SILowerI1Copies.cpp 27.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers all occurrences of i1 values (with a vreg_1 register class)
// to lane masks (32 / 64-bit scalar registers). The pass assumes machine SSA
// form and a wave-level control flow graph.
//
// Before this pass, values that are semantically i1 and are defined and used
// within the same basic block are already represented as lane masks in scalar
// registers. However, values that cross basic blocks are always transferred
// between basic blocks in vreg_1 virtual registers and are lowered by this
// pass.
//
// The only instructions that use or define vreg_1 virtual registers are COPY,
// PHI, and IMPLICIT_DEF.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-i1-copies"

using namespace llvm;

static unsigned createLaneMaskReg(MachineFunction &MF);
static unsigned insertUndefLaneMask(MachineBasicBlock &MBB);

namespace {

class SILowerI1Copies : public MachineFunctionPass {
public:
  static char ID;

private:
  bool IsWave32 = false;
  MachineFunction *MF = nullptr;
  MachineDominatorTree *DT = nullptr;
  MachinePostDominatorTree *PDT = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  const GCNSubtarget *ST = nullptr;
  const SIInstrInfo *TII = nullptr;

  unsigned ExecReg;
  unsigned MovOp;
  unsigned AndOp;
  unsigned OrOp;
  unsigned XorOp;
  unsigned AndN2Op;
  unsigned OrN2Op;

  DenseSet<unsigned> ConstrainRegs;

public:
  SILowerI1Copies() : MachineFunctionPass(ID) {
    initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Lower i1 Copies"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<MachinePostDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

private:
  void lowerCopiesFromI1();
  void lowerPhis();
  void lowerCopiesToI1();
  bool isConstantLaneMask(unsigned Reg, bool &Val) const;
  void buildMergeLaneMasks(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator I, const DebugLoc &DL,
                           unsigned DstReg, unsigned PrevReg, unsigned CurReg);
  MachineBasicBlock::iterator
  getSaluInsertionAtEnd(MachineBasicBlock &MBB) const;

  bool isVreg1(unsigned Reg) const {
    return Register::isVirtualRegister(Reg) &&
           MRI->getRegClass(Reg) == &AMDGPU::VReg_1RegClass;
  }

  bool isLaneMaskReg(unsigned Reg) const {
    return TII->getRegisterInfo().isSGPRReg(*MRI, Reg) &&
           TII->getRegisterInfo().getRegSizeInBits(Reg, *MRI) ==
               ST->getWavefrontSize();
  }
};

/// Helper class that determines the relationship between incoming values of a
/// phi in the control flow graph to determine where an incoming value can
/// simply be taken as a scalar lane mask as-is, and where it needs to be
/// merged with another, previously defined lane mask.
///
/// The approach is as follows:
///  - Determine all basic blocks which, starting from the incoming blocks,
///    a wave may reach before entering the def block (the block containing the
///    phi).
///  - If an incoming block has no predecessors in this set, we can take the
///    incoming value as a scalar lane mask as-is.
///  -- A special case of this is when the def block has a self-loop.
///  - Otherwise, the incoming value needs to be merged with a previously
///    defined lane mask.
///  - If there is a path into the set of reachable blocks that does _not_ go
///    through an incoming block where we can take the scalar lane mask as-is,
///    we need to invent an available value for the SSAUpdater. Choices are
///    0 and undef, with differing consequences for how to merge values etc.
///
/// TODO: We could use region analysis to quickly skip over SESE regions during
///       the traversal.
///
class PhiIncomingAnalysis {
  MachinePostDominatorTree &PDT;

  // For each reachable basic block, whether it is a source in the induced
  // subgraph of the CFG.
  DenseMap<MachineBasicBlock *, bool> ReachableMap;
  SmallVector<MachineBasicBlock *, 4> ReachableOrdered;
  SmallVector<MachineBasicBlock *, 4> Stack;
  SmallVector<MachineBasicBlock *, 4> Predecessors;

public:
  PhiIncomingAnalysis(MachinePostDominatorTree &PDT) : PDT(PDT) {}

  /// Returns whether \p MBB is a source in the induced subgraph of reachable
  /// blocks.
  bool isSource(MachineBasicBlock &MBB) const {
    return ReachableMap.find(&MBB)->second;
  }

