SIFixSGPRCopies.cpp 28.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
//===- SIFixSGPRCopies.cpp - Remove potential VGPR => SGPR copies ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Copies from VGPR to SGPR registers are illegal and the register coalescer
/// will sometimes generate these illegal copies in situations like this:
///
///  Register Class <vsrc> is the union of <vgpr> and <sgpr>
///
/// BB0:
///   %0 <sgpr> = SCALAR_INST
///   %1 <vsrc> = COPY %0 <sgpr>
///    ...
///    BRANCH %cond BB1, BB2
///  BB1:
///    %2 <vgpr> = VECTOR_INST
///    %3 <vsrc> = COPY %2 <vgpr>
///  BB2:
///    %4 <vsrc> = PHI %1 <vsrc>, <%bb.0>, %3 <vrsc>, <%bb.1>
///    %5 <vgpr> = VECTOR_INST %4 <vsrc>
///
///
/// The coalescer will begin at BB0 and eliminate its copy, then the resulting
/// code will look like this:
///
/// BB0:
///   %0 <sgpr> = SCALAR_INST
///    ...
///    BRANCH %cond BB1, BB2
/// BB1:
///   %2 <vgpr> = VECTOR_INST
///   %3 <vsrc> = COPY %2 <vgpr>
/// BB2:
///   %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <vsrc>, <%bb.1>
///   %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
/// Now that the result of the PHI instruction is an SGPR, the register
/// allocator is now forced to constrain the register class of %3 to
/// <sgpr> so we end up with final code like this:
///
/// BB0:
///   %0 <sgpr> = SCALAR_INST
///    ...
///    BRANCH %cond BB1, BB2
/// BB1:
///   %2 <vgpr> = VECTOR_INST
///   %3 <sgpr> = COPY %2 <vgpr>
/// BB2:
///   %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <sgpr>, <%bb.1>
///   %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
/// Now this code contains an illegal copy from a VGPR to an SGPR.
///
/// In order to avoid this problem, this pass searches for PHI instructions
/// which define a <vsrc> register and constrains its definition class to
/// <vgpr> if the user of the PHI's definition register is a vector instruction.
/// If the PHI's definition class is constrained to <vgpr> then the coalescer
/// will be unable to perform the COPY removal from the above example  which
/// ultimately led to the creation of an illegal COPY.
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <map>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "si-fix-sgpr-copies"

static cl::opt<bool> EnableM0Merge(
  "amdgpu-enable-merge-m0",
  cl::desc("Merge and hoist M0 initializations"),
  cl::init(true));

namespace {

class SIFixSGPRCopies : public MachineFunctionPass {
  MachineDominatorTree *MDT;

public:
  static char ID;

  MachineRegisterInfo *MRI;
  const SIRegisterInfo *TRI;
  const SIInstrInfo *TII;

  SIFixSGPRCopies() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  void processPHINode(MachineInstr &MI);

  StringRef getPassName() const override { return "SI Fix SGPR copies"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineDominatorTree>();
    AU.addPreserved<MachineDominatorTree>();
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(SIFixSGPRCopies, DEBUG_TYPE,
                     "SI Fix SGPR copies", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIFixSGPRCopies, DEBUG_TYPE,
                     "SI Fix SGPR copies", false, false)

char SIFixSGPRCopies::ID = 0;

char &llvm::SIFixSGPRCopiesID = SIFixSGPRCopies::ID;

FunctionPass *llvm::createSIFixSGPRCopiesPass() {
  return new SIFixSGPRCopies();
}

static bool hasVectorOperands(const MachineInstr &MI,
                              const SIRegisterInfo *TRI) {
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    if (!MI.getOperand(i).isReg() ||
        !Register::isVirtualRegister(MI.getOperand(i).getReg()))
      continue;

    if (TRI->hasVectorRegisters(MRI.getRegClass(MI.getOperand(i).getReg())))
      return true;
  }
  return false;
}

static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getCopyRegClasses(const MachineInstr &Copy,
                  const SIRegisterInfo &TRI,
                  const MachineRegisterInfo &MRI) {
  Register DstReg = Copy.getOperand(0).getReg();
  Register SrcReg = Copy.getOperand(1).getReg();

  const TargetRegisterClass *SrcRC = Register::isVirtualRegister(SrcReg)
                                         ? MRI.getRegClass(SrcReg)
                                         : TRI.getPhysRegClass(SrcReg);

