SIInstructions.td
61.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
//===-- SIInstructions.td - SI Instruction Defintions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file was originally auto-generated from a GPU register header file and
// all the instruction definitions were originally commented out. Instructions
// that are not yet supported remain commented out.
//===----------------------------------------------------------------------===//
class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
}
include "SOPInstructions.td"
include "VOPInstructions.td"
include "SMInstructions.td"
include "FLATInstructions.td"
include "BUFInstructions.td"
//===----------------------------------------------------------------------===//
// EXP Instructions
//===----------------------------------------------------------------------===//
defm EXP : EXP_m<0, AMDGPUexport>;
defm EXP_DONE : EXP_m<1, AMDGPUexport_done>;
//===----------------------------------------------------------------------===//
// VINTRP Instructions
//===----------------------------------------------------------------------===//
// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
def VINTRPDst : VINTRPDstOperand <VGPR_32>;
let Uses = [M0, EXEC] in {
// FIXME: Specify SchedRW for VINTRP insturctions.
multiclass V_INTERP_P1_F32_m : VINTRP_m <
0x00000000,
(outs VINTRPDst:$vdst),
(ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
"v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
(i32 timm:$attrchan), (i32 timm:$attr), M0))]
>;
let OtherPredicates = [has32BankLDS] in {
defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
} // End OtherPredicates = [has32BankLDS]
let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
defm V_INTERP_P2_F32 : VINTRP_m <
0x00000001,
(outs VINTRPDst:$vdst),
(ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
"v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
(i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
defm V_INTERP_MOV_F32 : VINTRP_m <
0x00000002,
(outs VINTRPDst:$vdst),
(ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
"v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
[(set f32:$vdst, (int_amdgcn_interp_mov (i32 imm:$vsrc),
(i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
} // End Uses = [M0, EXEC]
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
def ATOMIC_FENCE : SPseudoInstSI<
(outs), (ins i32imm:$ordering, i32imm:$scope),
[(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
"ATOMIC_FENCE $ordering, $scope"> {
let hasSideEffects = 1;
let maybeAtomic = 1;
}
def VOP_I64_I64_DPP : VOPProfile <[i64, i64, untyped, untyped]> {
let HasExt = 1;
let HasExtDPP = 1;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
// For use in patterns
def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
(ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
let isPseudo = 1;
let isCodeGenOnly = 1;
let usesCustomInserter = 1;
}
// 64-bit vector move instruction. This is mainly used by the
// SIFoldOperands pass to enable folding of inline immediates.
def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
(ins VSrc_b64:$src0)>;
// 64-bit vector move with dpp. Expanded post-RA.
def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64_DPP> {
let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
}
// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
// WQM pass processes it.
def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
// turned into a copy by WQM pass, but does not seed WQM requirements.
def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so
// that the @earlyclobber is respected. The @earlyclobber is to make sure that
// the instruction that defines $src0 (which is run in WWM) doesn't
// accidentally clobber inactive channels of $vdst.
let Constraints = "@earlyclobber $vdst" in {
def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
}
} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
def ENTER_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
let Defs = [EXEC];
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
def EXIT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
}
// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
// restoring it after we're done.
def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
(ins VGPR_32: $src, VSrc_b32:$inactive),
[(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
let Constraints = "$src = $vdst";
}
def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
(ins VReg_64: $src, VSrc_b64:$inactive),
[(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
let Constraints = "$src = $vdst";
}
let usesCustomInserter = 1, Defs = [SCC] in {
def S_ADD_U64_PSEUDO : SPseudoInstSI <
(outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
[(set SReg_64:$vdst, (add i64:$src0, i64:$src1))]
>;
def S_SUB_U64_PSEUDO : SPseudoInstSI <
(outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
[(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))]
>;
def S_ADD_U64_CO_PSEUDO : SPseudoInstSI <
(outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
>;
def S_SUB_U64_CO_PSEUDO : SPseudoInstSI <
(outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
>;
} // End usesCustomInserter = 1, Defs = [SCC]
let usesCustomInserter = 1 in {
def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
[(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
} // End let usesCustomInserter = 1, SALU = 1
// Wrap an instruction by duplicating it, except for setting isTerminator.
class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
base_inst.OutOperandList,
base_inst.InOperandList> {
let Uses = base_inst.Uses;
let Defs = base_inst.Defs;
let isTerminator = 1;
let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
let hasSideEffects = base_inst.hasSideEffects;
let UseNamedOperandTable = base_inst.UseNamedOperandTable;
let CodeSize = base_inst.CodeSize;
}
let WaveSizePredicate = isWave64 in {
def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
}
let WaveSizePredicate = isWave32 in {
def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
}
def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
[(int_amdgcn_wave_barrier)]> {
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let hasSideEffects = 1;
let mayLoad = 1;
let mayStore = 1;
let isConvergent = 1;
let FixedSize = 1;
let Size = 0;
}
// SI pseudo instructions. These are used by the CFG structurizer pass
// and should be lowered to ISA instructions prior to codegen.
// Dummy terminator instruction to use after control flow instructions
// replaced with exec mask operations.