  ArrayRef<MachineBasicBlock *> predecessors() const { return Predecessors; }

  void analyze(MachineBasicBlock &DefBlock,
               ArrayRef<MachineBasicBlock *> IncomingBlocks) {
    assert(Stack.empty());
    ReachableMap.clear();
    ReachableOrdered.clear();
    Predecessors.clear();

    // Insert the def block first, so that it acts as an end point for the
    // traversal.
    ReachableMap.try_emplace(&DefBlock, false);
    ReachableOrdered.push_back(&DefBlock);

    for (MachineBasicBlock *MBB : IncomingBlocks) {
      if (MBB == &DefBlock) {
        ReachableMap[&DefBlock] = true; // self-loop on DefBlock
        continue;
      }

      ReachableMap.try_emplace(MBB, false);
      ReachableOrdered.push_back(MBB);

      // If this block has a divergent terminator and the def block is its
      // post-dominator, the wave may first visit the other successors.
      bool Divergent = false;
      for (MachineInstr &MI : MBB->terminators()) {
        if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO ||
            MI.getOpcode() == AMDGPU::SI_IF ||
            MI.getOpcode() == AMDGPU::SI_ELSE ||
            MI.getOpcode() == AMDGPU::SI_LOOP) {
          Divergent = true;
          break;
        }
      }

      if (Divergent && PDT.dominates(&DefBlock, MBB)) {
        for (MachineBasicBlock *Succ : MBB->successors())
          Stack.push_back(Succ);
      }
    }

    while (!Stack.empty()) {
      MachineBasicBlock *MBB = Stack.pop_back_val();
      if (!ReachableMap.try_emplace(MBB, false).second)
        continue;
      ReachableOrdered.push_back(MBB);

      for (MachineBasicBlock *Succ : MBB->successors())
        Stack.push_back(Succ);
    }

    for (MachineBasicBlock *MBB : ReachableOrdered) {
      bool HaveReachablePred = false;
      for (MachineBasicBlock *Pred : MBB->predecessors()) {
        if (ReachableMap.count(Pred)) {
          HaveReachablePred = true;
        } else {
          Stack.push_back(Pred);
        }
      }
      if (!HaveReachablePred)
        ReachableMap[MBB] = true;
      if (HaveReachablePred) {
        for (MachineBasicBlock *UnreachablePred : Stack) {
          if (llvm::find(Predecessors, UnreachablePred) == Predecessors.end())
            Predecessors.push_back(UnreachablePred);
        }
      }
      Stack.clear();
    }
  }
};

/// Helper class that detects loops which require us to lower an i1 COPY into
/// bitwise manipulation.
///
/// Unfortunately, we cannot use LoopInfo because LoopInfo does not distinguish
/// between loops with the same header. Consider this example:
///
///  A-+-+
///  | | |
///  B-+ |
///  |   |
///  C---+
///
/// A is the header of a loop containing A, B, and C as far as LoopInfo is
/// concerned. However, an i1 COPY in B that is used in C must be lowered to
/// bitwise operations to combine results from different loop iterations when
/// B has a divergent branch (since by default we will compile this code such
/// that threads in a wave are merged at the entry of C).
///
/// The following rule is implemented to determine whether bitwise operations
/// are required: use the bitwise lowering for a def in block B if a backward
/// edge to B is reachable without going through the nearest common
/// post-dominator of B and all uses of the def.
///
/// TODO: This rule is conservative because it does not check whether the
///       relevant branches are actually divergent.
///
/// The class is designed to cache the CFG traversal so that it can be re-used
/// for multiple defs within the same basic block.
///
/// TODO: We could use region analysis to quickly skip over SESE regions during
///       the traversal.
///
class LoopFinder {
  MachineDominatorTree &DT;
  MachinePostDominatorTree &PDT;

  // All visited / reachable block, tagged by level (level 0 is the def block,
  // level 1 are all blocks reachable including but not going through the def
  // block's IPDOM, etc.).
  DenseMap<MachineBasicBlock *, unsigned> Visited;