  // We don't really care about the subregister here.
  // SrcRC = TRI.getSubRegClass(SrcRC, Copy.getOperand(1).getSubReg());

  const TargetRegisterClass *DstRC = Register::isVirtualRegister(DstReg)
                                         ? MRI.getRegClass(DstReg)
                                         : TRI.getPhysRegClass(DstReg);

  return std::make_pair(SrcRC, DstRC);
}

static bool isVGPRToSGPRCopy(const TargetRegisterClass *SrcRC,
                             const TargetRegisterClass *DstRC,
                             const SIRegisterInfo &TRI) {
  return SrcRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(DstRC) &&
         TRI.hasVectorRegisters(SrcRC);
}

static bool isSGPRToVGPRCopy(const TargetRegisterClass *SrcRC,
                             const TargetRegisterClass *DstRC,
                             const SIRegisterInfo &TRI) {
  return DstRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(SrcRC) &&
         TRI.hasVectorRegisters(DstRC);
}

static bool tryChangeVGPRtoSGPRinCopy(MachineInstr &MI,
                                      const SIRegisterInfo *TRI,
                                      const SIInstrInfo *TII) {
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  auto &Src = MI.getOperand(1);
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = Src.getReg();
  if (!Register::isVirtualRegister(SrcReg) ||
      !Register::isVirtualRegister(DstReg))
    return false;

  for (const auto &MO : MRI.reg_nodbg_operands(DstReg)) {
    const auto *UseMI = MO.getParent();
    if (UseMI == &MI)
      continue;
    if (MO.isDef() || UseMI->getParent() != MI.getParent() ||
        UseMI->getOpcode() <= TargetOpcode::GENERIC_OP_END ||
        !TII->isOperandLegal(*UseMI, UseMI->getOperandNo(&MO), &Src))
      return false;
  }
  // Change VGPR to SGPR destination.
  MRI.setRegClass(DstReg, TRI->getEquivalentSGPRClass(MRI.getRegClass(DstReg)));
  return true;
}

// Distribute an SGPR->VGPR copy of a REG_SEQUENCE into a VGPR REG_SEQUENCE.
//
// SGPRx = ...
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
// VGPRz = COPY SGPRy
//
// ==>
//
// VGPRx = COPY SGPRx
// VGPRz = REG_SEQUENCE VGPRx, sub0
//
// This exposes immediate folding opportunities when materializing 64-bit
// immediates.
static bool foldVGPRCopyIntoRegSequence(MachineInstr &MI,
                                        const SIRegisterInfo *TRI,
                                        const SIInstrInfo *TII,
                                        MachineRegisterInfo &MRI) {
  assert(MI.isRegSequence());

  Register DstReg = MI.getOperand(0).getReg();
  if (!TRI->isSGPRClass(MRI.getRegClass(DstReg)))
    return false;

  if (!MRI.hasOneUse(DstReg))
    return false;

  MachineInstr &CopyUse = *MRI.use_instr_begin(DstReg);
  if (!CopyUse.isCopy())
    return false;

  // It is illegal to have vreg inputs to a physreg defining reg_sequence.
  if (Register::isPhysicalRegister(CopyUse.getOperand(0).getReg()))
    return false;

  const TargetRegisterClass *SrcRC, *DstRC;
  std::tie(SrcRC, DstRC) = getCopyRegClasses(CopyUse, *TRI, MRI);

  if (!isSGPRToVGPRCopy(SrcRC, DstRC, *TRI))
    return false;

  if (tryChangeVGPRtoSGPRinCopy(CopyUse, TRI, TII))
    return true;

  // TODO: Could have multiple extracts?
  unsigned SubReg = CopyUse.getOperand(1).getSubReg();
  if (SubReg != AMDGPU::NoSubRegister)
    return false;

  MRI.setRegClass(DstReg, DstRC);

