for global loads (ideally constant address space should be eliminated)
    // depending on the context. Legality cannot be context dependent, but
    // RegBankSelect can split the load as necessary depending on the pointer
    // register bank/uniformity and if the memory is invariant or not written in
    // a kernel.
    case AMDGPUAS::CONSTANT_ADDRESS:
    case AMDGPUAS::GLOBAL_ADDRESS:
      return 512;
    default:
      return 128;
    }
  };

  const auto needToSplitLoad = [=](const LegalityQuery &Query) -> bool {
    const LLT DstTy = Query.Types[0];

    // Split vector extloads.
    unsigned MemSize = Query.MMODescrs[0].SizeInBits;
    unsigned Align = Query.MMODescrs[0].AlignInBits;

    if (MemSize < DstTy.getSizeInBits())
      MemSize = std::max(MemSize, Align);

    if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
      return true;

    const LLT PtrTy = Query.Types[1];
    unsigned AS = PtrTy.getAddressSpace();
    if (MemSize > maxSizeForAddrSpace(AS))
      return true;

    // Catch weird sized loads that don't evenly divide into the access sizes
    // TODO: May be able to widen depending on alignment etc.
    unsigned NumRegs = MemSize / 32;
    if (NumRegs == 3 && !ST.hasDwordx3LoadStores())
      return true;

    if (Align < MemSize) {
      const SITargetLowering *TLI = ST.getTargetLowering();
      return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8);
    }

    return false;
  };

  unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32;
  unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16;
  unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8;

  // TODO: Refine based on subtargets which support unaligned access or 128-bit
  // LDS
  // TODO: Unsupported flat for SI.

  for (unsigned Op : {G_LOAD, G_STORE}) {
    const bool IsStore = Op == G_STORE;

    auto &Actions = getActionDefinitionsBuilder(Op);
    // Whitelist the common cases.
    // TODO: Pointer loads
    // TODO: Wide constant loads
    // TODO: Only CI+ has 3x loads
    // TODO: Loads to s16 on gfx9
    Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32},
                                      {V2S32, GlobalPtr, 64, GlobalAlign32},
                                      {V3S32, GlobalPtr, 96, GlobalAlign32},
                                      {S96, GlobalPtr, 96, GlobalAlign32},
                                      {V4S32, GlobalPtr, 128, GlobalAlign32},
                                      {S128, GlobalPtr, 128, GlobalAlign32},
                                      {S64, GlobalPtr, 64, GlobalAlign32},
                                      {V2S64, GlobalPtr, 128, GlobalAlign32},
                                      {V2S16, GlobalPtr, 32, GlobalAlign32},
                                      {S32, GlobalPtr, 8, GlobalAlign8},
                                      {S32, GlobalPtr, 16, GlobalAlign16},

                                      {S32, LocalPtr, 32, 32},
                                      {S64, LocalPtr, 64, 32},
                                      {V2S32, LocalPtr, 64, 32},
                                      {S32, LocalPtr, 8, 8},
                                      {S32, LocalPtr, 16, 16},
                                      {V2S16, LocalPtr, 32, 32},

                                      {S32, PrivatePtr, 32, 32},
                                      {S32, PrivatePtr, 8, 8},
                                      {S32, PrivatePtr, 16, 16},
                                      {V2S16, PrivatePtr, 32, 32},

                                      {S32, FlatPtr, 32, GlobalAlign32},
                                      {S32, FlatPtr, 16, GlobalAlign16},
                                      {S32, FlatPtr, 8, GlobalAlign8},
                                      {V2S16, FlatPtr, 32, GlobalAlign32},

                                      {S32, ConstantPtr, 32, GlobalAlign32},
                                      {V2S32, ConstantPtr, 64, GlobalAlign32},
                                      {V3S32, ConstantPtr, 96, GlobalAlign32},
                                      {V4S32, ConstantPtr, 128, GlobalAlign32},
                                      {S64, ConstantPtr, 64, GlobalAlign32},
                                      {S128, ConstantPtr, 128, GlobalAlign32},
                                      {V2S32, ConstantPtr, 32, GlobalAlign32}});
    Actions
        .customIf(typeIs(1, Constant32Ptr))
        .narrowScalarIf(
            [=](const LegalityQuery &Query) -> bool {
              return !Query.Types[0].isVector() && needToSplitLoad(Query);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              const unsigned DstSize = DstTy.getSizeInBits();
              unsigned MemSize = Query.MMODescrs[0].SizeInBits;

              // Split extloads.
              if (DstSize > MemSize)
                return std::make_pair(0, LLT::scalar(MemSize));

              if (DstSize > 32 && (DstSize % 32 != 0)) {
                // FIXME: Need a way to specify non-extload of larger size if
                // suitably aligned.
                return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
              }

              unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace());
              if (MemSize > MaxSize)
                return std::make_pair(0, LLT::scalar(MaxSize));

              unsigned Align = Query.MMODescrs[0].AlignInBits;
              return std::make_pair(0, LLT::scalar(Align));
            })
        .fewerElementsIf(
            [=](const LegalityQuery &Query) -> bool {
              return Query.Types[0].isVector() && needToSplitLoad(Query);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              LLT EltTy = DstTy.getElementType();
              unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace());

              // Split if it's too large for the address space.
              if (Query.MMODescrs[0].SizeInBits > MaxSize) {
                unsigned NumElts = DstTy.getNumElements();
                unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize;

                // FIXME: Refine when odd breakdowns handled
                // The scalars will need to be re-legalized.
                if (NumPieces == 1 || NumPieces >= NumElts ||
                    NumElts % NumPieces != 0)
                  return std::make_pair(0, EltTy);

                return std::make_pair(0,
                                      LLT::vector(NumElts / NumPieces, EltTy));
              }