  // Nearest common dominator of all visited blocks by level (level 0 is the
  // def block). Used for seeding the SSAUpdater.
  SmallVector<MachineBasicBlock *, 4> CommonDominators;

  // Post-dominator of all visited blocks.
  MachineBasicBlock *VisitedPostDom = nullptr;

  // Level at which a loop was found: 0 is not possible; 1 = a backward edge is
  // reachable without going through the IPDOM of the def block (if the IPDOM
  // itself has an edge to the def block, the loop level is 2), etc.
  unsigned FoundLoopLevel = ~0u;

  MachineBasicBlock *DefBlock = nullptr;
  SmallVector<MachineBasicBlock *, 4> Stack;
  SmallVector<MachineBasicBlock *, 4> NextLevel;

public:
  LoopFinder(MachineDominatorTree &DT, MachinePostDominatorTree &PDT)
      : DT(DT), PDT(PDT) {}

  void initialize(MachineBasicBlock &MBB) {
    Visited.clear();
    CommonDominators.clear();
    Stack.clear();
    NextLevel.clear();
    VisitedPostDom = nullptr;
    FoundLoopLevel = ~0u;

    DefBlock = &MBB;
  }

  /// Check whether a backward edge can be reached without going through the
  /// given \p PostDom of the def block.
  ///
  /// Return the level of \p PostDom if a loop was found, or 0 otherwise.
  unsigned findLoop(MachineBasicBlock *PostDom) {
    MachineDomTreeNode *PDNode = PDT.getNode(DefBlock);

    if (!VisitedPostDom)
      advanceLevel();

    unsigned Level = 0;
    while (PDNode->getBlock() != PostDom) {
      if (PDNode->getBlock() == VisitedPostDom)
        advanceLevel();
      PDNode = PDNode->getIDom();
      Level++;
      if (FoundLoopLevel == Level)
        return Level;
    }

    return 0;
  }

  /// Add undef values dominating the loop and the optionally given additional
  /// blocks, so that the SSA updater doesn't have to search all the way to the
  /// function entry.
  void addLoopEntries(unsigned LoopLevel, MachineSSAUpdater &SSAUpdater,
                      ArrayRef<MachineBasicBlock *> Blocks = {}) {
    assert(LoopLevel < CommonDominators.size());

    MachineBasicBlock *Dom = CommonDominators[LoopLevel];
    for (MachineBasicBlock *MBB : Blocks)
      Dom = DT.findNearestCommonDominator(Dom, MBB);

    if (!inLoopLevel(*Dom, LoopLevel, Blocks)) {
      SSAUpdater.AddAvailableValue(Dom, insertUndefLaneMask(*Dom));
    } else {
      // The dominator is part of the loop or the given blocks, so add the
      // undef value to unreachable predecessors instead.
      for (MachineBasicBlock *Pred : Dom->predecessors()) {
        if (!inLoopLevel(*Pred, LoopLevel, Blocks))
          SSAUpdater.AddAvailableValue(Pred, insertUndefLaneMask(*Pred));
      }
    }
  }

private:
  bool inLoopLevel(MachineBasicBlock &MBB, unsigned LoopLevel,
                   ArrayRef<MachineBasicBlock *> Blocks) const {
    auto DomIt = Visited.find(&MBB);
    if (DomIt != Visited.end() && DomIt->second <= LoopLevel)
      return true;

    if (llvm::find(Blocks, &MBB) != Blocks.end())
      return true;

    return false;
  }

  void advanceLevel() {
    MachineBasicBlock *VisitedDom;

    if (!VisitedPostDom) {
      VisitedPostDom = DefBlock;
      VisitedDom = DefBlock;
      Stack.push_back(DefBlock);
    } else {
      VisitedPostDom = PDT.getNode(VisitedPostDom)->getIDom()->getBlock();
      VisitedDom = CommonDominators.back();

      for (unsigned i = 0; i < NextLevel.size();) {
        if (PDT.dominates(VisitedPostDom, NextLevel[i])) {
          Stack.push_back(NextLevel[i]);

          NextLevel[i] = NextLevel.back();
          NextLevel.pop_back();
        } else {
          i++;
        }
      }
    }

    unsigned Level = CommonDominators.size();
    while (!Stack.empty()) {
      MachineBasicBlock *MBB = Stack.pop_back_val();
      if (!PDT.dominates(VisitedPostDom, MBB))
        NextLevel.push_back(MBB);

