R600InstrInfo.cpp 49.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// R600 Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//

#include "R600InstrInfo.h"
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600FrameLowering.h"
#include "R600RegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "R600GenDFAPacketizer.inc"

#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRMAP_INFO
#define GET_INSTRINFO_NAMED_OPS
#include "R600GenInstrInfo.inc"

R600InstrInfo::R600InstrInfo(const R600Subtarget &ST)
  : R600GenInstrInfo(-1, -1), RI(), ST(ST) {}

bool R600InstrInfo::isVector(const MachineInstr &MI) const {
  return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
}

void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI,
                                const DebugLoc &DL, MCRegister DestReg,
                                MCRegister SrcReg, bool KillSrc) const {
  unsigned VectorComponents = 0;
  if ((R600::R600_Reg128RegClass.contains(DestReg) ||
      R600::R600_Reg128VerticalRegClass.contains(DestReg)) &&
      (R600::R600_Reg128RegClass.contains(SrcReg) ||
       R600::R600_Reg128VerticalRegClass.contains(SrcReg))) {
    VectorComponents = 4;
  } else if((R600::R600_Reg64RegClass.contains(DestReg) ||
            R600::R600_Reg64VerticalRegClass.contains(DestReg)) &&
            (R600::R600_Reg64RegClass.contains(SrcReg) ||
             R600::R600_Reg64VerticalRegClass.contains(SrcReg))) {
    VectorComponents = 2;
  }

  if (VectorComponents > 0) {
    for (unsigned I = 0; I < VectorComponents; I++) {
      unsigned SubRegIndex = AMDGPURegisterInfo::getSubRegFromChannel(I);
      buildDefaultInstruction(MBB, MI, R600::MOV,
                              RI.getSubReg(DestReg, SubRegIndex),
                              RI.getSubReg(SrcReg, SubRegIndex))
                              .addReg(DestReg,
                                      RegState::Define | RegState::Implicit);
    }
  } else {
    MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, R600::MOV,
                                                  DestReg, SrcReg);
    NewMI->getOperand(getOperandIdx(*NewMI, R600::OpName::src0))
                                    .setIsKill(KillSrc);
  }
}

/// \returns true if \p MBBI can be moved into a new basic.
bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MBBI) const {
  for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
                                        E = MBBI->operands_end(); I != E; ++I) {
    if (I->isReg() && !Register::isVirtualRegister(I->getReg()) && I->isUse() &&
        RI.isPhysRegLiveAcrossClauses(I->getReg()))
      return false;
  }
  return true;
}

bool R600InstrInfo::isMov(unsigned Opcode) const {
  switch(Opcode) {
  default:
    return false;
  case R600::MOV:
  case R600::MOV_IMM_F32:
  case R600::MOV_IMM_I32:
    return true;
  }
}

bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
  return false;
}

bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
  switch(Opcode) {
    default: return false;
    case R600::CUBE_r600_pseudo:
    case R600::CUBE_r600_real:
    case R600::CUBE_eg_pseudo:
    case R600::CUBE_eg_real:
      return true;
  }
}

bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
  unsigned TargetFlags = get(Opcode).TSFlags;

  return (TargetFlags & R600_InstFlag::ALU_INST);
}

bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
  unsigned TargetFlags = get(Opcode).TSFlags;

  return ((TargetFlags & R600_InstFlag::OP1) |
          (TargetFlags & R600_InstFlag::OP2) |
          (TargetFlags & R600_InstFlag::OP3));
}

bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
  unsigned TargetFlags = get(Opcode).TSFlags;

  return ((TargetFlags & R600_InstFlag::LDS_1A) |
          (TargetFlags & R600_InstFlag::LDS_1A1D) |
          (TargetFlags & R600_InstFlag::LDS_1A2D));
}

bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
  return isLDSInstr(Opcode) && getOperandIdx(Opcode, R600::OpName::dst) != -1;
}

bool R600InstrInfo::canBeConsideredALU(const MachineInstr &MI) const {
  if (isALUInstr(MI.getOpcode()))
    return true;
  if (isVector(MI) || isCubeOp(MI.getOpcode()))
    return true;
  switch (MI.getOpcode()) {
  case R600::PRED_X:
  case R600::INTERP_PAIR_XY:
  case R600::INTERP_PAIR_ZW:
  case R600::INTERP_VEC_LOAD:
  case R600::COPY:
  case R600::DOT_4:
    return true;
  default:
    return false;
  }
}

bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
  if (ST.hasCaymanISA())
    return false;
  return (get(Opcode).getSchedClass() == R600::Sched::TransALU);
}

bool R600InstrInfo::isTransOnly(const MachineInstr &MI) const {
  return isTransOnly(MI.getOpcode());
}

bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
  return (get(Opcode).getSchedClass() == R600::Sched::VecALU);
}

bool R600InstrInfo::isVectorOnly(const MachineInstr &MI) const {
  return isVectorOnly(MI.getOpcode());
}

bool R600InstrInfo::isExport(unsigned Opcode) const {
  return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
}

bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
  return ST.hasVertexCache() && IS_VTX(get(Opcode));
}

bool R600InstrInfo::usesVertexCache(const MachineInstr &MI) const {
  const MachineFunction *MF = MI.getParent()->getParent();
  return !AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
         usesVertexCache(MI.getOpcode());
}

bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
  return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
}

bool R600InstrInfo::usesTextureCache(const MachineInstr &MI) const {
  const MachineFunction *MF = MI.getParent()->getParent();
  return (AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
          usesVertexCache(MI.getOpcode())) ||
          usesTextureCache(MI.getOpcode());
}

bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
  switch (Opcode) {
  case R600::KILLGT:
  case R600::GROUP_BARRIER:
    return true;
  default:
    return false;
  }
}

bool R600InstrInfo::usesAddressRegister(MachineInstr &MI) const {
  return MI.findRegisterUseOperandIdx(R600::AR_X, false, &RI) != -1;
}

bool R600InstrInfo::definesAddressRegister(MachineInstr &MI) const {
  return MI.findRegisterDefOperandIdx(R600::AR_X, false, false, &RI) != -1;
}

bool R600InstrInfo::readsLDSSrcReg(const MachineInstr &MI) const {
  if (!isALUInstr(MI.getOpcode())) {
    return false;
  }
  for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
                                        E = MI.operands_end();
       I != E; ++I) {
    if (!I->isReg() || !I->isUse() || Register::isVirtualRegister(I->getReg()))
      continue;

    if (R600::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
      return true;
  }
  return false;
}

int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
  static const unsigned SrcSelTable[][2] = {
    {R600::OpName::src0, R600::OpName::src0_sel},
    {R600::OpName::src1, R600::OpName::src1_sel},
    {R600::OpName::src2, R600::OpName::src2_sel},
    {R600::OpName::src0_X, R600::OpName::src0_sel_X},
    {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
    {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
    {R600::OpName::src0_W, R600::OpName::src0_sel_W},
    {R600::OpName::src1_X, R600::OpName::src1_sel_X},
    {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
    {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
    {R600::OpName::src1_W, R600::OpName::src1_sel_W}
  };

  for (const auto &Row : SrcSelTable) {
    if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
      return getOperandIdx(Opcode, Row[1]);
    }
  }
  return -1;
}

SmallVector<std::pair<MachineOperand *, int64_t>, 3>
R600InstrInfo::getSrcs(MachineInstr &MI) const {
  SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;

  if (MI.getOpcode() == R600::DOT_4) {
    static const unsigned OpTable[8][2] = {
      {R600::OpName::src0_X, R600::OpName::src0_sel_X},
      {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
      {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
      {R600::OpName::src0_W, R600::OpName::src0_sel_W},
      {R600::OpName::src1_X, R600::OpName::src1_sel_X},
      {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
      {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
      {R600::OpName::src1_W, R600::OpName::src1_sel_W},
    };

    for (unsigned j = 0; j < 8; j++) {
      MachineOperand &MO =
          MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][0]));
      Register Reg = MO.getReg();
      if (Reg == R600::ALU_CONST) {
        MachineOperand &Sel =
            MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
        Result.push_back(std::make_pair(&MO, Sel.getImm()));
        continue;
      }

    }
    return Result;
  }

  static const unsigned OpTable[3][2] = {
    {R600::OpName::src0, R600::OpName::src0_sel},
    {R600::OpName::src1, R600::OpName::src1_sel},
    {R600::OpName::src2, R600::OpName::src2_sel},
  };

  for (unsigned j = 0; j < 3; j++) {
    int SrcIdx = getOperandIdx(MI.getOpcode(), OpTable[j][0]);
    if (SrcIdx < 0)
      break;
    MachineOperand &MO = MI.getOperand(SrcIdx);
    Register Reg = MO.getReg();
    if (Reg == R600::ALU_CONST) {
      MachineOperand &Sel =
          MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
      Result.push_back(std::make_pair(&MO, Sel.getImm()));
      continue;
    }
    if (Reg == R600::ALU_LITERAL_X) {
      MachineOperand &Operand =
          MI.getOperand(getOperandIdx(MI.getOpcode(), R600::OpName::literal));
      if (Operand.isImm()) {
        Result.push_back(std::make_pair(&MO, Operand.getImm()));
        continue;
      }
      assert(Operand.isGlobal());
    }
    Result.push_back(std::make_pair(&MO, 0));
  }
  return Result;
}

std::vector<std::pair<int, unsigned>>
R600InstrInfo::ExtractSrcs(MachineInstr &MI,
                           const DenseMap<unsigned, unsigned> &PV,
                           unsigned &ConstCount) const {
  ConstCount = 0;
  const std::pair<int, unsigned> DummyPair(-1, 0);
  std::vector<std::pair<int, unsigned>> Result;
  unsigned i = 0;
  for (const auto &Src : getSrcs(MI)) {
    ++i;
    Register Reg = Src.first->getReg();
    int Index = RI.getEncodingValue(Reg) & 0xff;
    if (Reg == R600::OQAP) {
      Result.push_back(std::make_pair(Index, 0U));
    }
    if (PV.find(Reg) != PV.end()) {
      // 255 is used to tells its a PS/PV reg
      Result.push_back(std::make_pair(255, 0U));
      continue;
    }
    if (Index > 127) {
      ConstCount++;
      Result.push_back(DummyPair);
      continue;
    }
    unsigned Chan = RI.getHWRegChan(Reg);
    Result.push_back(std::make_pair(Index, Chan));
  }
  for (; i < 3; ++i)
    Result.push_back(DummyPair);
  return Result;
}

static std::vector<std::pair<int, unsigned>>
Swizzle(std::vector<std::pair<int, unsigned>> Src,
        R600InstrInfo::BankSwizzle Swz) {
  if (Src[0] == Src[1])
    Src[1].first = -1;
  switch (Swz) {
  case R600InstrInfo::ALU_VEC_012_SCL_210:
    break;
  case R600InstrInfo::ALU_VEC_021_SCL_122:
    std::swap(Src[1], Src[2]);
    break;
  case R600InstrInfo::ALU_VEC_102_SCL_221:
    std::swap(Src[0], Src[1]);
    break;
  case R600InstrInfo::ALU_VEC_120_SCL_212:
    std::swap(Src[0], Src[1]);
    std::swap(Src[0], Src[2]);
    break;
  case R600InstrInfo::ALU_VEC_201:
    std::swap(Src[0], Src[2]);
    std::swap(Src[0], Src[1]);
    break;
  case R600InstrInfo::ALU_VEC_210:
    std::swap(Src[0], Src[2]);
    break;
  }
  return Src;
}