              // Need to split because of alignment.
              unsigned Align = Query.MMODescrs[0].AlignInBits;
              unsigned EltSize = EltTy.getSizeInBits();
              if (EltSize > Align &&
                  (EltSize / Align < DstTy.getNumElements())) {
                return std::make_pair(0, LLT::vector(EltSize / Align, EltTy));
              }

              // May need relegalization for the scalars.
              return std::make_pair(0, EltTy);
            })
        .minScalar(0, S32);

    if (IsStore)
      Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32));

    // TODO: Need a bitcast lower option?
    Actions
        .legalIf([=](const LegalityQuery &Query) {
          const LLT Ty0 = Query.Types[0];
          unsigned Size = Ty0.getSizeInBits();
          unsigned MemSize = Query.MMODescrs[0].SizeInBits;
          unsigned Align = Query.MMODescrs[0].AlignInBits;

          // FIXME: Widening store from alignment not valid.
          if (MemSize < Size)
            MemSize = std::max(MemSize, Align);

          // No extending vector loads.
          if (Size > MemSize && Ty0.isVector())
            return false;

          switch (MemSize) {
          case 8:
          case 16:
            return Size == 32;
          case 32:
          case 64:
          case 128:
            return true;
          case 96:
            return ST.hasDwordx3LoadStores();
          case 256:
          case 512:
            return true;
          default:
            return false;
          }
        })
        .widenScalarToNextPow2(0)
        // TODO: v3s32->v4s32 with alignment
        .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0));
  }

  auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
                       .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8},
                                                  {S32, GlobalPtr, 16, 2 * 8},
                                                  {S32, LocalPtr, 8, 8},
                                                  {S32, LocalPtr, 16, 16},
                                                  {S32, PrivatePtr, 8, 8},
                                                  {S32, PrivatePtr, 16, 16},
                                                  {S32, ConstantPtr, 8, 8},
                                                  {S32, ConstantPtr, 16, 2 * 8}});
  if (ST.hasFlatAddressSpace()) {
    ExtLoads.legalForTypesWithMemDesc(
        {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}});
  }

  ExtLoads.clampScalar(0, S32, S32)
          .widenScalarToNextPow2(0)
          .unsupportedIfMemSizeNotPow2()
          .lower();

  auto &Atomics = getActionDefinitionsBuilder(
    {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
     G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
     G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
     G_ATOMICRMW_UMIN})
    .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
               {S64, GlobalPtr}, {S64, LocalPtr}});
  if (ST.hasFlatAddressSpace()) {
    Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
  }

  getActionDefinitionsBuilder(G_ATOMICRMW_FADD)
    .legalFor({{S32, LocalPtr}});

  // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
  // demarshalling
  getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
    .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
                {S32, FlatPtr}, {S64, FlatPtr}})
    .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
               {S32, RegionPtr}, {S64, RegionPtr}});

  getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
    .lower();

  // TODO: Pointer types, any 32-bit or 64-bit vector

  // Condition should be s32 for scalar, s1 for vector.
  getActionDefinitionsBuilder(G_SELECT)
    .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16,
          GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
          LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32})
    .clampScalar(0, S16, S64)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(numElementsNotEven(0), scalarize(0))
    .scalarize(1)
    .clampMaxNumElements(0, S32, 2)
    .clampMaxNumElements(0, LocalPtr, 2)
    .clampMaxNumElements(0, PrivatePtr, 2)
    .scalarize(0)
    .widenScalarToNextPow2(0)
    .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));

  // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
  // be more flexible with the shift amount type.
  auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
    .legalFor({{S32, S32}, {S64, S32}});
  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts()) {
      Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}})
            .clampMaxNumElements(0, S16, 2);
    } else
      Shifts.legalFor({{S16, S32}, {S16, S16}});

    // TODO: Support 16-bit shift amounts
    Shifts.clampScalar(1, S32, S32);
    Shifts.clampScalar(0, S16, S64);
    Shifts.widenScalarToNextPow2(0, 16);
  } else {
    // Make sure we legalize the shift amount type first, as the general
    // expansion for the shifted type will produce much worse code if it hasn't
    // been truncated already.
    Shifts.clampScalar(1, S32, S32);
    Shifts.clampScalar(0, S32, S64);
    Shifts.widenScalarToNextPow2(0, 32);
  }
  Shifts.scalarize(0);

  for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
    unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
    unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
    unsigned IdxTypeIdx = 2;

    getActionDefinitionsBuilder(Op)
      .customIf([=](const LegalityQuery &Query) {
          const LLT EltTy = Query.Types[EltTypeIdx];
          const LLT VecTy = Query.Types[VecTypeIdx];
          const LLT IdxTy = Query.Types[IdxTypeIdx];
          return (EltTy.getSizeInBits() == 16 ||
                  EltTy.getSizeInBits() % 32 == 0) &&
                 VecTy.getSizeInBits() % 32 == 0 &&
                 VecTy.getSizeInBits() <= 1024 &&
                 IdxTy.getSizeInBits() == 32;
        })
      .clampScalar(EltTypeIdx, S32, S64)
      .clampScalar(VecTypeIdx, S32, S64)
      .clampScalar(IdxTypeIdx, S32, S32);
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
    .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      });

  for (unsigned Op : {G_EXTRACT, G_INSERT}) {
    unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
    unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;