      Visited[MBB] = Level;
      VisitedDom = DT.findNearestCommonDominator(VisitedDom, MBB);

      for (MachineBasicBlock *Succ : MBB->successors()) {
        if (Succ == DefBlock) {
          if (MBB == VisitedPostDom)
            FoundLoopLevel = std::min(FoundLoopLevel, Level + 1);
          else
            FoundLoopLevel = std::min(FoundLoopLevel, Level);
          continue;
        }

        if (Visited.try_emplace(Succ, ~0u).second) {
          if (MBB == VisitedPostDom)
            NextLevel.push_back(Succ);
          else
            Stack.push_back(Succ);
        }
      }
    }

    CommonDominators.push_back(VisitedDom);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
                    false)

char SILowerI1Copies::ID = 0;

char &llvm::SILowerI1CopiesID = SILowerI1Copies::ID;

FunctionPass *llvm::createSILowerI1CopiesPass() {
  return new SILowerI1Copies();
}

static unsigned createLaneMaskReg(MachineFunction &MF) {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  return MRI.createVirtualRegister(ST.isWave32() ? &AMDGPU::SReg_32RegClass
                                                 : &AMDGPU::SReg_64RegClass);
}

static unsigned insertUndefLaneMask(MachineBasicBlock &MBB) {
  MachineFunction &MF = *MBB.getParent();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned UndefReg = createLaneMaskReg(MF);
  BuildMI(MBB, MBB.getFirstTerminator(), {}, TII->get(AMDGPU::IMPLICIT_DEF),
          UndefReg);
  return UndefReg;
}

/// Lower all instructions that def or use vreg_1 registers.
///
/// In a first pass, we lower COPYs from vreg_1 to vector registers, as can
/// occur around inline assembly. We do this first, before vreg_1 registers
/// are changed to scalar mask registers.
///
/// Then we lower all defs of vreg_1 registers. Phi nodes are lowered before
/// all others, because phi lowering looks through copies and can therefore
/// often make copy lowering unnecessary.
bool SILowerI1Copies::runOnMachineFunction(MachineFunction &TheMF) {
  MF = &TheMF;
  MRI = &MF->getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  PDT = &getAnalysis<MachinePostDominatorTree>();

  ST = &MF->getSubtarget<GCNSubtarget>();
  TII = ST->getInstrInfo();
  IsWave32 = ST->isWave32();

  if (IsWave32) {
    ExecReg = AMDGPU::EXEC_LO;
    MovOp = AMDGPU::S_MOV_B32;
    AndOp = AMDGPU::S_AND_B32;
    OrOp = AMDGPU::S_OR_B32;
    XorOp = AMDGPU::S_XOR_B32;
    AndN2Op = AMDGPU::S_ANDN2_B32;
    OrN2Op = AMDGPU::S_ORN2_B32;
  } else {
    ExecReg = AMDGPU::EXEC;
    MovOp = AMDGPU::S_MOV_B64;
    AndOp = AMDGPU::S_AND_B64;
    OrOp = AMDGPU::S_OR_B64;
    XorOp = AMDGPU::S_XOR_B64;
    AndN2Op = AMDGPU::S_ANDN2_B64;
    OrN2Op = AMDGPU::S_ORN2_B64;
  }

  lowerCopiesFromI1();
  lowerPhis();
  lowerCopiesToI1();

  for (unsigned Reg : ConstrainRegs)
    MRI->constrainRegClass(Reg, &AMDGPU::SReg_1_XEXECRegClass);
  ConstrainRegs.clear();

  return true;
}

#ifndef NDEBUG
static bool isVRegCompatibleReg(const SIRegisterInfo &TRI,
                                const MachineRegisterInfo &MRI,
                                Register Reg) {
  unsigned Size = TRI.getRegSizeInBits(Reg, MRI);
  return Size == 1 || Size == 32;
}
#endif

void SILowerI1Copies::lowerCopiesFromI1() {
  SmallVector<MachineInstr *, 4> DeadCopies;

  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.getOpcode() != AMDGPU::COPY)
        continue;

