AMDGPUTargetTransformInfo.cpp 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPUSubtarget.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "AMDGPUtti"

static cl::opt<unsigned> UnrollThresholdPrivate(
  "amdgpu-unroll-threshold-private",
  cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
  cl::init(2700), cl::Hidden);

static cl::opt<unsigned> UnrollThresholdLocal(
  "amdgpu-unroll-threshold-local",
  cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
  cl::init(1000), cl::Hidden);

static cl::opt<unsigned> UnrollThresholdIf(
  "amdgpu-unroll-threshold-if",
  cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
  cl::init(150), cl::Hidden);

static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
                              unsigned Depth = 0) {
  const Instruction *I = dyn_cast<Instruction>(Cond);
  if (!I)
    return false;

  for (const Value *V : I->operand_values()) {
    if (!L->contains(I))
      continue;
    if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
      if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
                  return SubLoop->contains(PHI); }))
        return true;
    } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
      return true;
  }
  return false;
}

void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                            TTI::UnrollingPreferences &UP) {
  const Function &F = *L->getHeader()->getParent();
  UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
  UP.MaxCount = std::numeric_limits<unsigned>::max();
  UP.Partial = true;

  // TODO: Do we want runtime unrolling?

  // Maximum alloca size than can fit registers. Reserve 16 registers.
  const unsigned MaxAlloca = (256 - 16) * 4;
  unsigned ThresholdPrivate = UnrollThresholdPrivate;
  unsigned ThresholdLocal = UnrollThresholdLocal;
  unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
  for (const BasicBlock *BB : L->getBlocks()) {
    const DataLayout &DL = BB->getModule()->getDataLayout();
    unsigned LocalGEPsSeen = 0;

    if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
               return SubLoop->contains(BB); }))
        continue; // Block belongs to an inner loop.

    for (const Instruction &I : *BB) {
      // Unroll a loop which contains an "if" statement whose condition
      // defined by a PHI belonging to the loop. This may help to eliminate
      // if region and potentially even PHI itself, saving on both divergence
      // and registers used for the PHI.
      // Add a small bonus for each of such "if" statements.
      if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
        if (UP.Threshold < MaxBoost && Br->isConditional()) {
          BasicBlock *Succ0 = Br->getSuccessor(0);
          BasicBlock *Succ1 = Br->getSuccessor(1);
          if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
              (L->contains(Succ1) && L->isLoopExiting(Succ1)))
            continue;
          if (dependsOnLocalPhi(L, Br->getCondition())) {
            UP.Threshold += UnrollThresholdIf;
            LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
                              << " for loop:\n"
                              << *L << " due to " << *Br << '\n');
            if (UP.Threshold >= MaxBoost)
              return;
          }
        }
        continue;
      }

      const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
      if (!GEP)
        continue;

      unsigned AS = GEP->getAddressSpace();
      unsigned Threshold = 0;
      if (AS == AMDGPUAS::PRIVATE_ADDRESS)
        Threshold = ThresholdPrivate;
      else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
        Threshold = ThresholdLocal;
      else
        continue;

      if (UP.Threshold >= Threshold)
        continue;

      if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
        const Value *Ptr = GEP->getPointerOperand();
        const AllocaInst *Alloca =
            dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
        if (!Alloca || !Alloca->isStaticAlloca())
          continue;
        Type *Ty = Alloca->getAllocatedType();
        unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
        if (AllocaSize > MaxAlloca)
          continue;
      } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
                 AS == AMDGPUAS::REGION_ADDRESS) {
        LocalGEPsSeen++;
        // Inhibit unroll for local memory if we have seen addressing not to
        // a variable, most likely we will be unable to combine it.
        // Do not unroll too deep inner loops for local memory to give a chance
        // to unroll an outer loop for a more important reason.
        if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
            (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
             !isa<Argument>(GEP->getPointerOperand())))
          continue;
      }

      // Check if GEP depends on a value defined by this loop itself.
      bool HasLoopDef = false;
      for (const Value *Op : GEP->operands()) {
        const Instruction *Inst = dyn_cast<Instruction>(Op);
        if (!Inst || L->isLoopInvariant(Op))
          continue;

        if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
             return SubLoop->contains(Inst); }))
          continue;
        HasLoopDef = true;
        break;
      }
      if (!HasLoopDef)
        continue;