static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
  assert(Op < 3 && "Out of range swizzle index");
  switch (Swz) {
  case R600InstrInfo::ALU_VEC_012_SCL_210: {
    unsigned Cycles[3] = { 2, 1, 0};
    return Cycles[Op];
  }
  case R600InstrInfo::ALU_VEC_021_SCL_122: {
    unsigned Cycles[3] = { 1, 2, 2};
    return Cycles[Op];
  }
  case R600InstrInfo::ALU_VEC_120_SCL_212: {
    unsigned Cycles[3] = { 2, 1, 2};
    return Cycles[Op];
  }
  case R600InstrInfo::ALU_VEC_102_SCL_221: {
    unsigned Cycles[3] = { 2, 2, 1};
    return Cycles[Op];
  }
  default:
    llvm_unreachable("Wrong Swizzle for Trans Slot");
  }
}

/// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
/// in the same Instruction Group while meeting read port limitations given a
/// Swz swizzle sequence.
unsigned  R600InstrInfo::isLegalUpTo(
    const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
    const std::vector<R600InstrInfo::BankSwizzle> &Swz,
    const std::vector<std::pair<int, unsigned>> &TransSrcs,
    R600InstrInfo::BankSwizzle TransSwz) const {
  int Vector[4][3];
  memset(Vector, -1, sizeof(Vector));
  for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
    const std::vector<std::pair<int, unsigned>> &Srcs =
        Swizzle(IGSrcs[i], Swz[i]);
    for (unsigned j = 0; j < 3; j++) {
      const std::pair<int, unsigned> &Src = Srcs[j];
      if (Src.first < 0 || Src.first == 255)
        continue;
      if (Src.first == GET_REG_INDEX(RI.getEncodingValue(R600::OQAP))) {
        if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
            Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
            // The value from output queue A (denoted by register OQAP) can
            // only be fetched during the first cycle.
            return false;
        }
        // OQAP does not count towards the normal read port restrictions
        continue;
      }
      if (Vector[Src.second][j] < 0)
        Vector[Src.second][j] = Src.first;
      if (Vector[Src.second][j] != Src.first)
        return i;
    }
  }
  // Now check Trans Alu
  for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
    const std::pair<int, unsigned> &Src = TransSrcs[i];
    unsigned Cycle = getTransSwizzle(TransSwz, i);
    if (Src.first < 0)
      continue;
    if (Src.first == 255)
      continue;
    if (Vector[Src.second][Cycle] < 0)
      Vector[Src.second][Cycle] = Src.first;
    if (Vector[Src.second][Cycle] != Src.first)
      return IGSrcs.size() - 1;
  }
  return IGSrcs.size();
}

/// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
/// (in lexicographic term) swizzle sequence assuming that all swizzles after
/// Idx can be skipped
static bool
NextPossibleSolution(
    std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
    unsigned Idx) {
  assert(Idx < SwzCandidate.size());
  int ResetIdx = Idx;
  while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
    ResetIdx --;
  for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
    SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
  }
  if (ResetIdx == -1)
    return false;
  int NextSwizzle = SwzCandidate[ResetIdx] + 1;
  SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
  return true;
}

/// Enumerate all possible Swizzle sequence to find one that can meet all
/// read port requirements.
bool R600InstrInfo::FindSwizzleForVectorSlot(
    const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
    std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
    const std::vector<std::pair<int, unsigned>> &TransSrcs,
    R600InstrInfo::BankSwizzle TransSwz) const {
  unsigned ValidUpTo = 0;
  do {
    ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
    if (ValidUpTo == IGSrcs.size())
      return true;
  } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
  return false;
}

/// Instructions in Trans slot can't read gpr at cycle 0 if they also read
/// a const, and can't read a gpr at cycle 1 if they read 2 const.
static bool
isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
                  const std::vector<std::pair<int, unsigned>> &TransOps,
                  unsigned ConstCount) {
  // TransALU can't read 3 constants
  if (ConstCount > 2)
    return false;
  for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
    const std::pair<int, unsigned> &Src = TransOps[i];
    unsigned Cycle = getTransSwizzle(TransSwz, i);
    if (Src.first < 0)
      continue;
    if (ConstCount > 0 && Cycle == 0)
      return false;
    if (ConstCount > 1 && Cycle == 1)
      return false;
  }
  return true;
}

bool
R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
                                       const DenseMap<unsigned, unsigned> &PV,
                                       std::vector<BankSwizzle> &ValidSwizzle,
                                       bool isLastAluTrans)
    const {
  //Todo : support shared src0 - src1 operand

  std::vector<std::vector<std::pair<int, unsigned>>> IGSrcs;
  ValidSwizzle.clear();
  unsigned ConstCount = 0;
  BankSwizzle TransBS = ALU_VEC_012_SCL_210;
  for (unsigned i = 0, e = IG.size(); i < e; ++i) {
    IGSrcs.push_back(ExtractSrcs(*IG[i], PV, ConstCount));
    unsigned Op = getOperandIdx(IG[i]->getOpcode(),
        R600::OpName::bank_swizzle);
    ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
        IG[i]->getOperand(Op).getImm());
  }
  std::vector<std::pair<int, unsigned>> TransOps;
  if (!isLastAluTrans)
    return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);