def SI_MASK_BRANCH : VPseudoInstSI <
(outs), (ins brtarget:$target)> {
let isBranch = 0;
let isTerminator = 1;
let isBarrier = 0;
let SchedRW = [];
let hasNoSchedulingInfo = 1;
let FixedSize = 1;
let Size = 0;
}
let isTerminator = 1 in {
let OtherPredicates = [EnableLateCFGStructurize] in {
def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
(outs),
(ins SReg_1:$vcc, brtarget:$target),
[(brcond i1:$vcc, bb:$target)]> {
let Size = 12;
}
}
def SI_IF: CFPseudoInstSI <
(outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
[(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
let Constraints = "";
let Size = 12;
let hasSideEffects = 1;
}
def SI_ELSE : CFPseudoInstSI <
(outs SReg_1:$dst),
(ins SReg_1:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> {
let Size = 12;
let hasSideEffects = 1;
}
def SI_LOOP : CFPseudoInstSI <
(outs), (ins SReg_1:$saved, brtarget:$target),
[(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
let Size = 8;
let isBranch = 1;
let hasSideEffects = 1;
}
} // End isTerminator = 1
def SI_END_CF : CFPseudoInstSI <
(outs), (ins SReg_1:$saved), [], 1, 1> {
let Size = 4;
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
let hasSideEffects = 1;
let mayLoad = 1; // FIXME: Should not need memory flags
let mayStore = 1;
}
def SI_IF_BREAK : CFPseudoInstSI <
(outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
let Size = 4;
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
}
let Uses = [EXEC] in {
multiclass PseudoInstKill <dag ins> {
// Even though this pseudo can usually be expanded without an SCC def, we
// conservatively assume that it has an SCC def, both because it is sometimes
// required in degenerate cases (when V_CMPX cannot be used due to constant
// bus limitations) and because it allows us to avoid having to track SCC
// liveness across basic blocks.
let Defs = [EXEC,VCC,SCC] in
def _PSEUDO : PseudoInstSI <(outs), ins> {
let isConvergent = 1;
let usesCustomInserter = 1;
}
let Defs = [EXEC,VCC,SCC] in
def _TERMINATOR : SPseudoInstSI <(outs), ins> {
let isTerminator = 1;
}
}
defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
let Defs = [EXEC,VCC] in
def SI_ILLEGAL_COPY : SPseudoInstSI <
(outs unknown:$dst), (ins unknown:$src),
[], " ; illegal copy $src to $dst">;
} // End Uses = [EXEC], Defs = [EXEC,VCC]
// Branch on undef scc. Used to avoid intermediate copy from
// IMPLICIT_DEF to SCC.
def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
let isTerminator = 1;
let usesCustomInserter = 1;
let isBranch = 1;
}
def SI_PS_LIVE : PseudoInstSI <
(outs SReg_1:$dst), (ins),
[(set i1:$dst, (int_amdgcn_ps_live))]> {
let SALU = 1;
}
def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
[(int_amdgcn_unreachable)],
"; divergent unreachable"> {
let Size = 0;
let hasNoSchedulingInfo = 1;
let FixedSize = 1;
}
// Used as an isel pseudo to directly emit initialization with an
// s_mov_b32 rather than a copy of another initialized
// register. MachineCSE skips copies, and we don't want to have to
// fold operands before it runs.
def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
let Defs = [M0];
let usesCustomInserter = 1;
let isAsCheapAsAMove = 1;
let isReMaterializable = 1;
}
def SI_INIT_EXEC : SPseudoInstSI <
(outs), (ins i64imm:$src),
[(int_amdgcn_init_exec (i64 timm:$src))]> {
let Defs = [EXEC];
let usesCustomInserter = 1;
let isAsCheapAsAMove = 1;
let WaveSizePredicate = isWave64;
}
// FIXME: Intrinsic should be mangled for wave size.
def SI_INIT_EXEC_LO : SPseudoInstSI <
(outs), (ins i32imm:$src), []> {
let Defs = [EXEC_LO];
let usesCustomInserter = 1;
let isAsCheapAsAMove = 1;
let WaveSizePredicate = isWave32;
}
// FIXME: Wave32 version
def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
(outs), (ins SSrc_b32:$input, i32imm:$shift),
[(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
let Defs = [EXEC];
let usesCustomInserter = 1;
}
def : GCNPat <
(int_amdgcn_init_exec timm:$src),
(SI_INIT_EXEC_LO (as_i32imm imm:$src))> {
let WaveSizePredicate = isWave32;
}
// Return for returning shaders to a shader variant epilog.
def SI_RETURN_TO_EPILOG : SPseudoInstSI <
(outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
let hasNoSchedulingInfo = 1;
let DisableWQM = 1;
let FixedSize = 1;
}
// Return for returning function calls.
def SI_RETURN : SPseudoInstSI <
(outs), (ins), [],
"; return"> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
let SchedRW = [WriteBranch];
}
// Return for returning function calls without output register.
//
// This version is only needed so we can fill in the output regiter in
// the custom inserter.
def SI_CALL_ISEL : SPseudoInstSI <
(outs), (ins SSrc_b64:$src0, unknown:$callee),
[(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
let Size = 4;
let isCall = 1;
let SchedRW = [WriteBranch];
let usesCustomInserter = 1;
// TODO: Should really base this on the call target
let isConvergent = 1;
}
// Wrapper around s_swappc_b64 with extra $callee parameter to track
// the called function after regalloc.
def SI_CALL : SPseudoInstSI <
(outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
let Size = 4;
let isCall = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
// TODO: Should really base this on the call target
let isConvergent = 1;
}
// Tail call handling pseudo
def SI_TCRETURN : SPseudoInstSI <(outs),
(ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff),
[(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
let Size = 4;
let isCall = 1;
let isTerminator = 1;
let isReturn = 1;
let isBarrier = 1;
let UseNamedOperandTable = 1;
let SchedRW = [WriteBranch];
// TODO: Should really base this on the call target
let isConvergent = 1;
}
def ADJCALLSTACKUP : SPseudoInstSI<
(outs), (ins i32imm:$amt0, i32imm:$amt1),
[(callseq_start timm:$amt0, timm:$amt1)],
"; adjcallstackup $amt0 $amt1"> {
let Size = 8; // Worst case. (s_add_u32 + constant)
let FixedSize = 1;
let hasSideEffects = 1;
let usesCustomInserter = 1;
let SchedRW = [WriteSALU];
let Defs = [SCC];
}
def ADJCALLSTACKDOWN : SPseudoInstSI<
(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)],
"; adjcallstackdown $amt1"> {
let Size = 8; // Worst case. (s_add_u32 + constant)
let hasSideEffects = 1;
let usesCustomInserter = 1;
let SchedRW = [WriteSALU];
let Defs = [SCC];
}
let Defs = [M0, EXEC, SCC],
UseNamedOperandTable = 1 in {
class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
(outs VGPR_32:$vdst),
(ins rc:$src, VS_32:$idx, i32imm:$offset)> {
let usesCustomInserter = 1;
}
class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
(outs rc:$vdst),
(ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
let Constraints = "$src = $vdst";
let usesCustomInserter = 1;
}
// TODO: We can support indirect SGPR access.