      // We want to do whatever we can to limit the number of alloca
      // instructions that make it through to the code generator.  allocas
      // require us to use indirect addressing, which is slow and prone to
      // compiler bugs.  If this loop does an address calculation on an
      // alloca ptr, then we want to use a higher than normal loop unroll
      // threshold. This will give SROA a better chance to eliminate these
      // allocas.
      //
      // We also want to have more unrolling for local memory to let ds
      // instructions with different offsets combine.
      //
      // Don't use the maximum allowed value here as it will make some
      // programs way too big.
      UP.Threshold = Threshold;
      LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
                        << " for loop:\n"
                        << *L << " due to " << *GEP << '\n');
      if (UP.Threshold >= MaxBoost)
        return;
    }
  }
}

unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
  // The concept of vector registers doesn't really exist. Some packed vector
  // operations operate on the normal 32-bit registers.
  return 256;
}

unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
  // This is really the number of registers to fill when vectorizing /
  // interleaving loops, so we lie to avoid trying to use all registers.
  return getHardwareNumberOfRegisters(Vec) >> 3;
}

unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
  return 32;
}

unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
  return 32;
}

unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                                            unsigned ChainSizeInBytes,
                                            VectorType *VecTy) const {
  unsigned VecRegBitWidth = VF * LoadSize;
  if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
    // TODO: Support element-size less than 32bit?
    return 128 / LoadSize;

  return VF;
}

unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                             unsigned ChainSizeInBytes,
                                             VectorType *VecTy) const {
  unsigned VecRegBitWidth = VF * StoreSize;
  if (VecRegBitWidth > 128)
    return 128 / StoreSize;

  return VF;
}

unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
  if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
      AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
    return 512;
  }

  if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
      AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
      AddrSpace == AMDGPUAS::REGION_ADDRESS)
    return 128;

  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
    return 8 * ST->getMaxPrivateElementSize();

  llvm_unreachable("unhandled address space");
}

bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
                                               unsigned Alignment,
                                               unsigned AddrSpace) const {
  // We allow vectorization of flat stores, even though we may need to decompose
  // them later if they may access private memory. We don't have enough context
  // here, and legalization can handle it.
  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
    return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
      ChainSizeInBytes <= ST->getMaxPrivateElementSize();
  }
  return true;
}

bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                                unsigned Alignment,
                                                unsigned AddrSpace) const {
  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}

bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                                 unsigned Alignment,
                                                 unsigned AddrSpace) const {
  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}

unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
  // Disable unrolling if the loop is not vectorized.
  // TODO: Enable this again.
  if (VF == 1)
    return 1;

  return 8;
}

bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                       MemIntrinsicInfo &Info) const {
  switch (Inst->getIntrinsicID()) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec:
  case Intrinsic::amdgcn_ds_ordered_add:
  case Intrinsic::amdgcn_ds_ordered_swap:
  case Intrinsic::amdgcn_ds_fadd:
  case Intrinsic::amdgcn_ds_fmin:
  case Intrinsic::amdgcn_ds_fmax: {
    auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
    auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
    if (!Ordering || !Volatile)
      return false; // Invalid.

    unsigned OrderingVal = Ordering->getZExtValue();
    if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
      return false;

    Info.PtrVal = Inst->getArgOperand(0);
    Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
    Info.ReadMem = true;
    Info.WriteMem = true;
    Info.IsVolatile = !Volatile->isNullValue();
    return true;
  }
  default:
    return false;
  }
}

int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                       TTI::OperandValueKind Opd1Info,
                                       TTI::OperandValueKind Opd2Info,
                                       TTI::OperandValueProperties Opd1PropInfo,
                                       TTI::OperandValueProperties Opd2PropInfo,
                                       ArrayRef<const Value *> Args,
                                       const Instruction *CxtI) {
  EVT OrigTy = TLI->getValueType(DL, Ty);
  if (!OrigTy.isSimple()) {
    return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                         Opd1PropInfo, Opd2PropInfo);
  }

  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  // Because we don't have any legal vector operations, but the legal types, we
  // need to account for split vectors.
  unsigned NElts = LT.second.isVector() ?
    LT.second.getVectorNumElements() : 1;

  MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;

  switch (ISD) {
  case ISD::SHL:
  case ISD::SRL:
  case ISD::SRA:
    if (SLT == MVT::i64)
      return get64BitInstrCost() * LT.first * NElts;

    if (ST->has16BitInsts() && SLT == MVT::i16)
      NElts = (NElts + 1) / 2;