      Register DstReg = MI.getOperand(0).getReg();
      Register SrcReg = MI.getOperand(1).getReg();
      if (!isVreg1(SrcReg))
        continue;

      if (isLaneMaskReg(DstReg) || isVreg1(DstReg))
        continue;

      // Copy into a 32-bit vector register.
      LLVM_DEBUG(dbgs() << "Lower copy from i1: " << MI);
      DebugLoc DL = MI.getDebugLoc();

      assert(isVRegCompatibleReg(TII->getRegisterInfo(), *MRI, DstReg));
      assert(!MI.getOperand(0).getSubReg());

      ConstrainRegs.insert(SrcReg);
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
          .addImm(0)
          .addImm(0)
          .addImm(0)
          .addImm(-1)
          .addReg(SrcReg);
      DeadCopies.push_back(&MI);
    }

    for (MachineInstr *MI : DeadCopies)
      MI->eraseFromParent();
    DeadCopies.clear();
  }
}

void SILowerI1Copies::lowerPhis() {
  MachineSSAUpdater SSAUpdater(*MF);
  LoopFinder LF(*DT, *PDT);
  PhiIncomingAnalysis PIA(*PDT);
  SmallVector<MachineInstr *, 4> Vreg1Phis;
  SmallVector<MachineBasicBlock *, 4> IncomingBlocks;
  SmallVector<unsigned, 4> IncomingRegs;
  SmallVector<unsigned, 4> IncomingUpdated;
#ifndef NDEBUG
  DenseSet<unsigned> PhiRegisters;
#endif

  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB.phis()) {
      if (isVreg1(MI.getOperand(0).getReg()))
        Vreg1Phis.push_back(&MI);
    }
  }

  MachineBasicBlock *PrevMBB = nullptr;
  for (MachineInstr *MI : Vreg1Phis) {
    MachineBasicBlock &MBB = *MI->getParent();
    if (&MBB != PrevMBB) {
      LF.initialize(MBB);
      PrevMBB = &MBB;
    }

    LLVM_DEBUG(dbgs() << "Lower PHI: " << *MI);

    Register DstReg = MI->getOperand(0).getReg();
    MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass
                                      : &AMDGPU::SReg_64RegClass);

    // Collect incoming values.
    for (unsigned i = 1; i < MI->getNumOperands(); i += 2) {
      assert(i + 1 < MI->getNumOperands());
      Register IncomingReg = MI->getOperand(i).getReg();
      MachineBasicBlock *IncomingMBB = MI->getOperand(i + 1).getMBB();
      MachineInstr *IncomingDef = MRI->getUniqueVRegDef(IncomingReg);

      if (IncomingDef->getOpcode() == AMDGPU::COPY) {
        IncomingReg = IncomingDef->getOperand(1).getReg();
        assert(isLaneMaskReg(IncomingReg) || isVreg1(IncomingReg));
        assert(!IncomingDef->getOperand(1).getSubReg());
      } else if (IncomingDef->getOpcode() == AMDGPU::IMPLICIT_DEF) {
        continue;
      } else {
        assert(IncomingDef->isPHI() || PhiRegisters.count(IncomingReg));
      }

      IncomingBlocks.push_back(IncomingMBB);
      IncomingRegs.push_back(IncomingReg);
    }

#ifndef NDEBUG
    PhiRegisters.insert(DstReg);
#endif

    // Phis in a loop that are observed outside the loop receive a simple but
    // conservatively correct treatment.
    std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
    for (MachineInstr &Use : MRI->use_instructions(DstReg))
      DomBlocks.push_back(Use.getParent());

    MachineBasicBlock *PostDomBound =
        PDT->findNearestCommonDominator(DomBlocks);
    unsigned FoundLoopLevel = LF.findLoop(PostDomBound);