def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
} // End Uses = [EXEC], Defs = [M0, EXEC]
multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
def _SAVE : PseudoInstSI <
(outs),
(ins sgpr_class:$data, i32imm:$addr)> {
let mayStore = 1;
let mayLoad = 0;
}
def _RESTORE : PseudoInstSI <
(outs sgpr_class:$data),
(ins i32imm:$addr)> {
let mayStore = 0;
let mayLoad = 1;
}
} // End UseNamedOperandTable = 1
}
// You cannot use M0 as the output of v_readlane_b32 instructions or
// use it in the sdata operand of SMEM instructions. We still need to
// be able to spill the physical register m0, so allow it for
// SI_SPILL_32_* instructions.
defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>;
defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>;
defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>;
defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> {
let UseNamedOperandTable = 1, VGPRSpill = 1,
SchedRW = [WriteVMEM] in {
def _SAVE : VPseudoInstSI <
(outs),
(ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
SReg_32:$soffset, i32imm:$offset)> {
let mayStore = 1;
let mayLoad = 0;
// (2 * 4) + (8 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
def _RESTORE : VPseudoInstSI <
(outs vgpr_class:$vdata),
(ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
i32imm:$offset)> {
let mayStore = 0;
let mayLoad = 1;
// (2 * 4) + (8 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
} // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
}
defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>;
defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>;
defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>;
defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
multiclass SI_SPILL_AGPR <RegisterClass vgpr_class> {
let UseNamedOperandTable = 1, VGPRSpill = 1,
Constraints = "@earlyclobber $tmp",
SchedRW = [WriteVMEM] in {
def _SAVE : VPseudoInstSI <
(outs VGPR_32:$tmp),
(ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
SReg_32:$soffset, i32imm:$offset)> {
let mayStore = 1;
let mayLoad = 0;
// (2 * 4) + (16 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
def _RESTORE : VPseudoInstSI <
(outs vgpr_class:$vdata, VGPR_32:$tmp),
(ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
i32imm:$offset)> {
let mayStore = 0;
let mayLoad = 1;
// (2 * 4) + (16 * num_subregs) bytes maximum
int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
// Size field is unsigned char and cannot fit more.
let Size = !if(!le(MaxSize, 256), MaxSize, 252);
}
} // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
}
defm SI_SPILL_A32 : SI_SPILL_AGPR <AGPR_32>;
defm SI_SPILL_A64 : SI_SPILL_AGPR <AReg_64>;
defm SI_SPILL_A128 : SI_SPILL_AGPR <AReg_128>;
defm SI_SPILL_A512 : SI_SPILL_AGPR <AReg_512>;
defm SI_SPILL_A1024 : SI_SPILL_AGPR <AReg_1024>;
def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
(outs SReg_64:$dst),
(ins si_ga:$ptr_lo, si_ga:$ptr_hi),
[(set SReg_64:$dst,
(i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
let Defs = [SCC];
}
def : GCNPat <
(SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
(SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
>;
def : GCNPat<
(AMDGPUtrap timm:$trapid),
(S_TRAP $trapid)
>;
def : GCNPat<
(AMDGPUelse i1:$src, bb:$target),
(SI_ELSE $src, $target, 0)
>;
def : Pat <
// -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0)
(AMDGPUkill (i32 -1082130432)),
(SI_KILL_I1_PSEUDO (i1 0), 0)
>;
def : Pat <
(int_amdgcn_kill i1:$src),
(SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
>;
def : Pat <
(int_amdgcn_kill (i1 (not i1:$src))),
(SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
>;
def : Pat <
(AMDGPUkill i32:$src),
(SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, 0, 3) // 3 means SETOGE
>;
def : Pat <
(int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
(SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
>;
// TODO: we could add more variants for other types of conditionals
def : Pat <
(i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
(COPY $src) // Return the SGPRs representing i1 src
>;
def : Pat <
(i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
(COPY $src) // Return the SGPRs representing i1 src
>;
//===----------------------------------------------------------------------===//
// VOP1 Patterns
//===----------------------------------------------------------------------===//
let OtherPredicates = [UnsafeFPMath] in {
//def : RcpPat<V_RCP_F64_e32, f64>;
//defm : RsqPat<V_RSQ_F64_e32, f64>;
//defm : RsqPat<V_RSQ_F32_e32, f32>;
def : RsqPat<V_RSQ_F32_e32, f32>;
def : RsqPat<V_RSQ_F64_e32, f64>;
// Convert (x - floor(x)) to fract(x)
def : GCNPat <
(f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
(f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
(V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
// Convert (x + (-floor(x))) to fract(x)
def : GCNPat <
(f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
(f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
(V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
} // End OtherPredicates = [UnsafeFPMath]
// f16_to_fp patterns
def : GCNPat <
(f32 (f16_to_fp i32:$src0)),
(V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
(V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
(V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)), DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
(V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
(V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(f64 (fpextend f16:$src)),
(V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src))
>;
// fp_to_fp16 patterns
def : GCNPat <
(i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
(V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
def : GCNPat <
(i32 (fp_to_sint f16:$src)),
(V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
>;
def : GCNPat <
(i32 (fp_to_uint f16:$src)),
(V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
>;
def : GCNPat <
(f16 (sint_to_fp i32:$src)),
(V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src))
>;
def : GCNPat <
(f16 (uint_to_fp i32:$src)),
(V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src))
>;
//===----------------------------------------------------------------------===//
// VOP2 Patterns