    // FIXME: Doesn't handle extract of illegal sizes.
    getActionDefinitionsBuilder(Op)
      .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
      // FIXME: Multiples of 16 should not be legal.
      .legalIf([=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          const LLT LitTy = Query.Types[LitTyIdx];
          return (BigTy.getSizeInBits() % 32 == 0) &&
                 (LitTy.getSizeInBits() % 16 == 0);
        })
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          return (BigTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT LitTy = Query.Types[LitTyIdx];
          return (LitTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .widenScalarToNextPow2(BigTyIdx, 32);

  }

  auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
    .legalForCartesianProduct(AllS32Vectors, {S32})
    .legalForCartesianProduct(AllS64Vectors, {S64})
    .clampNumElements(0, V16S32, V32S32)
    .clampNumElements(0, V2S64, V16S64)
    .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));

  if (ST.hasScalarPackInsts())
    BuildVector.legalFor({V2S16, S32});

  BuildVector
    .minScalarSameAs(1, 0)
    .legalIf(isRegisterType(0))
    .minScalarOrElt(0, S32);

  if (ST.hasScalarPackInsts()) {
    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .legalFor({V2S16, S32})
      .lower();
  } else {
    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .lower();
  }

  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
    .legalIf(isRegisterType(0));

  // TODO: Don't fully scalarize v2s16 pieces
  getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT &Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    auto &Builder = getActionDefinitionsBuilder(Op)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
      // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
      // worth considering the multiples of 64 since 2*192 and 2*384 are not
      // valid.
      .clampScalar(LitTyIdx, S16, S256)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
                           elementTypeIs(1, S16)),
                       changeTo(1, V2S16))
      // Break up vectors with weird elements into scalars
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
        scalarize(0))
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
        scalarize(1))
      .clampScalar(BigTyIdx, S32, S1024)
      .lowerFor({{S16, V2S16}});

    if (Op == G_MERGE_VALUES) {
      Builder.widenScalarIf(
        // TODO: Use 16-bit shifts if legal for 8-bit values?
        [=](const LegalityQuery &Query) {
          const LLT Ty = Query.Types[LitTyIdx];
          return Ty.getSizeInBits() < 32;
        },
        changeTo(LitTyIdx, S32));
    }

    Builder.widenScalarIf(
      [=](const LegalityQuery &Query) {
        const LLT Ty = Query.Types[BigTyIdx];
        return !isPowerOf2_32(Ty.getSizeInBits()) &&
          Ty.getSizeInBits() % 16 != 0;
      },
      [=](const LegalityQuery &Query) {
        // Pick the next power of 2, or a multiple of 64 over 128.
        // Whichever is smaller.
        const LLT &Ty = Query.Types[BigTyIdx];
        unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
        if (NewSizeInBits >= 256) {
          unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
          if (RoundedTo < NewSizeInBits)
            NewSizeInBits = RoundedTo;
        }
        return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
      })
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];

          if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
            return false;
          if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
            return false;

          return BigTy.getSizeInBits() % 16 == 0 &&
                 LitTy.getSizeInBits() % 16 == 0 &&
                 BigTy.getSizeInBits() <= 1024;
        })
      // Any vectors left are the wrong size. Scalarize them.
      .scalarize(0)
      .scalarize(1);
  }

  getActionDefinitionsBuilder(G_SEXT_INREG).lower();

  getActionDefinitionsBuilder({G_READ_REGISTER, G_WRITE_REGISTER}).lower();

  getActionDefinitionsBuilder(G_READCYCLECOUNTER)
    .legalFor({S64});

  getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
        G_DYN_STACKALLOC, G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
        G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
    .unsupported();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B,
                                         GISelChangeObserver &Observer) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_ADDRSPACE_CAST:
    return legalizeAddrSpaceCast(MI, MRI, B);
  case TargetOpcode::G_FRINT:
    return legalizeFrint(MI, MRI, B);
  case TargetOpcode::G_FCEIL:
    return legalizeFceil(MI, MRI, B);
  case TargetOpcode::G_INTRINSIC_TRUNC:
    return legalizeIntrinsicTrunc(MI, MRI, B);
  case TargetOpcode::G_SITOFP:
    return legalizeITOFP(MI, MRI, B, true);
  case TargetOpcode::G_UITOFP:
    return legalizeITOFP(MI, MRI, B, false);
  case TargetOpcode::G_FMINNUM:
  case TargetOpcode::G_FMAXNUM:
  case TargetOpcode::G_FMINNUM_IEEE:
  case TargetOpcode::G_FMAXNUM_IEEE:
    return legalizeMinNumMaxNum(MI, MRI, B);
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    return legalizeExtractVectorElt(MI, MRI, B);
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return legalizeInsertVectorElt(MI, MRI, B);
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FCOS:
    return legalizeSinCos(MI, MRI, B);
  case TargetOpcode::G_GLOBAL_VALUE:
    return legalizeGlobalValue(MI, MRI, B);
  case TargetOpcode::G_LOAD:
    return legalizeLoad(MI, MRI, B, Observer);
  case TargetOpcode::G_FMAD:
    return legalizeFMad(MI, MRI, B);
  case TargetOpcode::G_FDIV:
    return legalizeFDIV(MI, MRI, B);
  case TargetOpcode::G_ATOMIC_CMPXCHG:
    return legalizeAtomicCmpXChg(MI, MRI, B);
  default:
    return false;
  }

  llvm_unreachable("expected switch to return");
}

Register AMDGPULegalizerInfo::getSegmentAperture(
  unsigned AS,
  MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const LLT S32 = LLT::scalar(32);

  assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);

  if (ST.hasApertureRegs()) {
    // FIXME: Use inline constants (src_{shared, private}_base) instead of
    // getreg.
    unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
        AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
    unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
        AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
    unsigned Encoding =
        AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
        Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
        WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;