  // SGPRx = ...
  // SGPRy = REG_SEQUENCE SGPRx, sub0 ...
  // VGPRz = COPY SGPRy

  // =>
  // VGPRx = COPY SGPRx
  // VGPRz = REG_SEQUENCE VGPRx, sub0

  MI.getOperand(0).setReg(CopyUse.getOperand(0).getReg());
  bool IsAGPR = TRI->hasAGPRs(DstRC);

  for (unsigned I = 1, N = MI.getNumOperands(); I != N; I += 2) {
    Register SrcReg = MI.getOperand(I).getReg();
    unsigned SrcSubReg = MI.getOperand(I).getSubReg();

    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
    assert(TRI->isSGPRClass(SrcRC) &&
           "Expected SGPR REG_SEQUENCE to only have SGPR inputs");

    SrcRC = TRI->getSubRegClass(SrcRC, SrcSubReg);
    const TargetRegisterClass *NewSrcRC = TRI->getEquivalentVGPRClass(SrcRC);

    Register TmpReg = MRI.createVirtualRegister(NewSrcRC);

    BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY),
            TmpReg)
        .add(MI.getOperand(I));

    if (IsAGPR) {
      const TargetRegisterClass *NewSrcRC = TRI->getEquivalentAGPRClass(SrcRC);
      Register TmpAReg = MRI.createVirtualRegister(NewSrcRC);
      unsigned Opc = NewSrcRC == &AMDGPU::AGPR_32RegClass ?
        AMDGPU::V_ACCVGPR_WRITE_B32 : AMDGPU::COPY;
      BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(Opc),
            TmpAReg)
        .addReg(TmpReg, RegState::Kill);
      TmpReg = TmpAReg;
    }

    MI.getOperand(I).setReg(TmpReg);
  }

  CopyUse.eraseFromParent();
  return true;
}

static bool isSafeToFoldImmIntoCopy(const MachineInstr *Copy,
                                    const MachineInstr *MoveImm,
                                    const SIInstrInfo *TII,
                                    unsigned &SMovOp,
                                    int64_t &Imm) {
  if (Copy->getOpcode() != AMDGPU::COPY)
    return false;

  if (!MoveImm->isMoveImmediate())
    return false;

  const MachineOperand *ImmOp =
      TII->getNamedOperand(*MoveImm, AMDGPU::OpName::src0);
  if (!ImmOp->isImm())
    return false;

  // FIXME: Handle copies with sub-regs.
  if (Copy->getOperand(0).getSubReg())
    return false;

  switch (MoveImm->getOpcode()) {
  default:
    return false;
  case AMDGPU::V_MOV_B32_e32:
    SMovOp = AMDGPU::S_MOV_B32;
    break;
  case AMDGPU::V_MOV_B64_PSEUDO:
    SMovOp = AMDGPU::S_MOV_B64;
    break;
  }
  Imm = ImmOp->getImm();
  return true;
}

template <class UnaryPredicate>
bool searchPredecessors(const MachineBasicBlock *MBB,
                        const MachineBasicBlock *CutOff,
                        UnaryPredicate Predicate) {
  if (MBB == CutOff)
    return false;

  DenseSet<const MachineBasicBlock *> Visited;
  SmallVector<MachineBasicBlock *, 4> Worklist(MBB->pred_begin(),
                                               MBB->pred_end());

  while (!Worklist.empty()) {
    MachineBasicBlock *MBB = Worklist.pop_back_val();

    if (!Visited.insert(MBB).second)
      continue;
    if (MBB == CutOff)
      continue;
    if (Predicate(MBB))
      return true;

    Worklist.append(MBB->pred_begin(), MBB->pred_end());
  }

  return false;
}

// Checks if there is potential path From instruction To instruction.
// If CutOff is specified and it sits in between of that path we ignore
// a higher portion of the path and report it is not reachable.
static bool isReachable(const MachineInstr *From,
                        const MachineInstr *To,
                        const MachineBasicBlock *CutOff,
                        MachineDominatorTree &MDT) {
  // If either From block dominates To block or instructions are in the same
  // block and From is higher.
  if (MDT.dominates(From, To))
    return true;

  const MachineBasicBlock *MBBFrom = From->getParent();
  const MachineBasicBlock *MBBTo = To->getParent();
  if (MBBFrom == MBBTo)
    return false;

  // Instructions are in different blocks, do predecessor search.
  // We should almost never get here since we do not usually produce M0 stores
  // other than -1.
  return searchPredecessors(MBBTo, CutOff, [MBBFrom]
           (const MachineBasicBlock *MBB) { return MBB == MBBFrom; });
}