//===----------------------------------------------------------------------===//
multiclass FMADPat <ValueType vt, Instruction inst> {
def : GCNPat <
(vt (fmad (VOP3NoMods vt:$src0),
(VOP3NoMods vt:$src1),
(VOP3NoMods vt:$src2))),
(inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
}
defm : FMADPat <f16, V_MAC_F16_e64>;
defm : FMADPat <f32, V_MAC_F32_e64>;
class FMADModsPat<Instruction inst, SDPatternOperator mad_opr, ValueType Ty>
: GCNPat<
(Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)),
(Ty (VOP3Mods Ty:$src1, i32:$src1_mod)),
(Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))),
(inst $src0_mod, $src0, $src1_mod, $src1,
$src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
// FIXME: This should select to V_MAC_F32
def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz, f32>;
def : FMADModsPat<V_MAD_F16, AMDGPUfmad_ftz, f16> {
let SubtargetPredicate = Has16BitInsts;
}
multiclass SelectPat <ValueType vt> {
def : GCNPat <
(vt (select i1:$src0, (VOP3Mods_f32 vt:$src1, i32:$src1_mods),
(VOP3Mods_f32 vt:$src2, i32:$src2_mods))),
(V_CNDMASK_B32_e64 $src2_mods, $src2, $src1_mods, $src1, $src0)
>;
}
defm : SelectPat <i16>;
defm : SelectPat <i32>;
defm : SelectPat <f16>;
defm : SelectPat <f32>;
let AddedComplexity = 1 in {
def : GCNPat <
(i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)),
(V_BCNT_U32_B32_e64 $popcnt, $val)
>;
}
def : GCNPat <
(i32 (ctpop i32:$popcnt)),
(V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
>;
def : GCNPat <
(i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)),
(V_BCNT_U32_B32_e64 $popcnt, $val)
>;
/********** ============================================ **********/
/********** Extraction, Insertion, Building and Casting **********/
/********** ============================================ **********/
foreach Index = 0-2 in {
def Extract_Element_v2i32_#Index : Extract_Element <
i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v2i32_#Index : Insert_Element <
i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v2f32_#Index : Extract_Element <
f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v2f32_#Index : Insert_Element <
f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-2 in {
def Extract_Element_v3i32_#Index : Extract_Element <
i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v3i32_#Index : Insert_Element <
i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v3f32_#Index : Extract_Element <
f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v3f32_#Index : Insert_Element <
f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-3 in {
def Extract_Element_v4i32_#Index : Extract_Element <
i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v4i32_#Index : Insert_Element <
i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v4f32_#Index : Extract_Element <
f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v4f32_#Index : Insert_Element <
f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-4 in {
def Extract_Element_v5i32_#Index : Extract_Element <
i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v5i32_#Index : Insert_Element <
i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v5f32_#Index : Extract_Element <
f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v5f32_#Index : Insert_Element <
f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-7 in {
def Extract_Element_v8i32_#Index : Extract_Element <
i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v8i32_#Index : Insert_Element <
i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v8f32_#Index : Extract_Element <
f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v8f32_#Index : Insert_Element <
f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
foreach Index = 0-15 in {
def Extract_Element_v16i32_#Index : Extract_Element <
i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v16i32_#Index : Insert_Element <
i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v16f32_#Index : Extract_Element <
f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v16f32_#Index : Insert_Element <
f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
def : Pat <
(extract_subvector v4i16:$vec, (i32 0)),
(v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
>;
def : Pat <
(extract_subvector v4i16:$vec, (i32 2)),
(v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
>;
def : Pat <
(extract_subvector v4f16:$vec, (i32 0)),
(v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
>;
def : Pat <
(extract_subvector v4f16:$vec, (i32 2)),
(v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
>;
foreach Index = 0-31 in {
def Extract_Element_v32i32_#Index : Extract_Element <
i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v32i32_#Index : Insert_Element <
i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Extract_Element_v32f32_#Index : Extract_Element <
f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
>;
def Insert_Element_v32f32_#Index : Insert_Element <
f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
>;
}
// FIXME: Why do only some of these type combinations for SReg and
// VReg?
// 16-bit bitcast
def : BitConvert <i16, f16, VGPR_32>;
def : BitConvert <f16, i16, VGPR_32>;
def : BitConvert <i16, f16, SReg_32>;
def : BitConvert <f16, i16, SReg_32>;
// 32-bit bitcast
def : BitConvert <i32, f32, VGPR_32>;
def : BitConvert <f32, i32, VGPR_32>;
def : BitConvert <i32, f32, SReg_32>;
def : BitConvert <f32, i32, SReg_32>;
def : BitConvert <v2i16, i32, SReg_32>;
def : BitConvert <i32, v2i16, SReg_32>;
def : BitConvert <v2f16, i32, SReg_32>;
def : BitConvert <i32, v2f16, SReg_32>;
def : BitConvert <v2i16, v2f16, SReg_32>;
def : BitConvert <v2f16, v2i16, SReg_32>;
def : BitConvert <v2f16, f32, SReg_32>;
def : BitConvert <f32, v2f16, SReg_32>;
def : BitConvert <v2i16, f32, SReg_32>;
def : BitConvert <f32, v2i16, SReg_32>;
// 64-bit bitcast
def : BitConvert <i64, f64, VReg_64>;
def : BitConvert <f64, i64, VReg_64>;
def : BitConvert <v2i32, v2f32, VReg_64>;
def : BitConvert <v2f32, v2i32, VReg_64>;
def : BitConvert <i64, v2i32, VReg_64>;
def : BitConvert <v2i32, i64, VReg_64>;
def : BitConvert <i64, v2f32, VReg_64>;
def : BitConvert <v2f32, i64, VReg_64>;
def : BitConvert <f64, v2f32, VReg_64>;
def : BitConvert <v2f32, f64, VReg_64>;
def : BitConvert <f64, v2i32, VReg_64>;
def : BitConvert <v2i32, f64, VReg_64>;