    Register ApertureReg = MRI.createGenericVirtualRegister(S32);
    Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);

    B.buildInstr(AMDGPU::S_GETREG_B32)
      .addDef(GetReg)
      .addImm(Encoding);
    MRI.setType(GetReg, S32);

    auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
    B.buildInstr(TargetOpcode::G_SHL)
      .addDef(ApertureReg)
      .addUse(GetReg)
      .addUse(ShiftAmt.getReg(0));

    return ApertureReg;
  }

  Register QueuePtr = MRI.createGenericVirtualRegister(
    LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));

  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr))
    return Register();

  // Offset into amd_queue_t for group_segment_aperture_base_hi /
  // private_segment_aperture_base_hi.
  uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;

  // TODO: can we be smarter about machine pointer info?
  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
    PtrInfo,
    MachineMemOperand::MOLoad |
    MachineMemOperand::MODereferenceable |
    MachineMemOperand::MOInvariant,
    4,
    MinAlign(64, StructOffset));

  Register LoadResult = MRI.createGenericVirtualRegister(S32);
  Register LoadAddr;

  B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
  B.buildLoad(LoadResult, LoadAddr, *MMO);
  return LoadResult;
}

bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();

  B.setInstr(MI);

  const LLT S32 = LLT::scalar(32);
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  LLT DstTy = MRI.getType(Dst);
  LLT SrcTy = MRI.getType(Src);
  unsigned DestAS = DstTy.getAddressSpace();
  unsigned SrcAS = SrcTy.getAddressSpace();

  // TODO: Avoid reloading from the queue ptr for each cast, or at least each
  // vector element.
  assert(!DstTy.isVector());

  const AMDGPUTargetMachine &TM
    = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());

  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) {
    MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
    return true;
  }

  if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    // Truncate.
    B.buildExtract(Dst, Src, 0);
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
    uint32_t AddrHiVal = Info->get32BitAddressHighBits();

    // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
    // another. Merge operands are required to be the same type, but creating an
    // extra ptrtoint would be kind of pointless.
    auto HighAddr = B.buildConstant(
      LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
    B.buildMerge(Dst, {Src, HighAddr.getReg(0)});
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
    assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
           DestAS == AMDGPUAS::PRIVATE_ADDRESS);
    unsigned NullVal = TM.getNullPointerValue(DestAS);

    auto SegmentNull = B.buildConstant(DstTy, NullVal);
    auto FlatNull = B.buildConstant(SrcTy, 0);

    Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy);

    // Extract low 32-bits of the pointer.
    B.buildExtract(PtrLo32, Src, 0);

    Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
    B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0));
    B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));

    MI.eraseFromParent();
    return true;
  }

  if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
    return false;

  if (!ST.hasFlatAddressSpace())
    return false;

  auto SegmentNull =
      B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
  auto FlatNull =
      B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));

  Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
  if (!ApertureReg.isValid())
    return false;

  Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
  B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0));

  Register BuildPtr = MRI.createGenericVirtualRegister(DstTy);

  // Coerce the type of the low half of the result so we can use merge_values.
  Register SrcAsInt = MRI.createGenericVirtualRegister(S32);
  B.buildInstr(TargetOpcode::G_PTRTOINT)
    .addDef(SrcAsInt)
    .addUse(Src);

  // TODO: Should we allow mismatched types but matching sizes in merges to
  // avoid the ptrtoint?
  B.buildMerge(BuildPtr, {SrcAsInt, ApertureReg});
  B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0));

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFrint(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  Register Src = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(Src);
  assert(Ty.isScalar() && Ty.getSizeInBits() == 64);

  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");

  auto C1 = B.buildFConstant(Ty, C1Val);
  auto CopySign = B.buildFCopysign(Ty, C1, Src);

  // TODO: Should this propagate fast-math-flags?
  auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
  auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);

  auto C2 = B.buildFConstant(Ty, C2Val);
  auto Fabs = B.buildFAbs(Ty, Src);

  auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
  B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
  return true;
}

bool AMDGPULegalizerInfo::legalizeFceil(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  const LLT S1 = LLT::scalar(1);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // result = trunc(src)
  // if (src > 0.0 && src != result)
  //   result += 1.0

  auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src});

  const auto Zero = B.buildFConstant(S64, 0.0);
  const auto One = B.buildFConstant(S64, 1.0);
  auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
  auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
  auto And = B.buildAnd(S1, Lt0, NeTrunc);
  auto Add = B.buildSelect(S64, And, One, Zero);

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
  return true;
}

static MachineInstrBuilder extractF64Exponent(unsigned Hi,
                                              MachineIRBuilder &B) {
  const unsigned FractBits = 52;
  const unsigned ExpBits = 11;
  LLT S32 = LLT::scalar(32);

  auto Const0 = B.buildConstant(S32, FractBits - 32);
  auto Const1 = B.buildConstant(S32, ExpBits);

  auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
    .addUse(Const0.getReg(0))
    .addUse(Const1.getReg(0));

  return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
}

bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  const LLT S1 = LLT::scalar(1);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // TODO: Should this use extract since the low half is unused?
  auto Unmerge = B.buildUnmerge({S32, S32}, Src);
  Register Hi = Unmerge.getReg(1);

  // Extract the upper half, since this is where we will find the sign and
  // exponent.
  auto Exp = extractF64Exponent(Hi, B);

  const unsigned FractBits = 52;