// Return the first non-prologue instruction in the block.
static MachineBasicBlock::iterator
getFirstNonPrologue(MachineBasicBlock *MBB, const TargetInstrInfo *TII) {
  MachineBasicBlock::iterator I = MBB->getFirstNonPHI();
  while (I != MBB->end() && TII->isBasicBlockPrologue(*I))
    ++I;

  return I;
}

// Hoist and merge identical SGPR initializations into a common predecessor.
// This is intended to combine M0 initializations, but can work with any
// SGPR. A VGPR cannot be processed since we cannot guarantee vector
// executioon.
static bool hoistAndMergeSGPRInits(unsigned Reg,
                                   const MachineRegisterInfo &MRI,
                                   const TargetRegisterInfo *TRI,
                                   MachineDominatorTree &MDT,
                                   const TargetInstrInfo *TII) {
  // List of inits by immediate value.
  using InitListMap = std::map<unsigned, std::list<MachineInstr *>>;
  InitListMap Inits;
  // List of clobbering instructions.
  SmallVector<MachineInstr*, 8> Clobbers;
  // List of instructions marked for deletion.
  SmallSet<MachineInstr*, 8> MergedInstrs;

  bool Changed = false;

  for (auto &MI : MRI.def_instructions(Reg)) {
    MachineOperand *Imm = nullptr;
    for (auto &MO : MI.operands()) {
      if ((MO.isReg() && ((MO.isDef() && MO.getReg() != Reg) || !MO.isDef())) ||
          (!MO.isImm() && !MO.isReg()) || (MO.isImm() && Imm)) {
        Imm = nullptr;
        break;
      } else if (MO.isImm())
        Imm = &MO;
    }
    if (Imm)
      Inits[Imm->getImm()].push_front(&MI);
    else
      Clobbers.push_back(&MI);
  }

  for (auto &Init : Inits) {
    auto &Defs = Init.second;

    for (auto I1 = Defs.begin(), E = Defs.end(); I1 != E; ) {
      MachineInstr *MI1 = *I1;

      for (auto I2 = std::next(I1); I2 != E; ) {
        MachineInstr *MI2 = *I2;

        // Check any possible interference
        auto interferes = [&](MachineBasicBlock::iterator From,
                              MachineBasicBlock::iterator To) -> bool {

          assert(MDT.dominates(&*To, &*From));

          auto interferes = [&MDT, From, To](MachineInstr* &Clobber) -> bool {
            const MachineBasicBlock *MBBFrom = From->getParent();
            const MachineBasicBlock *MBBTo = To->getParent();
            bool MayClobberFrom = isReachable(Clobber, &*From, MBBTo, MDT);
            bool MayClobberTo = isReachable(Clobber, &*To, MBBTo, MDT);
            if (!MayClobberFrom && !MayClobberTo)
              return false;
            if ((MayClobberFrom && !MayClobberTo) ||
                (!MayClobberFrom && MayClobberTo))
              return true;
            // Both can clobber, this is not an interference only if both are
            // dominated by Clobber and belong to the same block or if Clobber
            // properly dominates To, given that To >> From, so it dominates
            // both and located in a common dominator.
            return !((MBBFrom == MBBTo &&
                      MDT.dominates(Clobber, &*From) &&
                      MDT.dominates(Clobber, &*To)) ||
                     MDT.properlyDominates(Clobber->getParent(), MBBTo));
          };

          return (llvm::any_of(Clobbers, interferes)) ||
                 (llvm::any_of(Inits, [&](InitListMap::value_type &C) {
                    return C.first != Init.first &&
                           llvm::any_of(C.second, interferes);
                  }));
        };

        if (MDT.dominates(MI1, MI2)) {
          if (!interferes(MI2, MI1)) {
            LLVM_DEBUG(dbgs()
                       << "Erasing from "
                       << printMBBReference(*MI2->getParent()) << " " << *MI2);
            MergedInstrs.insert(MI2);
            Changed = true;
            ++I2;
            continue;
          }
        } else if (MDT.dominates(MI2, MI1)) {
          if (!interferes(MI1, MI2)) {
            LLVM_DEBUG(dbgs()
                       << "Erasing from "
                       << printMBBReference(*MI1->getParent()) << " " << *MI1);
            MergedInstrs.insert(MI1);
            Changed = true;
            ++I1;
            break;
          }
        } else {
          auto *MBB = MDT.findNearestCommonDominator(MI1->getParent(),
                                                     MI2->getParent());
          if (!MBB) {
            ++I2;
            continue;
          }