    SSAUpdater.Initialize(DstReg);

    if (FoundLoopLevel) {
      LF.addLoopEntries(FoundLoopLevel, SSAUpdater, IncomingBlocks);

      for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
        IncomingUpdated.push_back(createLaneMaskReg(*MF));
        SSAUpdater.AddAvailableValue(IncomingBlocks[i],
                                     IncomingUpdated.back());
      }

      for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
        MachineBasicBlock &IMBB = *IncomingBlocks[i];
        buildMergeLaneMasks(
            IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i],
            SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]);
      }
    } else {
      // The phi is not observed from outside a loop. Use a more accurate
      // lowering.
      PIA.analyze(MBB, IncomingBlocks);

      for (MachineBasicBlock *MBB : PIA.predecessors())
        SSAUpdater.AddAvailableValue(MBB, insertUndefLaneMask(*MBB));

      for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
        MachineBasicBlock &IMBB = *IncomingBlocks[i];
        if (PIA.isSource(IMBB)) {
          IncomingUpdated.push_back(0);
          SSAUpdater.AddAvailableValue(&IMBB, IncomingRegs[i]);
        } else {
          IncomingUpdated.push_back(createLaneMaskReg(*MF));
          SSAUpdater.AddAvailableValue(&IMBB, IncomingUpdated.back());
        }
      }

      for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
        if (!IncomingUpdated[i])
          continue;

        MachineBasicBlock &IMBB = *IncomingBlocks[i];
        buildMergeLaneMasks(
            IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i],
            SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]);
      }
    }

    unsigned NewReg = SSAUpdater.GetValueInMiddleOfBlock(&MBB);
    if (NewReg != DstReg) {
      MRI->replaceRegWith(NewReg, DstReg);
      MI->eraseFromParent();
    }

    IncomingBlocks.clear();
    IncomingRegs.clear();
    IncomingUpdated.clear();
  }
}

void SILowerI1Copies::lowerCopiesToI1() {
  MachineSSAUpdater SSAUpdater(*MF);
  LoopFinder LF(*DT, *PDT);
  SmallVector<MachineInstr *, 4> DeadCopies;

  for (MachineBasicBlock &MBB : *MF) {
    LF.initialize(MBB);

    for (MachineInstr &MI : MBB) {
      if (MI.getOpcode() != AMDGPU::IMPLICIT_DEF &&
          MI.getOpcode() != AMDGPU::COPY)
        continue;

      Register DstReg = MI.getOperand(0).getReg();
      if (!isVreg1(DstReg))
        continue;

      if (MRI->use_empty(DstReg)) {
        DeadCopies.push_back(&MI);
        continue;
      }

      LLVM_DEBUG(dbgs() << "Lower Other: " << MI);

      MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass
                                        : &AMDGPU::SReg_64RegClass);
      if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF)
        continue;

      DebugLoc DL = MI.getDebugLoc();
      Register SrcReg = MI.getOperand(1).getReg();
      assert(!MI.getOperand(1).getSubReg());

      if (!Register::isVirtualRegister(SrcReg) ||
          (!isLaneMaskReg(SrcReg) && !isVreg1(SrcReg))) {
        assert(TII->getRegisterInfo().getRegSizeInBits(SrcReg, *MRI) == 32);
        unsigned TmpReg = createLaneMaskReg(*MF);
        BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CMP_NE_U32_e64), TmpReg)
            .addReg(SrcReg)
            .addImm(0);
        MI.getOperand(1).setReg(TmpReg);
        SrcReg = TmpReg;
      }

      // Defs in a loop that are observed outside the loop must be transformed
      // into appropriate bit manipulation.
      std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
      for (MachineInstr &Use : MRI->use_instructions(DstReg))
        DomBlocks.push_back(Use.getParent());

      MachineBasicBlock *PostDomBound =
          PDT->findNearestCommonDominator(DomBlocks);
      unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
      if (FoundLoopLevel) {
        SSAUpdater.Initialize(DstReg);
        SSAUpdater.AddAvailableValue(&MBB, DstReg);
        LF.addLoopEntries(FoundLoopLevel, SSAUpdater);

        buildMergeLaneMasks(MBB, MI, DL, DstReg,
                            SSAUpdater.GetValueInMiddleOfBlock(&MBB), SrcReg);
        DeadCopies.push_back(&MI);
      }
    }

    for (MachineInstr *MI : DeadCopies)
      MI->eraseFromParent();
    DeadCopies.clear();
  }
}

bool SILowerI1Copies::isConstantLaneMask(unsigned Reg, bool &Val) const {
  const MachineInstr *MI;
  for (;;) {
    MI = MRI->getUniqueVRegDef(Reg);
    if (MI->getOpcode() != AMDGPU::COPY)
      break;