  TransOps = std::move(IGSrcs.back());
  IGSrcs.pop_back();
  ValidSwizzle.pop_back();

  static const R600InstrInfo::BankSwizzle TransSwz[] = {
    ALU_VEC_012_SCL_210,
    ALU_VEC_021_SCL_122,
    ALU_VEC_120_SCL_212,
    ALU_VEC_102_SCL_221
  };
  for (unsigned i = 0; i < 4; i++) {
    TransBS = TransSwz[i];
    if (!isConstCompatible(TransBS, TransOps, ConstCount))
      continue;
    bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
        TransBS);
    if (Result) {
      ValidSwizzle.push_back(TransBS);
      return true;
    }
  }

  return false;
}

bool
R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
    const {
  assert (Consts.size() <= 12 && "Too many operands in instructions group");
  unsigned Pair1 = 0, Pair2 = 0;
  for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
    unsigned ReadConstHalf = Consts[i] & 2;
    unsigned ReadConstIndex = Consts[i] & (~3);
    unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
    if (!Pair1) {
      Pair1 = ReadHalfConst;
      continue;
    }
    if (Pair1 == ReadHalfConst)
      continue;
    if (!Pair2) {
      Pair2 = ReadHalfConst;
      continue;
    }
    if (Pair2 != ReadHalfConst)
      return false;
  }
  return true;
}

bool
R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
    const {
  std::vector<unsigned> Consts;
  SmallSet<int64_t, 4> Literals;
  for (unsigned i = 0, n = MIs.size(); i < n; i++) {
    MachineInstr &MI = *MIs[i];
    if (!isALUInstr(MI.getOpcode()))
      continue;

    for (const auto &Src : getSrcs(MI)) {
      if (Src.first->getReg() == R600::ALU_LITERAL_X)
        Literals.insert(Src.second);
      if (Literals.size() > 4)
        return false;
      if (Src.first->getReg() == R600::ALU_CONST)
        Consts.push_back(Src.second);
      if (R600::R600_KC0RegClass.contains(Src.first->getReg()) ||
          R600::R600_KC1RegClass.contains(Src.first->getReg())) {
        unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
        unsigned Chan = RI.getHWRegChan(Src.first->getReg());
        Consts.push_back((Index << 2) | Chan);
      }
    }
  }
  return fitsConstReadLimitations(Consts);
}

DFAPacketizer *
R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
  const InstrItineraryData *II = STI.getInstrItineraryData();
  return static_cast<const R600Subtarget &>(STI).createDFAPacketizer(II);
}

static bool
isPredicateSetter(unsigned Opcode) {
  switch (Opcode) {
  case R600::PRED_X:
    return true;
  default:
    return false;
  }
}

static MachineInstr *
findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator I) {
  while (I != MBB.begin()) {
    --I;
    MachineInstr &MI = *I;
    if (isPredicateSetter(MI.getOpcode()))
      return &MI;
  }

  return nullptr;
}

static
bool isJump(unsigned Opcode) {
  return Opcode == R600::JUMP || Opcode == R600::JUMP_COND;
}

static bool isBranch(unsigned Opcode) {
  return Opcode == R600::BRANCH || Opcode == R600::BRANCH_COND_i32 ||
      Opcode == R600::BRANCH_COND_f32;
}

bool R600InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                  MachineBasicBlock *&TBB,
                                  MachineBasicBlock *&FBB,
                                  SmallVectorImpl<MachineOperand> &Cond,
                                  bool AllowModify) const {
  // Most of the following comes from the ARM implementation of AnalyzeBranch

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return false;

  // R600::BRANCH* instructions are only available after isel and are not
  // handled
  if (isBranch(I->getOpcode()))
    return true;
  if (!isJump(I->getOpcode())) {
    return false;
  }

  // Remove successive JUMP
  while (I != MBB.begin() && std::prev(I)->getOpcode() == R600::JUMP) {
      MachineBasicBlock::iterator PriorI = std::prev(I);
      if (AllowModify)
        I->removeFromParent();
      I = PriorI;
  }
  MachineInstr &LastInst = *I;

  // If there is only one terminator instruction, process it.
  unsigned LastOpc = LastInst.getOpcode();
  if (I == MBB.begin() || !isJump((--I)->getOpcode())) {
    if (LastOpc == R600::JUMP) {
      TBB = LastInst.getOperand(0).getMBB();
      return false;
    } else if (LastOpc == R600::JUMP_COND) {
      auto predSet = I;
      while (!isPredicateSetter(predSet->getOpcode())) {
        predSet = --I;
      }
      TBB = LastInst.getOperand(0).getMBB();
      Cond.push_back(predSet->getOperand(1));
      Cond.push_back(predSet->getOperand(2));
      Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
      return false;
    }
    return true;  // Can't handle indirect branch.
  }

  // Get the instruction before it if it is a terminator.
  MachineInstr &SecondLastInst = *I;
  unsigned SecondLastOpc = SecondLastInst.getOpcode();