def : BitConvert <v4i16, v4f16, VReg_64>;
def : BitConvert <v4f16, v4i16, VReg_64>;
// FIXME: Make SGPR
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2i32, VReg_64>;
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v2i32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2i32, VReg_64>;
def : BitConvert <v2f32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2f32, VReg_64>;
def : BitConvert <v2f32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2f32, VReg_64>;
def : BitConvert <v4i16, f64, VReg_64>;
def : BitConvert <v4f16, f64, VReg_64>;
def : BitConvert <f64, v4i16, VReg_64>;
def : BitConvert <f64, v4f16, VReg_64>;
def : BitConvert <v4i16, i64, VReg_64>;
def : BitConvert <v4f16, i64, VReg_64>;
def : BitConvert <i64, v4i16, VReg_64>;
def : BitConvert <i64, v4f16, VReg_64>;
def : BitConvert <v4i32, v4f32, VReg_128>;
def : BitConvert <v4f32, v4i32, VReg_128>;
// 96-bit bitcast
def : BitConvert <v3i32, v3f32, SGPR_96>;
def : BitConvert <v3f32, v3i32, SGPR_96>;
// 128-bit bitcast
def : BitConvert <v2i64, v4i32, SReg_128>;
def : BitConvert <v4i32, v2i64, SReg_128>;
def : BitConvert <v2f64, v4f32, VReg_128>;
def : BitConvert <v2f64, v4i32, VReg_128>;
def : BitConvert <v4f32, v2f64, VReg_128>;
def : BitConvert <v4i32, v2f64, VReg_128>;
def : BitConvert <v2i64, v2f64, VReg_128>;
def : BitConvert <v2f64, v2i64, VReg_128>;
// 160-bit bitcast
def : BitConvert <v5i32, v5f32, SGPR_160>;
def : BitConvert <v5f32, v5i32, SGPR_160>;
// 256-bit bitcast
def : BitConvert <v8i32, v8f32, SReg_256>;
def : BitConvert <v8f32, v8i32, SReg_256>;
def : BitConvert <v8i32, v8f32, VReg_256>;
def : BitConvert <v8f32, v8i32, VReg_256>;
// 512-bit bitcast
def : BitConvert <v16i32, v16f32, VReg_512>;
def : BitConvert <v16f32, v16i32, VReg_512>;
// 1024-bit bitcast
def : BitConvert <v32i32, v32f32, VReg_1024>;
def : BitConvert <v32f32, v32i32, VReg_1024>;
/********** =================== **********/
/********** Src & Dst modifiers **********/
/********** =================== **********/
// If denormals are not enabled, it only impacts the compare of the
// inputs. The output result is not flushed.
class ClampPat<Instruction inst, ValueType vt> : GCNPat <
(vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
(inst i32:$src0_modifiers, vt:$src0,
i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
>;
def : ClampPat<V_MAX_F32_e64, f32>;
def : ClampPat<V_MAX_F64, f64>;
def : ClampPat<V_MAX_F16_e64, f16>;
let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
(v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
(V_PK_MAX_F16 $src0_modifiers, $src0,
$src0_modifiers, $src0, DSTCLAMP.ENABLE)
>;
}
/********** ================================ **********/
/********** Floating point absolute/negative **********/
/********** ================================ **********/
// Prevent expanding both fneg and fabs.
// TODO: Add IgnoredBySelectionDAG bit?
let AddedComplexity = 1 in { // Prefer SALU to VALU patterns for DAG
def : GCNPat <
(fneg (fabs (f32 SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
>;
def : GCNPat <
(fabs (f32 SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
>;
def : GCNPat <
(fneg (f32 SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
>;
def : GCNPat <
(fneg (f16 SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
>;
def : GCNPat <
(fneg (f16 VGPR_32:$src)),
(V_XOR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
>;
def : GCNPat <
(fabs (f16 SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
>;
def : GCNPat <
(fneg (fabs (f16 SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
>;
def : GCNPat <
(fneg (fabs (f16 VGPR_32:$src))),
(V_OR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
>;
def : GCNPat <
(fneg (v2f16 SReg_32:$src)),
(S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
>;
def : GCNPat <
(fabs (v2f16 SReg_32:$src)),
(S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
>;
// This is really (fneg (fabs v2f16:$src))
//
// fabs is not reported as free because there is modifier for it in
// VOP3P instructions, so it is turned into the bit op.
def : GCNPat <
(fneg (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;
def : GCNPat <
(fneg (v2f16 (fabs SReg_32:$src))),
(S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;
// FIXME: The implicit-def of scc from S_[X]OR_B32 is mishandled
// def : GCNPat <
// (fneg (f64 SReg_64:$src)),
// (REG_SEQUENCE SReg_64,
// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
// sub0,
// (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
// (i32 (S_MOV_B32 (i32 0x80000000)))),
// sub1)
// >;
// def : GCNPat <
// (fneg (fabs (f64 SReg_64:$src))),
// (REG_SEQUENCE SReg_64,
// (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
// sub0,
// (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
// (S_MOV_B32 (i32 0x80000000))), // Set sign bit.
// sub1)
// >;
} // End let AddedComplexity = 1
def : GCNPat <
(fabs (f32 VGPR_32:$src)),
(V_AND_B32_e32 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (f32 VGPR_32:$src)),
(V_XOR_B32_e32 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
>;
def : GCNPat <
(fabs (f16 VGPR_32:$src)),
(V_AND_B32_e32 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (v2f16 VGPR_32:$src)),
(V_XOR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
>;
def : GCNPat <
(fabs (v2f16 VGPR_32:$src)),
(V_AND_B32_e32 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
>;
def : GCNPat <
(fneg (v2f16 (fabs VGPR_32:$src))),
(V_OR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) // Set sign bit
>;
def : GCNPat <
(fabs (f64 VReg_64:$src)),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_AND_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
(V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit.
sub1)
>;
// TODO: Use SGPR for constant
def : GCNPat <
(fneg (f64 VReg_64:$src)),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_XOR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
(i32 (V_MOV_B32_e32 (i32 0x80000000)))),
sub1)
>;
// TODO: Use SGPR for constant
def : GCNPat <
(fneg (fabs (f64 VReg_64:$src))),
(REG_SEQUENCE VReg_64,
(i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
sub0,
(V_OR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
(V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit.