  // Extract the sign bit.
  const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
  auto SignBit = B.buildAnd(S32, Hi, SignBitMask);

  const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);

  const auto Zero32 = B.buildConstant(S32, 0);

  // Extend back to 64-bits.
  auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)});

  auto Shr = B.buildAShr(S64, FractMask, Exp);
  auto Not = B.buildNot(S64, Shr);
  auto Tmp0 = B.buildAnd(S64, Src, Not);
  auto FiftyOne = B.buildConstant(S32, FractBits - 1);

  auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
  auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);

  auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
  B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
  return true;
}

bool AMDGPULegalizerInfo::legalizeITOFP(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, bool Signed) const {
  B.setInstr(MI);

  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);

  assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);

  auto Unmerge = B.buildUnmerge({S32, S32}, Src);

  auto CvtHi = Signed ?
    B.buildSITOFP(S64, Unmerge.getReg(1)) :
    B.buildUITOFP(S64, Unmerge.getReg(1));

  auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));

  auto ThirtyTwo = B.buildConstant(S32, 32);
  auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
    .addUse(CvtHi.getReg(0))
    .addUse(ThirtyTwo.getReg(0));

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(Dst, LdExp, CvtLo);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
                        MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;

  // With ieee_mode disabled, the instructions have the correct behavior
  // already for G_FMINNUM/G_FMAXNUM
  if (!MFI->getMode().IEEE)
    return !IsIEEEOp;

  if (IsIEEEOp)
    return true;

  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
  HelperBuilder.setInstr(MI);
  return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32
  // TODO: Dynamic s64 indexing is only legal for SGPR.
  Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(2).getReg(), MRI);
  if (!IdxVal) // Dynamic case will be selected to register indexing.
    return true;

  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Dst));

  B.setInstr(MI);

  if (IdxVal.getValue() < VecTy.getNumElements())
    B.buildExtract(Dst, Vec, IdxVal.getValue() * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32
  // TODO: Dynamic s64 indexing is only legal for SGPR.
  Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(3).getReg(), MRI);
  if (!IdxVal) // Dynamic case will be selected to register indexing.
    return true;

  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();
  Register Ins = MI.getOperand(2).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Ins));

  B.setInstr(MI);

  if (IdxVal.getValue() < VecTy.getNumElements())
    B.buildInsert(Dst, Vec, Ins, IdxVal.getValue() * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeSinCos(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned Flags = MI.getFlags();

  Register TrigVal;
  auto OneOver2Pi = B.buildFConstant(Ty, 0.5 / M_PI);
  if (ST.hasTrigReducedRange()) {
    auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
    TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
      .addUse(MulVal.getReg(0))
      .setMIFlags(Flags).getReg(0);
  } else
    TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);

  Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
    Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
  B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
    .addUse(TrigVal)
    .setMIFlags(Flags);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(
  Register DstReg, LLT PtrTy,
  MachineIRBuilder &B, const GlobalValue *GV,
  unsigned Offset, unsigned GAFlags) const {
  // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
  // to the following code sequence:
  //
  // For constant address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol
  //   s_addc_u32 s1, s1, 0
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   a fixup or relocation is emitted to replace $symbol with a literal
  //   constant, which is a pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // For global address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
  //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   fixups or relocations are emitted to replace $symbol@*@lo and
  //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
  //   which is a 64-bit pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // What we want here is an offset from the value returned by s_getpc
  // (which is the address of the s_add_u32 instruction) to the global
  // variable, but since the encoding of $symbol starts 4 bytes after the start
  // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
  // small. This requires us to add 4 to the global variable offset in order to
  // compute the correct address.

  LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);

  Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
    B.getMRI()->createGenericVirtualRegister(ConstPtrTy);

  MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
    .addDef(PCReg);

  MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
  if (GAFlags == SIInstrInfo::MO_NONE)
    MIB.addImm(0);
  else
    MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1);

  B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);

  if (PtrTy.getSizeInBits() == 32)
    B.buildExtract(DstReg, PCReg, 0);
  return true;
 }

bool AMDGPULegalizerInfo::legalizeGlobalValue(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned AS = Ty.getAddressSpace();

  const GlobalValue *GV = MI.getOperand(1).getGlobal();
  MachineFunction &MF = B.getMF();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  B.setInstr(MI);

  if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
    if (!MFI->isEntryFunction()) {
      const Function &Fn = MF.getFunction();
      DiagnosticInfoUnsupported BadLDSDecl(
        Fn, "local memory global used by non-kernel function", MI.getDebugLoc());
      Fn.getContext().diagnose(BadLDSDecl);
    }

    // TODO: We could emit code to handle the initialization somewhere.
    if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) {
      B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV));
      MI.eraseFromParent();
      return true;
    }

    const Function &Fn = MF.getFunction();
    DiagnosticInfoUnsupported BadInit(
      Fn, "unsupported initializer for address space", MI.getDebugLoc());
    Fn.getContext().diagnose(BadInit);
    return true;
  }

  const SITargetLowering *TLI = ST.getTargetLowering();

  if (TLI->shouldEmitFixup(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
    MI.eraseFromParent();
    return true;
  }

  if (TLI->shouldEmitPCReloc(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
    MI.eraseFromParent();
    return true;
  }

  LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
  Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);

  MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
    MachinePointerInfo::getGOT(MF),
    MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
    MachineMemOperand::MOInvariant,
    8 /*Size*/, 8 /*Align*/);

  buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);

  if (Ty.getSizeInBits() == 32) {
    // Truncate if this is a 32-bit constant adrdess.
    auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
    B.buildExtract(DstReg, Load, 0);
  } else
    B.buildLoad(DstReg, GOTAddr, *GOTMMO);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeLoad(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, GISelChangeObserver &Observer) const {
  B.setInstr(MI);
  LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
  auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg());
  Observer.changingInstr(MI);
  MI.getOperand(1).setReg(Cast.getReg(0));
  Observer.changedInstr(MI);
  return true;
}

bool AMDGPULegalizerInfo::legalizeFMad(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  assert(Ty.isScalar());

  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  // TODO: Always legal with future ftz flag.
  if (Ty == LLT::scalar(32) && !MFI->getMode().FP32Denormals)
    return true;
  if (Ty == LLT::scalar(16) && !MFI->getMode().FP64FP16Denormals)
    return true;


  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
  HelperBuilder.setMBB(*MI.getParent());
  return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
  MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
  Register DstReg = MI.getOperand(0).getReg();
  Register PtrReg = MI.getOperand(1).getReg();
  Register CmpVal = MI.getOperand(2).getReg();
  Register NewVal = MI.getOperand(3).getReg();

  assert(SITargetLowering::isFlatGlobalAddrSpace(
           MRI.getType(PtrReg).getAddressSpace()) &&
         "this should not have been custom lowered");

  LLT ValTy = MRI.getType(CmpVal);
  LLT VecTy = LLT::vector(2, ValTy);

  B.setInstr(MI);
  Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);

  B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
    .addDef(DstReg)
    .addUse(PtrReg)
    .addUse(PackedVal)
    .setMemRefs(MI.memoperands());

  MI.eraseFromParent();
  return true;
}

// Return the use branch instruction, otherwise null if the usage is invalid.
static MachineInstr *verifyCFIntrinsic(MachineInstr &MI,
                                       MachineRegisterInfo &MRI,
                                       MachineInstr *&Br) {
  Register CondDef = MI.getOperand(0).getReg();
  if (!MRI.hasOneNonDBGUse(CondDef))
    return nullptr;

  MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef);
  if (UseMI.getParent() != MI.getParent() ||
      UseMI.getOpcode() != AMDGPU::G_BRCOND)
    return nullptr;

  // Make sure the cond br is followed by a G_BR
  MachineBasicBlock::iterator Next = std::next(UseMI.getIterator());
  if (Next != MI.getParent()->end()) {
    if (Next->getOpcode() != AMDGPU::G_BR)
      return nullptr;
    Br = &*Next;
  }

  return &UseMI;
}

Register AMDGPULegalizerInfo::getLiveInRegister(MachineRegisterInfo &MRI,
                                                Register Reg, LLT Ty) const {
  Register LiveIn = MRI.getLiveInVirtReg(Reg);
  if (LiveIn)
    return LiveIn;

  Register NewReg = MRI.createGenericVirtualRegister(Ty);
  MRI.addLiveIn(Reg, NewReg);
  return NewReg;
}

bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
                                         const ArgDescriptor *Arg) const {
  if (!Arg->isRegister() || !Arg->getRegister().isValid())
    return false; // TODO: Handle these

  assert(Arg->getRegister().isPhysical());

  MachineRegisterInfo &MRI = *B.getMRI();

  LLT Ty = MRI.getType(DstReg);
  Register LiveIn = getLiveInRegister(MRI, Arg->getRegister(), Ty);

  if (Arg->isMasked()) {
    // TODO: Should we try to emit this once in the entry block?
    const LLT S32 = LLT::scalar(32);
    const unsigned Mask = Arg->getMask();
    const unsigned Shift = countTrailingZeros<unsigned>(Mask);

    Register AndMaskSrc = LiveIn;

    if (Shift != 0) {
      auto ShiftAmt = B.buildConstant(S32, Shift);
      AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
    }

    B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
  } else
    B.buildCopy(DstReg, LiveIn);

  // Insert the argument copy if it doens't already exist.
  // FIXME: It seems EmitLiveInCopies isn't called anywhere?
  if (!MRI.getVRegDef(LiveIn)) {
    // FIXME: Should have scoped insert pt
    MachineBasicBlock &OrigInsBB = B.getMBB();
    auto OrigInsPt = B.getInsertPt();

    MachineBasicBlock &EntryMBB = B.getMF().front();
    EntryMBB.addLiveIn(Arg->getRegister());
    B.setInsertPt(EntryMBB, EntryMBB.begin());
    B.buildCopy(LiveIn, Arg->getRegister());

    B.setInsertPt(OrigInsBB, OrigInsPt);
  }

  return true;
}

bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
  MachineInstr &MI,
  MachineRegisterInfo &MRI,
  MachineIRBuilder &B,
  AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
  B.setInstr(MI);

  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();

  const ArgDescriptor *Arg;
  const TargetRegisterClass *RC;
  std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType);
  if (!Arg) {
    LLVM_DEBUG(dbgs() << "Required arg register missing\n");
    return false;
  }

  if (loadInputValue(MI.getOperand(0).getReg(), B, Arg)) {
    MI.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
                                       MachineRegisterInfo &MRI,
                                       MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  LLT S16 = LLT::scalar(16);
  LLT S32 = LLT::scalar(32);
  LLT S64 = LLT::scalar(64);

  if (legalizeFastUnsafeFDIV(MI, MRI, B))
    return true;

  if (DstTy == S16)
    return legalizeFDIV16(MI, MRI, B);
  if (DstTy == S32)
    return legalizeFDIV32(MI, MRI, B);
  if (DstTy == S64)
    return legalizeFDIV64(MI, MRI, B);

  return false;
}

bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT ResTy = MRI.getType(Res);
  LLT S32 = LLT::scalar(32);
  LLT S64 = LLT::scalar(64);

  const MachineFunction &MF = B.getMF();
  bool Unsafe =
    MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp);

  if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64)
    return false;

  if (!Unsafe && ResTy == S32 &&
      MF.getInfo<SIMachineFunctionInfo>()->getMode().FP32Denormals)
    return false;

  if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
    // 1 / x -> RCP(x)
    if (CLHS->isExactlyValue(1.0)) {
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(RHS)
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }

    // -1 / x -> RCP( FNEG(x) )
    if (CLHS->isExactlyValue(-1.0)) {
      auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(FNeg.getReg(0))
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }
  }

  // x / y -> x * (1.0 / y)
  if (Unsafe) {
    auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
      .addUse(RHS)
      .setMIFlags(Flags);
    B.buildFMul(Res, LHS, RCP, Flags);

    MI.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT S16 = LLT::scalar(16);
  LLT S32 = LLT::scalar(32);

  auto LHSExt = B.buildFPExt(S32, LHS, Flags);
  auto RHSExt = B.buildFPExt(S32, RHS, Flags);

  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(RHSExt.getReg(0))
    .setMIFlags(Flags);

  auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
  auto RDst = B.buildFPTrunc(S16, QUOT, Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
    .addUse(RDst.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

// Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
// to enable denorm mode. When 'Enable' is false, disable denorm mode.
static void toggleSPDenormMode(bool Enable,
                               MachineIRBuilder &B,
                               const GCNSubtarget &ST,
                               AMDGPU::SIModeRegisterDefaults Mode) {
  // Set SP denorm mode to this value.
  unsigned SPDenormMode =
    Enable ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;

  if (ST.hasDenormModeInst()) {
    // Preserve default FP64FP16 denorm mode while updating FP32 mode.
    unsigned DPDenormModeDefault = Mode.FP64FP16Denormals
                                   ? FP_DENORM_FLUSH_NONE
                                   : FP_DENORM_FLUSH_IN_FLUSH_OUT;

    unsigned NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
    B.buildInstr(AMDGPU::S_DENORM_MODE)
      .addImm(NewDenormModeValue);

  } else {
    // Select FP32 bit field in mode register.
    unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
                                    (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                                    (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);

    B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
      .addImm(SPDenormMode)
      .addImm(SPDenormModeBitField);
  }
}

bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();

  uint16_t Flags = MI.getFlags();

  LLT S32 = LLT::scalar(32);
  LLT S1 = LLT::scalar(1);

  auto One = B.buildFConstant(S32, 1.0f);

  auto DenominatorScaled =
    B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
      .addUse(RHS)
      .addUse(LHS)
      .addImm(1)
      .setMIFlags(Flags);
  auto NumeratorScaled =
    B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
      .addUse(LHS)
      .addUse(RHS)
      .addImm(0)
      .setMIFlags(Flags);

  auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(DenominatorScaled.getReg(0))
    .setMIFlags(Flags);
  auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);

  // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
  // aren't modeled as reading it.
  if (!Mode.FP32Denormals)
    toggleSPDenormMode(true, B, ST, Mode);

  auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
  auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
  auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
  auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
  auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
  auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);

  if (!Mode.FP32Denormals)
    toggleSPDenormMode(false, B, ST, Mode);

  auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
    .addUse(Fma4.getReg(0))
    .addUse(Fma1.getReg(0))
    .addUse(Fma3.getReg(0))
    .addUse(NumeratorScaled.getReg(1))
    .setMIFlags(Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
    .addUse(Fmas.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT S64 = LLT::scalar(64);
  LLT S1 = LLT::scalar(1);

  auto One = B.buildFConstant(S64, 1.0);

  auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
    .addUse(LHS)
    .addUse(RHS)
    .addImm(1)
    .setMIFlags(Flags);

  auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);

  auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
    .addUse(DivScale0.getReg(0))
    .setMIFlags(Flags);

  auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
  auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
  auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);

  auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
    .addUse(LHS)
    .addUse(RHS)
    .addImm(0)
    .setMIFlags(Flags);

  auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
  auto Mul = B.buildMul(S64, DivScale1.getReg(0), Fma3, Flags);
  auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);

  Register Scale;
  if (!ST.hasUsableDivScaleConditionOutput()) {
    // Workaround a hardware bug on SI where the condition output from div_scale
    // is not usable.

    Scale = MRI.createGenericVirtualRegister(S1);

    LLT S32 = LLT::scalar(32);

    auto NumUnmerge = B.buildUnmerge(S32, LHS);
    auto DenUnmerge = B.buildUnmerge(S32, RHS);
    auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
    auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);

    auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
                              Scale1Unmerge.getReg(1));
    auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
                              Scale0Unmerge.getReg(1));
    B.buildXor(Scale, CmpNum, CmpDen);
  } else {
    Scale = DivScale1.getReg(1);
  }

  auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
    .addUse(Fma4.getReg(0))
    .addUse(Fma3.getReg(0))
    .addUse(Mul.getReg(0))
    .addUse(Scale)
    .setMIFlags(Flags);

  B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
    .addUse(Fmas.getReg(0))
    .addUse(RHS)
    .addUse(LHS)
    .setMIFlags(Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(2).getReg();
  Register RHS = MI.getOperand(3).getReg();
  uint16_t Flags = MI.getFlags();

  LLT S32 = LLT::scalar(32);
  LLT S1 = LLT::scalar(1);

  auto Abs = B.buildFAbs(S32, RHS, Flags);
  const APFloat C0Val(1.0f);

  auto C0 = B.buildConstant(S32, 0x6f800000);
  auto C1 = B.buildConstant(S32, 0x2f800000);
  auto C2 = B.buildConstant(S32, FloatToBits(1.0f));

  auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
  auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);

  auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);