          MachineBasicBlock::iterator I = getFirstNonPrologue(MBB, TII);
          if (!interferes(MI1, I) && !interferes(MI2, I)) {
            LLVM_DEBUG(dbgs()
                       << "Erasing from "
                       << printMBBReference(*MI1->getParent()) << " " << *MI1
                       << "and moving from "
                       << printMBBReference(*MI2->getParent()) << " to "
                       << printMBBReference(*I->getParent()) << " " << *MI2);
            I->getParent()->splice(I, MI2->getParent(), MI2);
            MergedInstrs.insert(MI1);
            Changed = true;
            ++I1;
            break;
          }
        }
        ++I2;
      }
      ++I1;
    }
  }

  // Remove initializations that were merged into another.
  for (auto &Init : Inits) {
    auto &Defs = Init.second;
    auto I = Defs.begin();
    while (I != Defs.end()) {
      if (MergedInstrs.count(*I)) {
        (*I)->eraseFromParent();
        I = Defs.erase(I);
      } else
        ++I;
    }
  }

  // Try to schedule SGPR initializations as early as possible in the MBB.
  for (auto &Init : Inits) {
    auto &Defs = Init.second;
    for (auto MI : Defs) {
      auto MBB = MI->getParent();
      MachineInstr &BoundaryMI = *getFirstNonPrologue(MBB, TII);
      MachineBasicBlock::reverse_iterator B(BoundaryMI);
      // Check if B should actually be a boundary. If not set the previous
      // instruction as the boundary instead.
      if (!TII->isBasicBlockPrologue(*B))
        B++;

      auto R = std::next(MI->getReverseIterator());
      const unsigned Threshold = 50;
      // Search until B or Threshold for a place to insert the initialization.
      for (unsigned I = 0; R != B && I < Threshold; ++R, ++I)
        if (R->readsRegister(Reg, TRI) || R->definesRegister(Reg, TRI) ||
            TII->isSchedulingBoundary(*R, MBB, *MBB->getParent()))
          break;

      // Move to directly after R.
      if (&*--R != MI)
        MBB->splice(*R, MBB, MI);
    }
  }

  if (Changed)
    MRI.clearKillFlags(Reg);

  return Changed;
}

bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  MRI = &MF.getRegInfo();
  TRI = ST.getRegisterInfo();
  TII = ST.getInstrInfo();
  MDT = &getAnalysis<MachineDominatorTree>();

  SmallVector<MachineInstr *, 16> Worklist;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {
    MachineBasicBlock &MBB = *BI;
    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
         I != E; ++I) {
      MachineInstr &MI = *I;

      switch (MI.getOpcode()) {
      default:
        continue;
      case AMDGPU::COPY:
      case AMDGPU::WQM:
      case AMDGPU::SOFT_WQM:
      case AMDGPU::WWM: {
        Register DstReg = MI.getOperand(0).getReg();

        const TargetRegisterClass *SrcRC, *DstRC;
        std::tie(SrcRC, DstRC) = getCopyRegClasses(MI, *TRI, *MRI);

        if (!Register::isVirtualRegister(DstReg)) {
          // If the destination register is a physical register there isn't
          // really much we can do to fix this.
          // Some special instructions use M0 as an input. Some even only use
          // the first lane. Insert a readfirstlane and hope for the best.
          if (DstReg == AMDGPU::M0 && TRI->hasVectorRegisters(SrcRC)) {
            Register TmpReg
              = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);

            BuildMI(MBB, MI, MI.getDebugLoc(),
                    TII->get(AMDGPU::V_READFIRSTLANE_B32), TmpReg)
              .add(MI.getOperand(1));
            MI.getOperand(1).setReg(TmpReg);
          }

          continue;
        }

        if (isVGPRToSGPRCopy(SrcRC, DstRC, *TRI)) {
          Register SrcReg = MI.getOperand(1).getReg();
          if (!Register::isVirtualRegister(SrcReg)) {
            TII->moveToVALU(MI, MDT);
            break;
          }

          MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
          unsigned SMovOp;
          int64_t Imm;
          // If we are just copying an immediate, we can replace the copy with
          // s_mov_b32.
          if (isSafeToFoldImmIntoCopy(&MI, DefMI, TII, SMovOp, Imm)) {
            MI.getOperand(1).ChangeToImmediate(Imm);
            MI.addImplicitDefUseOperands(MF);
            MI.setDesc(TII->get(SMovOp));
            break;
          }
          TII->moveToVALU(MI, MDT);
        } else if (isSGPRToVGPRCopy(SrcRC, DstRC, *TRI)) {
          tryChangeVGPRtoSGPRinCopy(MI, TRI, TII);
        }

        break;
      }
      case AMDGPU::PHI: {
        processPHINode(MI);
        break;
      }
      case AMDGPU::REG_SEQUENCE:
        if (TRI->hasVectorRegisters(TII->getOpRegClass(MI, 0)) ||
            !hasVectorOperands(MI, TRI)) {
          foldVGPRCopyIntoRegSequence(MI, TRI, TII, *MRI);
          continue;
        }

        LLVM_DEBUG(dbgs() << "Fixing REG_SEQUENCE: " << MI);

        TII->moveToVALU(MI, MDT);
        break;
      case AMDGPU::INSERT_SUBREG: {
        const TargetRegisterClass *DstRC, *Src0RC, *Src1RC;
        DstRC = MRI->getRegClass(MI.getOperand(0).getReg());
        Src0RC = MRI->getRegClass(MI.getOperand(1).getReg());
        Src1RC = MRI->getRegClass(MI.getOperand(2).getReg());
        if (TRI->isSGPRClass(DstRC) &&
            (TRI->hasVectorRegisters(Src0RC) ||
             TRI->hasVectorRegisters(Src1RC))) {
          LLVM_DEBUG(dbgs() << " Fixing INSERT_SUBREG: " << MI);
          TII->moveToVALU(MI, MDT);
        }
        break;
      }
      case AMDGPU::V_WRITELANE_B32: {
        // Some architectures allow more than one constant bus access without
        // SGPR restriction
        if (ST.getConstantBusLimit(MI.getOpcode()) != 1)
          break;

        // Writelane is special in that it can use SGPR and M0 (which would
        // normally count as using the constant bus twice - but in this case it
        // is allowed since the lane selector doesn't count as a use of the
        // constant bus). However, it is still required to abide by the 1 SGPR
        // rule. Apply a fix here as we might have multiple SGPRs after
        // legalizing VGPRs to SGPRs
        int Src0Idx =
            AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
        int Src1Idx =
            AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1);
        MachineOperand &Src0 = MI.getOperand(Src0Idx);
        MachineOperand &Src1 = MI.getOperand(Src1Idx);

        // Check to see if the instruction violates the 1 SGPR rule
        if ((Src0.isReg() && TRI->isSGPRReg(*MRI, Src0.getReg()) &&
             Src0.getReg() != AMDGPU::M0) &&
            (Src1.isReg() && TRI->isSGPRReg(*MRI, Src1.getReg()) &&
             Src1.getReg() != AMDGPU::M0)) {

          // Check for trivially easy constant prop into one of the operands
          // If this is the case then perform the operation now to resolve SGPR
          // issue. If we don't do that here we will always insert a mov to m0
          // that can't be resolved in later operand folding pass
          bool Resolved = false;
          for (MachineOperand *MO : {&Src0, &Src1}) {
            if (Register::isVirtualRegister(MO->getReg())) {
              MachineInstr *DefMI = MRI->getVRegDef(MO->getReg());
              if (DefMI && TII->isFoldableCopy(*DefMI)) {
                const MachineOperand &Def = DefMI->getOperand(0);
                if (Def.isReg() &&
                    MO->getReg() == Def.getReg() &&
                    MO->getSubReg() == Def.getSubReg()) {
                  const MachineOperand &Copied = DefMI->getOperand(1);
                  if (Copied.isImm() &&
                      TII->isInlineConstant(APInt(64, Copied.getImm(), true))) {
                    MO->ChangeToImmediate(Copied.getImm());
                    Resolved = true;
                    break;
                  }
                }
              }
            }
          }