sub1)
>;
def : GCNPat <
(fcopysign f16:$src0, f16:$src1),
(V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
>;
def : GCNPat <
(fcopysign f32:$src0, f16:$src1),
(V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0,
(V_LSHLREV_B32_e64 (i32 16), $src1))
>;
def : GCNPat <
(fcopysign f64:$src0, f16:$src1),
(REG_SEQUENCE SReg_64,
(i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
(V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
(V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
>;
def : GCNPat <
(fcopysign f16:$src0, f32:$src1),
(V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
(V_LSHRREV_B32_e64 (i32 16), $src1))
>;
def : GCNPat <
(fcopysign f16:$src0, f64:$src1),
(V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
(V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
>;
/********** ================== **********/
/********** Immediate Patterns **********/
/********** ================== **********/
def : GCNPat <
(VGPRImm<(i32 imm)>:$imm),
(V_MOV_B32_e32 imm:$imm)
>;
def : GCNPat <
(VGPRImm<(f32 fpimm)>:$imm),
(V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(i32 imm:$imm),
(S_MOV_B32 imm:$imm)
>;
def : GCNPat <
(VGPRImm<(SIlds tglobaladdr:$ga)>),
(V_MOV_B32_e32 $ga)
>;
def : GCNPat <
(SIlds tglobaladdr:$ga),
(S_MOV_B32 $ga)
>;
// FIXME: Workaround for ordering issue with peephole optimizer where
// a register class copy interferes with immediate folding. Should
// use s_mov_b32, which can be shrunk to s_movk_i32
def : GCNPat <
(VGPRImm<(f16 fpimm)>:$imm),
(V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(f32 fpimm:$imm),
(S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(f16 fpimm:$imm),
(S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
>;
def : GCNPat <
(i32 frameindex:$fi),
(V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi)))
>;
def : GCNPat <
(i64 InlineImm64:$imm),
(S_MOV_B64 InlineImm64:$imm)
>;
// XXX - Should this use a s_cmp to set SCC?
// Set to sign-extended 64-bit value (true = -1, false = 0)
def : GCNPat <
(i1 imm:$imm),
(S_MOV_B64 (i64 (as_i64imm $imm)))
> {
let WaveSizePredicate = isWave64;
}
def : GCNPat <
(i1 imm:$imm),
(S_MOV_B32 (i32 (as_i32imm $imm)))
> {
let WaveSizePredicate = isWave32;
}
def : GCNPat <
(f64 InlineImmFP64:$imm),
(S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
>;
/********** ================== **********/
/********** Intrinsic Patterns **********/
/********** ================== **********/
// FIXME: Should use _e64 and select source modifiers.
def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>;
def : GCNPat <
(i32 (sext i1:$src0)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
>;
class Ext32Pat <SDNode ext> : GCNPat <
(i32 (ext i1:$src0)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
>;
def : Ext32Pat <zext>;
def : Ext32Pat <anyext>;
// The multiplication scales from [0,1] to the unsigned integer range
def : GCNPat <
(AMDGPUurecip i32:$src0),
(V_CVT_U32_F32_e32
(V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1),
(V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
>;
//===----------------------------------------------------------------------===//
// VOP3 Patterns
//===----------------------------------------------------------------------===//
def : IMad24Pat<V_MAD_I32_I24, 1>;
def : UMad24Pat<V_MAD_U32_U24, 1>;
// FIXME: This should only be done for VALU inputs
defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>;
def : ROTRPattern <V_ALIGNBIT_B32>;
def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
(V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
(i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
(V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
(i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
/********** ====================== **********/
/********** Indirect addressing **********/
/********** ====================== **********/
multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
// Extract with offset
def : GCNPat<
(eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
(!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
>;
// Insert with offset
def : GCNPat<
(insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
(!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
>;
}
defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
//===----------------------------------------------------------------------===//
// SAD Patterns
//===----------------------------------------------------------------------===//
def : GCNPat <
(add (sub_oneuse (umax i32:$src0, i32:$src1),
(umin i32:$src0, i32:$src1)),
i32:$src2),
(V_SAD_U32 $src0, $src1, $src2, (i1 0))
>;
def : GCNPat <
(add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
(sub i32:$src0, i32:$src1),
(sub i32:$src1, i32:$src0)),
i32:$src2),
(V_SAD_U32 $src0, $src1, $src2, (i1 0))
>;
//===----------------------------------------------------------------------===//
// Conversion Patterns
//===----------------------------------------------------------------------===//
def : GCNPat<(i32 (sext_inreg i32:$src, i1)),
(S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
// Handle sext_inreg in i64
def : GCNPat <
(i64 (sext_inreg i64:$src, i1)),
(S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
>;
def : GCNPat <
(i16 (sext_inreg i16:$src, i1)),
(S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
>;
def : GCNPat <
(i16 (sext_inreg i16:$src, i8)),
(S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
>;
def : GCNPat <
(i64 (sext_inreg i64:$src, i8)),
(S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
>;
def : GCNPat <
(i64 (sext_inreg i64:$src, i16)),
(S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
>;
def : GCNPat <
(i64 (sext_inreg i64:$src, i32)),
(S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
>;
def : GCNPat <
(i64 (zext i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
>;
def : GCNPat <
(i64 (anyext i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
>;
class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
(i64 (ext i1:$src)),
(REG_SEQUENCE VReg_64,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1), $src),
sub0, (S_MOV_B32 (i32 0)), sub1)
>;
def : ZExt_i64_i1_Pat<zext>;
def : ZExt_i64_i1_Pat<anyext>;
// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
// REG_SEQUENCE patterns don't support instructions with multiple outputs.