    // i32
    return getFullRateInstrCost() * LT.first * NElts;
  case ISD::ADD:
  case ISD::SUB:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
    if (SLT == MVT::i64) {
      // and, or and xor are typically split into 2 VALU instructions.
      return 2 * getFullRateInstrCost() * LT.first * NElts;
    }

    if (ST->has16BitInsts() && SLT == MVT::i16)
      NElts = (NElts + 1) / 2;

    return LT.first * NElts * getFullRateInstrCost();
  case ISD::MUL: {
    const int QuarterRateCost = getQuarterRateInstrCost();
    if (SLT == MVT::i64) {
      const int FullRateCost = getFullRateInstrCost();
      return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
    }

    if (ST->has16BitInsts() && SLT == MVT::i16)
      NElts = (NElts + 1) / 2;

    // i32
    return QuarterRateCost * NElts * LT.first;
  }
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
    if (SLT == MVT::f64)
      return LT.first * NElts * get64BitInstrCost();

    if (ST->has16BitInsts() && SLT == MVT::f16)
      NElts = (NElts + 1) / 2;

    if (SLT == MVT::f32 || SLT == MVT::f16)
      return LT.first * NElts * getFullRateInstrCost();
    break;
  case ISD::FDIV:
  case ISD::FREM:
    // FIXME: frem should be handled separately. The fdiv in it is most of it,
    // but the current lowering is also not entirely correct.
    if (SLT == MVT::f64) {
      int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
      // Add cost of workaround.
      if (!ST->hasUsableDivScaleConditionOutput())
        Cost += 3 * getFullRateInstrCost();

      return LT.first * Cost * NElts;
    }

    if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
      // TODO: This is more complicated, unsafe flags etc.
      if ((SLT == MVT::f32 && !HasFP32Denormals) ||
          (SLT == MVT::f16 && ST->has16BitInsts())) {
        return LT.first * getQuarterRateInstrCost() * NElts;
      }
    }

    if (SLT == MVT::f16 && ST->has16BitInsts()) {
      // 2 x v_cvt_f32_f16
      // f32 rcp
      // f32 fmul
      // v_cvt_f16_f32
      // f16 div_fixup
      int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
      return LT.first * Cost * NElts;
    }

    if (SLT == MVT::f32 || SLT == MVT::f16) {
      int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();

      if (!HasFP32Denormals) {
        // FP mode switches.
        Cost += 2 * getFullRateInstrCost();
      }

      return LT.first * NElts * Cost;
    }
    break;
  default:
    break;
  }

  return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                       Opd1PropInfo, Opd2PropInfo);
}

template <typename T>
int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                                      ArrayRef<T *> Args,
                                      FastMathFlags FMF, unsigned VF) {
  if (ID != Intrinsic::fma)
    return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);

  EVT OrigTy = TLI->getValueType(DL, RetTy);
  if (!OrigTy.isSimple()) {
    return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
  }

  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);

  unsigned NElts = LT.second.isVector() ?
    LT.second.getVectorNumElements() : 1;

  MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;

  if (SLT == MVT::f64)
    return LT.first * NElts * get64BitInstrCost();

  if (ST->has16BitInsts() && SLT == MVT::f16)
    NElts = (NElts + 1) / 2;

  return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost()
                                                 : getQuarterRateInstrCost());
}

int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                                      ArrayRef<Value*> Args, FastMathFlags FMF,
                                      unsigned VF) {
  return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF);
}

int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                                      ArrayRef<Type *> Tys, FastMathFlags FMF,
                                      unsigned ScalarizationCostPassed) {
  return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF,
                                     ScalarizationCostPassed);
}

unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
  // XXX - For some reason this isn't called for switch.
  switch (Opcode) {
  case Instruction::Br:
  case Instruction::Ret:
    return 10;
  default:
    return BaseT::getCFInstrCost(Opcode);
  }
}

int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                              bool IsPairwise) {
  EVT OrigTy = TLI->getValueType(DL, Ty);

  // Computes cost on targets that have packed math instructions(which support
  // 16-bit types only).
  if (IsPairwise ||
      !ST->hasVOP3PInsts() ||
      OrigTy.getScalarSizeInBits() != 16)
    return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
  return LT.first * getFullRateInstrCost();
}

int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
                                          bool IsPairwise,
                                          bool IsUnsigned) {
  EVT OrigTy = TLI->getValueType(DL, Ty);

  // Computes cost on targets that have packed math instructions(which support
  // 16-bit types only).
  if (IsPairwise ||
      !ST->hasVOP3PInsts() ||
      OrigTy.getScalarSizeInBits() != 16)
    return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
  return LT.first * getHalfRateInstrCost();
}

int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
                                      unsigned Index) {
  switch (Opcode) {
  case Instruction::ExtractElement:
  case Instruction::InsertElement: {
    unsigned EltSize
      = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
    if (EltSize < 32) {
      if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
        return 0;
      return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
    }

    // Extracts are just reads of a subregister, so are free. Inserts are
    // considered free because we don't want to have any cost for scalarizing
    // operations, and we don't have to copy into a different register class.