  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(Mul0.getReg(0))
    .setMIFlags(Flags);

  auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);

  B.buildFMul(Res, Sel, Mul1, Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  if (!MFI->isEntryFunction()) {
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
  }

  B.setInstr(MI);

  uint64_t Offset =
    ST.getTargetLowering()->getImplicitParameterOffset(
      B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());

  const ArgDescriptor *Arg;
  const TargetRegisterClass *RC;
  std::tie(Arg, RC)
    = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  if (!Arg)
    return false;

  Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
  if (!loadInputValue(KernargPtrReg, B, Arg))
    return false;

  B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
                                              MachineRegisterInfo &MRI,
                                              MachineIRBuilder &B,
                                              unsigned AddrSpace) const {
  B.setInstr(MI);
  Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
  auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32);
  B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
  MI.eraseFromParent();
  return true;
}

/// Handle register layout difference for f16 images for some subtargets.
Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
                                             MachineRegisterInfo &MRI,
                                             Register Reg) const {
  if (!ST.hasUnpackedD16VMem())
    return Reg;

  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  LLT StoreVT = MRI.getType(Reg);
  assert(StoreVT.isVector() && StoreVT.getElementType() == S16);

  auto Unmerge = B.buildUnmerge(S16, Reg);

  SmallVector<Register, 4> WideRegs;
  for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
    WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));

  int NumElts = StoreVT.getNumElements();

  return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0);
}

bool AMDGPULegalizerInfo::legalizeRawBufferStore(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B,
                                                 bool IsFormat) const {
  // TODO: Reject f16 format on targets where unsupported.
  Register VData = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(VData);

  B.setInstr(MI);

  const LLT S32 = LLT::scalar(32);
  const LLT S16 = LLT::scalar(16);

  // Fixup illegal register types for i8 stores.
  if (Ty == LLT::scalar(8) || Ty == S16) {
    Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
    MI.getOperand(1).setReg(AnyExt);
    return true;
  }

  if (Ty.isVector()) {
    if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
      if (IsFormat)
        MI.getOperand(1).setReg(handleD16VData(B, MRI, VData));
      return true;
    }

    return Ty.getElementType() == S32 && Ty.getNumElements() <= 4;
  }

  return Ty == S32;
}

bool AMDGPULegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
                                            MachineRegisterInfo &MRI,
                                            MachineIRBuilder &B) const {
  // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
  auto IntrID = MI.getIntrinsicID();
  switch (IntrID) {
  case Intrinsic::amdgcn_if:
  case Intrinsic::amdgcn_else: {
    MachineInstr *Br = nullptr;
    if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      B.setInstr(*BrCond);
      Register Def = MI.getOperand(1).getReg();
      Register Use = MI.getOperand(3).getReg();

      MachineBasicBlock *BrTarget = BrCond->getOperand(1).getMBB();
      if (Br)
        BrTarget = Br->getOperand(0).getMBB();

      if (IntrID == Intrinsic::amdgcn_if) {
        B.buildInstr(AMDGPU::SI_IF)
          .addDef(Def)
          .addUse(Use)
          .addMBB(BrTarget);
      } else {
        B.buildInstr(AMDGPU::SI_ELSE)
          .addDef(Def)
          .addUse(Use)
          .addMBB(BrTarget)
          .addImm(0);
      }

      if (Br)
        Br->getOperand(0).setMBB(BrCond->getOperand(1).getMBB());

      MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
      MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
      MI.eraseFromParent();
      BrCond->eraseFromParent();
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_loop: {
    MachineInstr *Br = nullptr;
    if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      B.setInstr(*BrCond);

      // FIXME: Need to adjust branch targets based on unconditional branch.
      Register Reg = MI.getOperand(2).getReg();
      B.buildInstr(AMDGPU::SI_LOOP)
        .addUse(Reg)
        .addMBB(BrCond->getOperand(1).getMBB());
      MI.eraseFromParent();
      BrCond->eraseFromParent();
      MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_kernarg_segment_ptr:
    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  case Intrinsic::amdgcn_implicitarg_ptr:
    return legalizeImplicitArgPtr(MI, MRI, B);
  case Intrinsic::amdgcn_workitem_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_X);
  case Intrinsic::amdgcn_workitem_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
  case Intrinsic::amdgcn_workitem_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
  case Intrinsic::amdgcn_workgroup_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
  case Intrinsic::amdgcn_workgroup_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
  case Intrinsic::amdgcn_workgroup_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
  case Intrinsic::amdgcn_dispatch_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_PTR);
  case Intrinsic::amdgcn_queue_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::QUEUE_PTR);
  case Intrinsic::amdgcn_implicit_buffer_ptr:
    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
  case Intrinsic::amdgcn_dispatch_id:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_ID);
  case Intrinsic::amdgcn_fdiv_fast:
    return legalizeFDIVFastIntrin(MI, MRI, B);
  case Intrinsic::amdgcn_is_shared:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
  case Intrinsic::amdgcn_is_private:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
  case Intrinsic::amdgcn_wavefrontsize: {
    B.setInstr(MI);
    B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
    MI.eraseFromParent();
    return true;
  }
  case Intrinsic::amdgcn_raw_buffer_store:
    return legalizeRawBufferStore(MI, MRI, B, false);
  case Intrinsic::amdgcn_raw_buffer_store_format:
    return legalizeRawBufferStore(MI, MRI, B, true);
  default:
    return true;
  }

  return true;
}