def : GCNPat <
(i64 (sext i32:$src)),
(REG_SEQUENCE SReg_64, $src, sub0,
(i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
>;
def : GCNPat <
(i64 (sext i1:$src)),
(REG_SEQUENCE VReg_64,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
>;
class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
(i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
(i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
>;
def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
// If we need to perform a logical operation on i1 values, we need to
// use vector comparisons since there is only one SCC register. Vector
// comparisons may write to a pair of SGPRs or a single SGPR, so treat
// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
// instructions resulting in the copies from SCC to these instructions
// will be moved to the VALU.
let WaveSizePredicate = isWave64 in {
def : GCNPat <
(i1 (and i1:$src0, i1:$src1)),
(S_AND_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (or i1:$src0, i1:$src1)),
(S_OR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (xor i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (add i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
def : GCNPat <
(i1 (sub i1:$src0, i1:$src1)),
(S_XOR_B64 $src0, $src1)
>;
let AddedComplexity = 1 in {
def : GCNPat <
(i1 (add i1:$src0, (i1 -1))),
(S_NOT_B64 $src0)
>;
def : GCNPat <
(i1 (sub i1:$src0, (i1 -1))),
(S_NOT_B64 $src0)
>;
}
} // end isWave64
let WaveSizePredicate = isWave32 in {
def : GCNPat <
(i1 (and i1:$src0, i1:$src1)),
(S_AND_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (or i1:$src0, i1:$src1)),
(S_OR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (xor i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (add i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
def : GCNPat <
(i1 (sub i1:$src0, i1:$src1)),
(S_XOR_B32 $src0, $src1)
>;
let AddedComplexity = 1 in {
def : GCNPat <
(i1 (add i1:$src0, (i1 -1))),
(S_NOT_B32 $src0)
>;
def : GCNPat <
(i1 (sub i1:$src0, (i1 -1))),
(S_NOT_B32 $src0)
>;
}
} // end isWave32
def : GCNPat <
(f16 (sint_to_fp i1:$src)),
(V_CVT_F16_F32_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
SSrc_i1:$src))
>;
def : GCNPat <
(f16 (uint_to_fp i1:$src)),
(V_CVT_F16_F32_e32 (
V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
SSrc_i1:$src))
>;
def : GCNPat <
(f32 (sint_to_fp i1:$src)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
SSrc_i1:$src)
>;
def : GCNPat <
(f32 (uint_to_fp i1:$src)),
(V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
SSrc_i1:$src)
>;
def : GCNPat <
(f64 (sint_to_fp i1:$src)),
(V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 -1),
SSrc_i1:$src))
>;
def : GCNPat <
(f64 (uint_to_fp i1:$src)),
(V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
/*src1mod*/(i32 0), /*src1*/(i32 1),
SSrc_i1:$src))
>;
//===----------------------------------------------------------------------===//
// Miscellaneous Patterns
//===----------------------------------------------------------------------===//
def : GCNPat <
(i32 (AMDGPUfp16_zext f16:$src)),
(COPY $src)
>;
def : GCNPat <
(i32 (trunc i64:$a)),
(EXTRACT_SUBREG $a, sub0)
>;
def : GCNPat <
(i1 (trunc i32:$a)),
(V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
>;
def : GCNPat <
(i1 (trunc i16:$a)),
(V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
>;
def : GCNPat <
(i1 (trunc i64:$a)),
(V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1),
(i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
>;
def : GCNPat <
(i32 (bswap i32:$a)),
(V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)),
(V_ALIGNBIT_B32 $a, $a, (i32 24)),
(V_ALIGNBIT_B32 $a, $a, (i32 8)))
>;
let OtherPredicates = [NoFP16Denormals] in {
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0)
>;
def : GCNPat<
(fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
(V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src, 0, 0)
>;
def : GCNPat<
(fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
(V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
>;
}
let OtherPredicates = [FP16Denormals] in {
def : GCNPat<
(fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
(V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)
>;
let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat<
(fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
(V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)
>;
}
}
let OtherPredicates = [NoFP32Denormals] in {
def : GCNPat<
(fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
(V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0)
>;
def : GCNPat<
(fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
(V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src, 0, 0)
>;
}
let OtherPredicates = [FP32Denormals] in {
def : GCNPat<
(fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
(V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0)
>;
}
let OtherPredicates = [NoFP64Denormals] in {
def : GCNPat<
(fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
(V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0)
>;
}
let OtherPredicates = [FP64Denormals] in {
def : GCNPat<
(fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
(V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0)
>;
}
let OtherPredicates = [HasDLInsts] in {
def : GCNPat <
(fma (f32 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
(f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
(f32 (VOP3NoMods f32:$src2))),
(V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
SRCMODS.NONE, $src2, $clamp, $omod)
>;
} // End OtherPredicates = [HasDLInsts]
let SubtargetPredicate = isGFX10Plus in
def : GCNPat <
(fma (f16 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
(f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
(f16 (VOP3NoMods f32:$src2))),
(V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
SRCMODS.NONE, $src2, $clamp, $omod)
>;
// Allow integer inputs
class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat<
(node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)),
(Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en)
>;
def : ExpPattern<AMDGPUexport, i32, EXP>;
def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>;
// COPY is workaround tablegen bug from multiple outputs
// from S_LSHL_B32's multiple outputs from implicit scc def.
def : GCNPat <
(v2i16 (build_vector (i16 0), (i16 SReg_32:$src1))),
(S_LSHL_B32 SReg_32:$src1, (i16 16))
>;
def : GCNPat <
(v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))),
(COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
>;
def : GCNPat <
(v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))),
(COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
>;
def : GCNPat <
(v2f16 (build_vector f16:$src0, (f16 undef))),
(COPY $src0)
>;
def : GCNPat <
(v2i16 (build_vector (i16 undef), (i16 SReg_32:$src1))),
(S_LSHL_B32 SReg_32:$src1, (i32 16))
>;
def : GCNPat <
(v2f16 (build_vector (f16 undef), (f16 SReg_32:$src1))),
(S_LSHL_B32 SReg_32:$src1, (i32 16))
>;
let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
(v2i16 (build_vector (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
(S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;
// With multiple uses of the shift, this will duplicate the shift and
// increase register pressure.