  // If the block ends with a B and a Bcc, handle it.
  if (SecondLastOpc == R600::JUMP_COND && LastOpc == R600::JUMP) {
    auto predSet = --I;
    while (!isPredicateSetter(predSet->getOpcode())) {
      predSet = --I;
    }
    TBB = SecondLastInst.getOperand(0).getMBB();
    FBB = LastInst.getOperand(0).getMBB();
    Cond.push_back(predSet->getOperand(1));
    Cond.push_back(predSet->getOperand(2));
    Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

static
MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
  for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
      It != E; ++It) {
    if (It->getOpcode() == R600::CF_ALU ||
        It->getOpcode() == R600::CF_ALU_PUSH_BEFORE)
      return It.getReverse();
  }
  return MBB.end();
}

unsigned R600InstrInfo::insertBranch(MachineBasicBlock &MBB,
                                     MachineBasicBlock *TBB,
                                     MachineBasicBlock *FBB,
                                     ArrayRef<MachineOperand> Cond,
                                     const DebugLoc &DL,
                                     int *BytesAdded) const {
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert(!BytesAdded && "code size not handled");

  if (!FBB) {
    if (Cond.empty()) {
      BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(TBB);
      return 1;
    } else {
      MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
      assert(PredSet && "No previous predicate !");
      addFlag(*PredSet, 0, MO_FLAG_PUSH);
      PredSet->getOperand(2).setImm(Cond[1].getImm());

      BuildMI(&MBB, DL, get(R600::JUMP_COND))
             .addMBB(TBB)
             .addReg(R600::PREDICATE_BIT, RegState::Kill);
      MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
      if (CfAlu == MBB.end())
        return 1;
      assert (CfAlu->getOpcode() == R600::CF_ALU);
      CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
      return 1;
    }
  } else {
    MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
    assert(PredSet && "No previous predicate !");
    addFlag(*PredSet, 0, MO_FLAG_PUSH);
    PredSet->getOperand(2).setImm(Cond[1].getImm());
    BuildMI(&MBB, DL, get(R600::JUMP_COND))
            .addMBB(TBB)
            .addReg(R600::PREDICATE_BIT, RegState::Kill);
    BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(FBB);
    MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
    if (CfAlu == MBB.end())
      return 2;
    assert (CfAlu->getOpcode() == R600::CF_ALU);
    CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
    return 2;
  }
}

unsigned R600InstrInfo::removeBranch(MachineBasicBlock &MBB,
                                     int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  // Note : we leave PRED* instructions there.
  // They may be needed when predicating instructions.

  MachineBasicBlock::iterator I = MBB.end();

  if (I == MBB.begin()) {
    return 0;
  }
  --I;
  switch (I->getOpcode()) {
  default:
    return 0;
  case R600::JUMP_COND: {
    MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
    clearFlag(*predSet, 0, MO_FLAG_PUSH);
    I->eraseFromParent();
    MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
    if (CfAlu == MBB.end())
      break;
    assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
    CfAlu->setDesc(get(R600::CF_ALU));
    break;
  }
  case R600::JUMP:
    I->eraseFromParent();
    break;
  }
  I = MBB.end();

  if (I == MBB.begin()) {
    return 1;
  }
  --I;
  switch (I->getOpcode()) {
    // FIXME: only one case??
  default:
    return 1;
  case R600::JUMP_COND: {
    MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
    clearFlag(*predSet, 0, MO_FLAG_PUSH);
    I->eraseFromParent();
    MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
    if (CfAlu == MBB.end())
      break;
    assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
    CfAlu->setDesc(get(R600::CF_ALU));
    break;
  }
  case R600::JUMP:
    I->eraseFromParent();
    break;
  }
  return 2;
}

bool R600InstrInfo::isPredicated(const MachineInstr &MI) const {
  int idx = MI.findFirstPredOperandIdx();
  if (idx < 0)
    return false;

  Register Reg = MI.getOperand(idx).getReg();
  switch (Reg) {
  default: return false;
  case R600::PRED_SEL_ONE:
  case R600::PRED_SEL_ZERO:
  case R600::PREDICATE_BIT:
    return true;
  }
}

bool R600InstrInfo::isPredicable(const MachineInstr &MI) const {
  // XXX: KILL* instructions can be predicated, but they must be the last
  // instruction in a clause, so this means any instructions after them cannot
  // be predicated.  Until we have proper support for instruction clauses in the
  // backend, we will mark KILL* instructions as unpredicable.

  if (MI.getOpcode() == R600::KILLGT) {
    return false;
  } else if (MI.getOpcode() == R600::CF_ALU) {
    // If the clause start in the middle of MBB then the MBB has more
    // than a single clause, unable to predicate several clauses.
    if (MI.getParent()->begin() != MachineBasicBlock::const_iterator(MI))
      return false;
    // TODO: We don't support KC merging atm
    return MI.getOperand(3).getImm() == 0 && MI.getOperand(4).getImm() == 0;
  } else if (isVector(MI)) {
    return false;
  } else {
    return TargetInstrInfo::isPredicable(MI);
  }
}

bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
                                   unsigned NumCycles,
                                   unsigned ExtraPredCycles,
                                   BranchProbability Probability) const{
  return true;
}

bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
                                   unsigned NumTCycles,
                                   unsigned ExtraTCycles,
                                   MachineBasicBlock &FMBB,
                                   unsigned NumFCycles,
                                   unsigned ExtraFCycles,
                                   BranchProbability Probability) const {
  return true;
}

bool
R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
                                         unsigned NumCycles,
                                         BranchProbability Probability)
                                         const {
  return true;
}

bool
R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                         MachineBasicBlock &FMBB) const {
  return false;
}

bool
R600InstrInfo::reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  MachineOperand &MO = Cond[1];
  switch (MO.getImm()) {
  case R600::PRED_SETE_INT:
    MO.setImm(R600::PRED_SETNE_INT);
    break;
  case R600::PRED_SETNE_INT:
    MO.setImm(R600::PRED_SETE_INT);
    break;
  case R600::PRED_SETE:
    MO.setImm(R600::PRED_SETNE);
    break;
  case R600::PRED_SETNE:
    MO.setImm(R600::PRED_SETE);
    break;
  default:
    return true;
  }