    // Dynamic indexing isn't free and is best avoided.
    return Index == ~0u ? 2 : 0;
  }
  default:
    return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
  }
}



static bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();

  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
    // Everything else is in VGPRs.
    return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
           F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
  default:
    // TODO: Should calls support inreg for SGPR inputs?
    return false;
  }
}

/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
  if (const Argument *A = dyn_cast<Argument>(V))
    return !isArgPassedInSGPR(A);

  // Loads from the private and flat address spaces are divergent, because
  // threads can execute the load instruction with the same inputs and get
  // different results.
  //
  // All other loads are not divergent, because if threads issue loads with the
  // same arguments, they will always get the same result.
  if (const LoadInst *Load = dyn_cast<LoadInst>(V))
    return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
           Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;

  // Atomics are divergent because they are executed sequentially: when an
  // atomic operation refers to the same address in each thread, then each
  // thread after the first sees the value written by the previous thread as
  // original value.
  if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
    return true;

  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
    return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());

  // Assume all function calls are a source of divergence.
  if (isa<CallInst>(V) || isa<InvokeInst>(V))
    return true;

  return false;
}

bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
    switch (Intrinsic->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::amdgcn_readfirstlane:
    case Intrinsic::amdgcn_readlane:
    case Intrinsic::amdgcn_icmp:
    case Intrinsic::amdgcn_fcmp:
      return true;
    }
  }
  return false;
}

bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                            Intrinsic::ID IID) const {
  switch (IID) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec:
  case Intrinsic::amdgcn_ds_fadd:
  case Intrinsic::amdgcn_ds_fmin:
  case Intrinsic::amdgcn_ds_fmax:
  case Intrinsic::amdgcn_is_shared:
  case Intrinsic::amdgcn_is_private:
    OpIndexes.push_back(0);
    return true;
  default:
    return false;
  }
}

bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
  IntrinsicInst *II, Value *OldV, Value *NewV) const {
  auto IntrID = II->getIntrinsicID();
  switch (IntrID) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec:
  case Intrinsic::amdgcn_ds_fadd:
  case Intrinsic::amdgcn_ds_fmin:
  case Intrinsic::amdgcn_ds_fmax: {
    const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
    if (!IsVolatile->isZero())
      return false;
    Module *M = II->getParent()->getParent()->getParent();
    Type *DestTy = II->getType();
    Type *SrcTy = NewV->getType();
    Function *NewDecl =
        Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
    II->setArgOperand(0, NewV);
    II->setCalledFunction(NewDecl);
    return true;
  }
  case Intrinsic::amdgcn_is_shared:
  case Intrinsic::amdgcn_is_private: {
    unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
      AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
    unsigned NewAS = NewV->getType()->getPointerAddressSpace();
    LLVMContext &Ctx = NewV->getType()->getContext();
    ConstantInt *NewVal = (TrueAS == NewAS) ?
      ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
    II->replaceAllUsesWith(NewVal);
    II->eraseFromParent();
    return true;
  }
  default:
    return false;
  }
}

unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                                       Type *SubTp) {
  if (ST->hasVOP3PInsts()) {
    VectorType *VT = cast<VectorType>(Tp);
    if (VT->getNumElements() == 2 &&
        DL.getTypeSizeInBits(VT->getElementType()) == 16) {
      // With op_sel VOP3P instructions freely can access the low half or high
      // half of a register, so any swizzle is free.

      switch (Kind) {
      case TTI::SK_Broadcast:
      case TTI::SK_Reverse:
      case TTI::SK_PermuteSingleSrc:
        return 0;
      default:
        break;
      }
    }
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
                                     const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();
  const GCNSubtarget *CallerST
    = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
  const GCNSubtarget *CalleeST
    = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));

  const FeatureBitset &CallerBits = CallerST->getFeatureBits();
  const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();

  FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
  FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
  if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
    return false;