def : GCNPat <
(v2i16 (build_vector (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
(v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
>;
def : GCNPat <
(v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
(i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
(S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;
// TODO: Should source modifiers be matched to v_pack_b32_f16?
def : GCNPat <
(v2f16 (build_vector (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
(S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;
} // End SubtargetPredicate = HasVOP3PInsts
def : GCNPat <
(v2f16 (scalar_to_vector f16:$src0)),
(COPY $src0)
>;
def : GCNPat <
(v2i16 (scalar_to_vector i16:$src0)),
(COPY $src0)
>;
def : GCNPat <
(v4i16 (scalar_to_vector i16:$src0)),
(INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;
def : GCNPat <
(v4f16 (scalar_to_vector f16:$src0)),
(INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;
def : GCNPat <
(i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, timm:$bank_mask,
timm:$bound_ctrl)),
(V_MOV_B64_DPP_PSEUDO $src, $src, (as_i32imm $dpp_ctrl),
(as_i32imm $row_mask), (as_i32imm $bank_mask),
(as_i1imm $bound_ctrl))
>;
def : GCNPat <
(i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
timm:$bank_mask, timm:$bound_ctrl)),
(V_MOV_B64_DPP_PSEUDO $old, $src, (as_i32imm $dpp_ctrl),
(as_i32imm $row_mask), (as_i32imm $bank_mask),
(as_i1imm $bound_ctrl))
>;
//===----------------------------------------------------------------------===//
// Fract Patterns
//===----------------------------------------------------------------------===//
let SubtargetPredicate = isGFX6 in {
// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
// way to implement it is using V_FRACT_F64.
// The workaround for the V_FRACT bug is:
// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
// Convert floor(x) to (x - fract(x))
def : GCNPat <
(f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
(V_ADD_F64
$mods,
$x,
SRCMODS.NEG,
(V_CNDMASK_B64_PSEUDO
(V_MIN_F64
SRCMODS.NONE,
(V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE),
SRCMODS.NONE,
(V_MOV_B64_PSEUDO 0x3fefffffffffffff),
DSTCLAMP.NONE, DSTOMOD.NONE),
$x,
(V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))),
DSTCLAMP.NONE, DSTOMOD.NONE)
>;
} // End SubtargetPredicates = isGFX6
//============================================================================//
// Miscellaneous Optimization Patterns
//============================================================================//
// Undo sub x, c -> add x, -c canonicalization since c is more likely
// an inline immediate than -c.
// TODO: Also do for 64-bit.
def : GCNPat<
(add i32:$src0, (i32 NegSubInlineConst32:$src1)),
(S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
>;
def : GCNPat<
(add i32:$src0, (i32 NegSubInlineConst32:$src1)),
(V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
let SubtargetPredicate = HasAddNoCarryInsts;
}
def : GCNPat<
(add i32:$src0, (i32 NegSubInlineConst32:$src1)),
(V_SUB_I32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
let SubtargetPredicate = NotHasAddNoCarryInsts;
}
// Avoid pointlessly materializing a constant in VGPR.
// FIXME: Should also do this for readlane, but tablegen crashes on
// the ignored src1.
def : GCNPat<
(int_amdgcn_readfirstlane (i32 imm:$src)),
(S_MOV_B32 SReg_32:$src)
>;
multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> {
def : GCNPat <
(vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
(BFM $a, $b)
>;
def : GCNPat <
(vt (add (vt (shl 1, vt:$a)), -1)),
(BFM $a, (MOV (i32 0)))
>;
}
defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>;
// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>;
defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>;
defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>;
multiclass IntMed3Pat<Instruction med3Inst,
SDPatternOperator min,
SDPatternOperator max,
SDPatternOperator min_oneuse,
SDPatternOperator max_oneuse> {
// This matches 16 permutations of
// min(max(a, b), max(min(a, b), c))
def : AMDGPUPat <
(min (max_oneuse i32:$src0, i32:$src1),
(max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)),
(med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
def : AMDGPUPat <
(max (min_oneuse i32:$src0, i32:$src1),
(min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)),
(med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
}
defm : IntMed3Pat<V_MED3_I32, smin, smax, smin_oneuse, smax_oneuse>;
defm : IntMed3Pat<V_MED3_U32, umin, umax, umin_oneuse, umax_oneuse>;
// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
class FPMed3Pat<ValueType vt,
//SDPatternOperator max, SDPatternOperator min,
Instruction med3Inst> : GCNPat<
(fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
(VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
(fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
(VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
(vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
(med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;
class FP16Med3Pat<ValueType vt,
Instruction med3Inst> : GCNPat<
(fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
(VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
(fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
(VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
(vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
(med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
>;
multiclass Int16Med3Pat<Instruction med3Inst,
SDPatternOperator min,
SDPatternOperator max,
SDPatternOperator max_oneuse,
SDPatternOperator min_oneuse> {
// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
def : GCNPat <
(max (min_oneuse i16:$src0, i16:$src1),
(min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)),
(med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;
// This matches 16 permutations of
// min(max(a, b), max(min(a, b), c))
def : GCNPat <
(min (max_oneuse i16:$src0, i16:$src1),
(max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)),
(med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;
}
def : FPMed3Pat<f32, V_MED3_F32>;
let OtherPredicates = [isGFX9Plus] in {
def : FP16Med3Pat<f16, V_MED3_F16>;
defm : Int16Med3Pat<V_MED3_I16, smin, smax, smax_oneuse, smin_oneuse>;
defm : Int16Med3Pat<V_MED3_U16, umin, umax, umax_oneuse, umin_oneuse>;
} // End Predicates = [isGFX9Plus]
class AMDGPUGenericInstruction : GenericInstruction {
let Namespace = "AMDGPU";
}
def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
// operand Expects a MachineMemOperand in addition to explicit
// operands.
def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$cmpval_nnenwval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}