          if (!Resolved) {
            // Haven't managed to resolve by replacing an SGPR with an immediate
            // Move src1 to be in M0
            BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
                    TII->get(AMDGPU::COPY), AMDGPU::M0)
                .add(Src1);
            Src1.ChangeToRegister(AMDGPU::M0, false);
          }
        }
        break;
      }
      }
    }
  }

  if (MF.getTarget().getOptLevel() > CodeGenOpt::None && EnableM0Merge)
    hoistAndMergeSGPRInits(AMDGPU::M0, *MRI, TRI, *MDT, TII);

  return true;
}

void SIFixSGPRCopies::processPHINode(MachineInstr &MI) {
  unsigned numVGPRUses = 0;
  bool AllAGPRUses = true;
  SetVector<const MachineInstr *> worklist;
  SmallSet<const MachineInstr *, 4> Visited;
  worklist.insert(&MI);
  Visited.insert(&MI);
  while (!worklist.empty()) {
    const MachineInstr *Instr = worklist.pop_back_val();
    unsigned Reg = Instr->getOperand(0).getReg();
    for (const auto &Use : MRI->use_operands(Reg)) {
      const MachineInstr *UseMI = Use.getParent();
      AllAGPRUses &= (UseMI->isCopy() &&
                      TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg())) ||
                     TRI->isAGPR(*MRI, Use.getReg());
      if (UseMI->isCopy() || UseMI->isRegSequence()) {
        if (UseMI->isCopy() &&
          UseMI->getOperand(0).getReg().isPhysical() &&
          !TRI->isSGPRReg(*MRI, UseMI->getOperand(0).getReg())) {
          numVGPRUses++;
        }
        if (Visited.insert(UseMI).second)
          worklist.insert(UseMI);

        continue;
      }

      if (UseMI->isPHI()) {
        const TargetRegisterClass *UseRC = MRI->getRegClass(Use.getReg());
        if (!TRI->isSGPRReg(*MRI, Use.getReg()) &&
          UseRC != &AMDGPU::VReg_1RegClass)
          numVGPRUses++;
        continue;
      }

      const TargetRegisterClass *OpRC =
        TII->getOpRegClass(*UseMI, UseMI->getOperandNo(&Use));
      if (!TRI->isSGPRClass(OpRC) && OpRC != &AMDGPU::VS_32RegClass &&
        OpRC != &AMDGPU::VS_64RegClass) {
        numVGPRUses++;
      }
    }
  }

  Register PHIRes = MI.getOperand(0).getReg();
  const TargetRegisterClass *RC0 = MRI->getRegClass(PHIRes);
  if (AllAGPRUses && numVGPRUses && !TRI->hasAGPRs(RC0)) {
    LLVM_DEBUG(dbgs() << "Moving PHI to AGPR: " << MI);
    MRI->setRegClass(PHIRes, TRI->getEquivalentAGPRClass(RC0));
  }

  bool hasVGPRInput = false;
  for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
    unsigned InputReg = MI.getOperand(i).getReg();
    MachineInstr *Def = MRI->getVRegDef(InputReg);
    if (TRI->isVectorRegister(*MRI, InputReg)) {
      if (Def->isCopy()) {
        unsigned SrcReg = Def->getOperand(1).getReg();
        const TargetRegisterClass *RC =
          TRI->getRegClassForReg(*MRI, SrcReg);
        if (TRI->isSGPRClass(RC))
          continue;
      }
      hasVGPRInput = true;
      break;
    }
    else if (Def->isCopy() &&
      TRI->isVectorRegister(*MRI, Def->getOperand(1).getReg())) {
      hasVGPRInput = true;
      break;
    }
  }

  if ((!TRI->isVectorRegister(*MRI, PHIRes) &&
       RC0 != &AMDGPU::VReg_1RegClass) &&
    (hasVGPRInput || numVGPRUses > 1)) {
    LLVM_DEBUG(dbgs() << "Fixing PHI: " << MI);
    TII->moveToVALU(MI);
  }
  else {
    LLVM_DEBUG(dbgs() << "Legalizing PHI: " << MI);
    TII->legalizeOperands(MI, MDT);
  }

}