  MachineOperand &MO2 = Cond[2];
  switch (MO2.getReg()) {
  case R600::PRED_SEL_ZERO:
    MO2.setReg(R600::PRED_SEL_ONE);
    break;
  case R600::PRED_SEL_ONE:
    MO2.setReg(R600::PRED_SEL_ZERO);
    break;
  default:
    return true;
  }
  return false;
}

bool R600InstrInfo::DefinesPredicate(MachineInstr &MI,
                                     std::vector<MachineOperand> &Pred) const {
  return isPredicateSetter(MI.getOpcode());
}

bool R600InstrInfo::PredicateInstruction(MachineInstr &MI,
                                         ArrayRef<MachineOperand> Pred) const {
  int PIdx = MI.findFirstPredOperandIdx();

  if (MI.getOpcode() == R600::CF_ALU) {
    MI.getOperand(8).setImm(0);
    return true;
  }

  if (MI.getOpcode() == R600::DOT_4) {
    MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_X))
        .setReg(Pred[2].getReg());
    MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Y))
        .setReg(Pred[2].getReg());
    MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Z))
        .setReg(Pred[2].getReg());
    MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_W))
        .setReg(Pred[2].getReg());
    MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
    MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
    return true;
  }

  if (PIdx != -1) {
    MachineOperand &PMO = MI.getOperand(PIdx);
    PMO.setReg(Pred[2].getReg());
    MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
    MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
    return true;
  }

  return false;
}

unsigned int R600InstrInfo::getPredicationCost(const MachineInstr &) const {
  return 2;
}

unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                            const MachineInstr &,
                                            unsigned *PredCost) const {
  if (PredCost)
    *PredCost = 2;
  return 2;
}

unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
                                                   unsigned Channel) const {
  assert(Channel == 0);
  return RegIndex;
}

bool R600InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default: {
    MachineBasicBlock *MBB = MI.getParent();
    int OffsetOpIdx =
        R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::addr);
    // addr is a custom operand with multiple MI operands, and only the
    // first MI operand is given a name.
    int RegOpIdx = OffsetOpIdx + 1;
    int ChanOpIdx =
        R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::chan);
    if (isRegisterLoad(MI)) {
      int DstOpIdx =
          R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::dst);
      unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
      unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
      unsigned Address = calculateIndirectAddress(RegIndex, Channel);
      Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
      if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
        buildMovInstr(MBB, MI, MI.getOperand(DstOpIdx).getReg(),
                      getIndirectAddrRegClass()->getRegister(Address));
      } else {
        buildIndirectRead(MBB, MI, MI.getOperand(DstOpIdx).getReg(), Address,
                          OffsetReg);
      }
    } else if (isRegisterStore(MI)) {
      int ValOpIdx =
          R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::val);
      unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
      unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
      unsigned Address = calculateIndirectAddress(RegIndex, Channel);
      Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
      if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
        buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
                      MI.getOperand(ValOpIdx).getReg());
      } else {
        buildIndirectWrite(MBB, MI, MI.getOperand(ValOpIdx).getReg(),
                           calculateIndirectAddress(RegIndex, Channel),
                           OffsetReg);
      }
    } else {
      return false;
    }

    MBB->erase(MI);
    return true;
  }
  case R600::R600_EXTRACT_ELT_V2:
  case R600::R600_EXTRACT_ELT_V4:
    buildIndirectRead(MI.getParent(), MI, MI.getOperand(0).getReg(),
                      RI.getHWRegIndex(MI.getOperand(1).getReg()), //  Address
                      MI.getOperand(2).getReg(),
                      RI.getHWRegChan(MI.getOperand(1).getReg()));
    break;
  case R600::R600_INSERT_ELT_V2:
  case R600::R600_INSERT_ELT_V4:
    buildIndirectWrite(MI.getParent(), MI, MI.getOperand(2).getReg(), // Value
                       RI.getHWRegIndex(MI.getOperand(1).getReg()),   // Address
                       MI.getOperand(3).getReg(),                     // Offset
                       RI.getHWRegChan(MI.getOperand(1).getReg()));   // Channel
    break;
  }
  MI.eraseFromParent();
  return true;
}

void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
                                             const MachineFunction &MF,
                                             const R600RegisterInfo &TRI) const {
  const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
  const R600FrameLowering *TFL = ST.getFrameLowering();

  unsigned StackWidth = TFL->getStackWidth(MF);
  int End = getIndirectIndexEnd(MF);

  if (End == -1)
    return;

  for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
    for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
      unsigned Reg = R600::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
      TRI.reserveRegisterTuples(Reserved, Reg);
    }
  }
}

const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
  return &R600::R600_TReg32_XRegClass;
}

MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned ValueReg, unsigned Address,
                                       unsigned OffsetReg) const {
  return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
}

MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned ValueReg, unsigned Address,
                                       unsigned OffsetReg,
                                       unsigned AddrChan) const {
  unsigned AddrReg;
  switch (AddrChan) {
    default: llvm_unreachable("Invalid Channel");
    case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
    case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
    case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
    case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
  }
  MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
                                               R600::AR_X, OffsetReg);
  setImmOperand(*MOVA, R600::OpName::write, 0);

  MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
                                      AddrReg, ValueReg)
                                      .addReg(R600::AR_X,
                                           RegState::Implicit | RegState::Kill);
  setImmOperand(*Mov, R600::OpName::dst_rel, 1);
  return Mov;
}

MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned ValueReg, unsigned Address,
                                       unsigned OffsetReg) const {
  return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
}

MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned ValueReg, unsigned Address,
                                       unsigned OffsetReg,
                                       unsigned AddrChan) const {
  unsigned AddrReg;
  switch (AddrChan) {
    default: llvm_unreachable("Invalid Channel");
    case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
    case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
    case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
    case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
  }
  MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
                                                       R600::AR_X,
                                                       OffsetReg);
  setImmOperand(*MOVA, R600::OpName::write, 0);
  MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
                                      ValueReg,
                                      AddrReg)
                                      .addReg(R600::AR_X,
                                           RegState::Implicit | RegState::Kill);
  setImmOperand(*Mov, R600::OpName::src0_rel, 1);

  return Mov;
}

int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  int Offset = -1;

  if (MFI.getNumObjects() == 0) {
    return -1;
  }

  if (MRI.livein_empty()) {
    return 0;
  }

  const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
  for (std::pair<unsigned, unsigned> LI : MRI.liveins()) {
    unsigned Reg = LI.first;
    if (Register::isVirtualRegister(Reg) || !IndirectRC->contains(Reg))
      continue;

    unsigned RegIndex;
    unsigned RegEnd;
    for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
                                                          ++RegIndex) {
      if (IndirectRC->getRegister(RegIndex) == Reg)
        break;
    }
    Offset = std::max(Offset, (int)RegIndex);
  }

  return Offset + 1;
}

int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
  int Offset = 0;
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Variable sized objects are not supported
  if (MFI.hasVarSizedObjects()) {
    return -1;
  }

  if (MFI.getNumObjects() == 0) {
    return -1;
  }

  const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
  const R600FrameLowering *TFL = ST.getFrameLowering();

  unsigned IgnoredFrameReg;
  Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg);

  return getIndirectIndexBegin(MF) + Offset;
}

unsigned R600InstrInfo::getMaxAlusPerClause() const {
  return 115;
}

MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
                                                  MachineBasicBlock::iterator I,
                                                  unsigned Opcode,
                                                  unsigned DstReg,
                                                  unsigned Src0Reg,
                                                  unsigned Src1Reg) const {
  MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
    DstReg);           // $dst

  if (Src1Reg) {
    MIB.addImm(0)     // $update_exec_mask
       .addImm(0);    // $update_predicate
  }
  MIB.addImm(1)        // $write
     .addImm(0)        // $omod
     .addImm(0)        // $dst_rel
     .addImm(0)        // $dst_clamp
     .addReg(Src0Reg)  // $src0
     .addImm(0)        // $src0_neg
     .addImm(0)        // $src0_rel
     .addImm(0)        // $src0_abs
     .addImm(-1);       // $src0_sel

  if (Src1Reg) {
    MIB.addReg(Src1Reg) // $src1
       .addImm(0)       // $src1_neg
       .addImm(0)       // $src1_rel
       .addImm(0)       // $src1_abs
       .addImm(-1);      // $src1_sel
  }

  //XXX: The r600g finalizer expects this to be 1, once we've moved the
  //scheduling to the backend, we can change the default to 0.
  MIB.addImm(1)        // $last
      .addReg(R600::PRED_SEL_OFF) // $pred_sel
      .addImm(0)         // $literal
      .addImm(0);        // $bank_swizzle

  return MIB;
}

#define OPERAND_CASE(Label) \
  case Label: { \
    static const unsigned Ops[] = \
    { \
      Label##_X, \
      Label##_Y, \
      Label##_Z, \
      Label##_W \
    }; \
    return Ops[Slot]; \
  }

static unsigned getSlotedOps(unsigned  Op, unsigned Slot) {
  switch (Op) {
  OPERAND_CASE(R600::OpName::update_exec_mask)
  OPERAND_CASE(R600::OpName::update_pred)
  OPERAND_CASE(R600::OpName::write)
  OPERAND_CASE(R600::OpName::omod)
  OPERAND_CASE(R600::OpName::dst_rel)
  OPERAND_CASE(R600::OpName::clamp)
  OPERAND_CASE(R600::OpName::src0)
  OPERAND_CASE(R600::OpName::src0_neg)
  OPERAND_CASE(R600::OpName::src0_rel)
  OPERAND_CASE(R600::OpName::src0_abs)
  OPERAND_CASE(R600::OpName::src0_sel)
  OPERAND_CASE(R600::OpName::src1)
  OPERAND_CASE(R600::OpName::src1_neg)
  OPERAND_CASE(R600::OpName::src1_rel)
  OPERAND_CASE(R600::OpName::src1_abs)
  OPERAND_CASE(R600::OpName::src1_sel)
  OPERAND_CASE(R600::OpName::pred_sel)
  default:
    llvm_unreachable("Wrong Operand");
  }
}

#undef OPERAND_CASE

MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
    MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
    const {
  assert (MI->getOpcode() == R600::DOT_4 && "Not Implemented");
  unsigned Opcode;
  if (ST.getGeneration() <= AMDGPUSubtarget::R700)
    Opcode = R600::DOT4_r600;
  else
    Opcode = R600::DOT4_eg;
  MachineBasicBlock::iterator I = MI;
  MachineOperand &Src0 = MI->getOperand(
      getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src0, Slot)));
  MachineOperand &Src1 = MI->getOperand(
      getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src1, Slot)));
  MachineInstr *MIB = buildDefaultInstruction(
      MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
  static const unsigned  Operands[14] = {
    R600::OpName::update_exec_mask,
    R600::OpName::update_pred,
    R600::OpName::write,
    R600::OpName::omod,
    R600::OpName::dst_rel,
    R600::OpName::clamp,
    R600::OpName::src0_neg,
    R600::OpName::src0_rel,
    R600::OpName::src0_abs,
    R600::OpName::src0_sel,
    R600::OpName::src1_neg,
    R600::OpName::src1_rel,
    R600::OpName::src1_abs,
    R600::OpName::src1_sel,
  };

  MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
      getSlotedOps(R600::OpName::pred_sel, Slot)));
  MIB->getOperand(getOperandIdx(Opcode, R600::OpName::pred_sel))
      .setReg(MO.getReg());

  for (unsigned i = 0; i < 14; i++) {
    MachineOperand &MO = MI->getOperand(
        getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
    assert (MO.isImm());
    setImmOperand(*MIB, Operands[i], MO.getImm());
  }
  MIB->getOperand(20).setImm(0);
  return MIB;
}

MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
                                         MachineBasicBlock::iterator I,
                                         unsigned DstReg,
                                         uint64_t Imm) const {
  MachineInstr *MovImm = buildDefaultInstruction(BB, I, R600::MOV, DstReg,
                                                  R600::ALU_LITERAL_X);
  setImmOperand(*MovImm, R600::OpName::literal, Imm);
  return MovImm;
}

MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned DstReg, unsigned SrcReg) const {
  return buildDefaultInstruction(*MBB, I, R600::MOV, DstReg, SrcReg);
}

int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
  return getOperandIdx(MI.getOpcode(), Op);
}

int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
  return R600::getNamedOperandIdx(Opcode, Op);
}

void R600InstrInfo::setImmOperand(MachineInstr &MI, unsigned Op,
                                  int64_t Imm) const {
  int Idx = getOperandIdx(MI, Op);
  assert(Idx != -1 && "Operand not supported for this instruction.");
  assert(MI.getOperand(Idx).isImm());
  MI.getOperand(Idx).setImm(Imm);
}

//===----------------------------------------------------------------------===//
// Instruction flag getters/setters
//===----------------------------------------------------------------------===//

MachineOperand &R600InstrInfo::getFlagOp(MachineInstr &MI, unsigned SrcIdx,
                                         unsigned Flag) const {
  unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
  int FlagIndex = 0;
  if (Flag != 0) {
    // If we pass something other than the default value of Flag to this
    // function, it means we are want to set a flag on an instruction
    // that uses native encoding.
    assert(HAS_NATIVE_OPERANDS(TargetFlags));
    bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
    switch (Flag) {
    case MO_FLAG_CLAMP:
      FlagIndex = getOperandIdx(MI, R600::OpName::clamp);
      break;
    case MO_FLAG_MASK:
      FlagIndex = getOperandIdx(MI, R600::OpName::write);
      break;
    case MO_FLAG_NOT_LAST:
    case MO_FLAG_LAST:
      FlagIndex = getOperandIdx(MI, R600::OpName::last);
      break;
    case MO_FLAG_NEG:
      switch (SrcIdx) {
      case 0:
        FlagIndex = getOperandIdx(MI, R600::OpName::src0_neg);
        break;
      case 1:
        FlagIndex = getOperandIdx(MI, R600::OpName::src1_neg);
        break;
      case 2:
        FlagIndex = getOperandIdx(MI, R600::OpName::src2_neg);
        break;
      }
      break;

    case MO_FLAG_ABS:
      assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
                       "instructions.");
      (void)IsOP3;
      switch (SrcIdx) {
      case 0:
        FlagIndex = getOperandIdx(MI, R600::OpName::src0_abs);
        break;
      case 1:
        FlagIndex = getOperandIdx(MI, R600::OpName::src1_abs);
        break;
      }
      break;

    default:
      FlagIndex = -1;
      break;
    }
    assert(FlagIndex != -1 && "Flag not supported for this instruction");
  } else {
      FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
      assert(FlagIndex != 0 &&
         "Instruction flags not supported for this instruction");
  }

  MachineOperand &FlagOp = MI.getOperand(FlagIndex);
  assert(FlagOp.isImm());
  return FlagOp;
}

void R600InstrInfo::addFlag(MachineInstr &MI, unsigned Operand,
                            unsigned Flag) const {
  unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
  if (Flag == 0) {
    return;
  }
  if (HAS_NATIVE_OPERANDS(TargetFlags)) {
    MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
    if (Flag == MO_FLAG_NOT_LAST) {
      clearFlag(MI, Operand, MO_FLAG_LAST);
    } else if (Flag == MO_FLAG_MASK) {
      clearFlag(MI, Operand, Flag);
    } else {
      FlagOp.setImm(1);
    }
  } else {
      MachineOperand &FlagOp = getFlagOp(MI, Operand);
      FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
  }
}

void R600InstrInfo::clearFlag(MachineInstr &MI, unsigned Operand,
                              unsigned Flag) const {
  unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
  if (HAS_NATIVE_OPERANDS(TargetFlags)) {
    MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
    FlagOp.setImm(0);
  } else {
    MachineOperand &FlagOp = getFlagOp(MI);
    unsigned InstFlags = FlagOp.getImm();
    InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
    FlagOp.setImm(InstFlags);
  }
}

unsigned R600InstrInfo::getAddressSpaceForPseudoSourceKind(
    unsigned Kind) const {
  switch (Kind) {
  case PseudoSourceValue::Stack:
  case PseudoSourceValue::FixedStack:
    return AMDGPUAS::PRIVATE_ADDRESS;
  case PseudoSourceValue::ConstantPool:
  case PseudoSourceValue::GOT:
  case PseudoSourceValue::JumpTable:
  case PseudoSourceValue::GlobalValueCallEntry:
  case PseudoSourceValue::ExternalSymbolCallEntry:
  case PseudoSourceValue::TargetCustom:
    return AMDGPUAS::CONSTANT_ADDRESS;
  }

  llvm_unreachable("Invalid pseudo source kind");
}