  // FIXME: dx10_clamp can just take the caller setting, but there seems to be
  // no way to support merge for backend defined attributes.
  AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
  AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
  return CallerMode.isInlineCompatible(CalleeMode);
}

void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::UnrollingPreferences &UP) {
  CommonTTI.getUnrollingPreferences(L, SE, UP);
}

unsigned GCNTTIImpl::getUserCost(const User *U,
                                 ArrayRef<const Value *> Operands) {
  const Instruction *I = dyn_cast<Instruction>(U);
  if (!I)
    return BaseT::getUserCost(U, Operands);

  // Estimate different operations to be optimized out
  switch (I->getOpcode()) {
  case Instruction::ExtractElement: {
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    unsigned Idx = -1;
    if (CI)
      Idx = CI->getZExtValue();
    return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx);
  }
  case Instruction::InsertElement: {
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
    unsigned Idx = -1;
    if (CI)
      Idx = CI->getZExtValue();
    return getVectorInstrCost(I->getOpcode(), I->getType(), Idx);
  }
  case Instruction::Call: {
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
      SmallVector<Value *, 4> Args(II->arg_operands());
      FastMathFlags FMF;
      if (auto *FPMO = dyn_cast<FPMathOperator>(II))
        FMF = FPMO->getFastMathFlags();
      return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
                                   FMF);
    } else {
      return BaseT::getUserCost(U, Operands);
    }
  }
  case Instruction::ShuffleVector: {
    const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    Type *Ty = Shuffle->getType();
    Type *SrcTy = Shuffle->getOperand(0)->getType();

    // TODO: Identify and add costs for insert subvector, etc.
    int SubIndex;
    if (Shuffle->isExtractSubvectorMask(SubIndex))
      return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty);

    if (Shuffle->changesLength())
      return BaseT::getUserCost(U, Operands);

    if (Shuffle->isIdentity())
      return 0;

    if (Shuffle->isReverse())
      return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr);

    if (Shuffle->isSelect())
      return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr);

    if (Shuffle->isTranspose())
      return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr);

    if (Shuffle->isZeroEltSplat())
      return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr);

    if (Shuffle->isSingleSource())
      return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr);

    return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr);
  }
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast: {
    return getCastInstrCost(I->getOpcode(), I->getType(),
                            I->getOperand(0)->getType(), I);
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::FNeg: {
    return getArithmeticInstrCost(I->getOpcode(), I->getType(),
                                  TTI::OK_AnyValue, TTI::OK_AnyValue,
                                  TTI::OP_None, TTI::OP_None, Operands, I);
  }
  default:
    break;
  }

  return BaseT::getUserCost(U, Operands);
}

unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
  return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
}

unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
  return getHardwareNumberOfRegisters(Vec);
}

unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
  return 32;
}

unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
  return 32;
}

unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
  if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
      AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
    return 128;
  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
      AddrSpace == AMDGPUAS::REGION_ADDRESS)
    return 64;
  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
    return 32;

  if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
      AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
      (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
      AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
    return 128;
  llvm_unreachable("unhandled address space");
}

bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
                                             unsigned Alignment,
                                             unsigned AddrSpace) const {
  // We allow vectorization of flat stores, even though we may need to decompose
  // them later if they may access private memory. We don't have enough context
  // here, and legalization can handle it.
  return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
}

bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                              unsigned Alignment,
                                              unsigned AddrSpace) const {
  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}

bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                               unsigned Alignment,
                                               unsigned AddrSpace) const {
  return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}

unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
  // Disable unrolling if the loop is not vectorized.
  // TODO: Enable this again.
  if (VF == 1)
    return 1;

  return 8;
}

unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
  // XXX - For some reason this isn't called for switch.
  switch (Opcode) {
  case Instruction::Br:
  case Instruction::Ret:
    return 10;
  default:
    return BaseT::getCFInstrCost(Opcode);
  }
}

int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
                                    unsigned Index) {
  switch (Opcode) {
  case Instruction::ExtractElement:
  case Instruction::InsertElement: {
    unsigned EltSize
      = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
    if (EltSize < 32) {
      return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
    }

    // Extracts are just reads of a subregister, so are free. Inserts are
    // considered free because we don't want to have any cost for scalarizing
    // operations, and we don't have to copy into a different register class.

    // Dynamic indexing isn't free and is best avoided.
    return Index == ~0u ? 2 : 0;
  }
  default:
    return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
  }
}

void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                          TTI::UnrollingPreferences &UP) {
  CommonTTI.getUnrollingPreferences(L, SE, UP);
}