    Reg = MI->getOperand(1).getReg();
    if (!Register::isVirtualRegister(Reg))
      return false;
    if (!isLaneMaskReg(Reg))
      return false;
  }

  if (MI->getOpcode() != MovOp)
    return false;

  if (!MI->getOperand(1).isImm())
    return false;

  int64_t Imm = MI->getOperand(1).getImm();
  if (Imm == 0) {
    Val = false;
    return true;
  }
  if (Imm == -1) {
    Val = true;
    return true;
  }

  return false;
}

static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use) {
  Def = false;
  Use = false;

  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isReg() && MO.getReg() == AMDGPU::SCC) {
      if (MO.isUse())
        Use = true;
      else
        Def = true;
    }
  }
}

/// Return a point at the end of the given \p MBB to insert SALU instructions
/// for lane mask calculation. Take terminators and SCC into account.
MachineBasicBlock::iterator
SILowerI1Copies::getSaluInsertionAtEnd(MachineBasicBlock &MBB) const {
  auto InsertionPt = MBB.getFirstTerminator();
  bool TerminatorsUseSCC = false;
  for (auto I = InsertionPt, E = MBB.end(); I != E; ++I) {
    bool DefsSCC;
    instrDefsUsesSCC(*I, DefsSCC, TerminatorsUseSCC);
    if (TerminatorsUseSCC || DefsSCC)
      break;
  }

  if (!TerminatorsUseSCC)
    return InsertionPt;

  while (InsertionPt != MBB.begin()) {
    InsertionPt--;

    bool DefSCC, UseSCC;
    instrDefsUsesSCC(*InsertionPt, DefSCC, UseSCC);
    if (DefSCC)
      return InsertionPt;
  }

  // We should have at least seen an IMPLICIT_DEF or COPY
  llvm_unreachable("SCC used by terminator but no def in block");
}

void SILowerI1Copies::buildMergeLaneMasks(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator I,
                                          const DebugLoc &DL, unsigned DstReg,
                                          unsigned PrevReg, unsigned CurReg) {
  bool PrevVal;
  bool PrevConstant = isConstantLaneMask(PrevReg, PrevVal);
  bool CurVal;
  bool CurConstant = isConstantLaneMask(CurReg, CurVal);

  if (PrevConstant && CurConstant) {
    if (PrevVal == CurVal) {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(CurReg);
    } else if (CurVal) {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(ExecReg);
    } else {
      BuildMI(MBB, I, DL, TII->get(XorOp), DstReg)
          .addReg(ExecReg)
          .addImm(-1);
    }
    return;
  }

  unsigned PrevMaskedReg = 0;
  unsigned CurMaskedReg = 0;
  if (!PrevConstant) {
    if (CurConstant && CurVal) {
      PrevMaskedReg = PrevReg;
    } else {
      PrevMaskedReg = createLaneMaskReg(*MF);
      BuildMI(MBB, I, DL, TII->get(AndN2Op), PrevMaskedReg)
          .addReg(PrevReg)
          .addReg(ExecReg);
    }
  }
  if (!CurConstant) {
    // TODO: check whether CurReg is already masked by EXEC
    if (PrevConstant && PrevVal) {
      CurMaskedReg = CurReg;
    } else {
      CurMaskedReg = createLaneMaskReg(*MF);
      BuildMI(MBB, I, DL, TII->get(AndOp), CurMaskedReg)
          .addReg(CurReg)
          .addReg(ExecReg);
    }
  }

  if (PrevConstant && !PrevVal) {
    BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
        .addReg(CurMaskedReg);
  } else if (CurConstant && !CurVal) {
    BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
        .addReg(PrevMaskedReg);
  } else if (PrevConstant && PrevVal) {
    BuildMI(MBB, I, DL, TII->get(OrN2Op), DstReg)
        .addReg(CurMaskedReg)
        .addReg(ExecReg);
  } else {
    BuildMI(MBB, I, DL, TII->get(OrOp), DstReg)
        .addReg(PrevMaskedReg)
        .addReg(CurMaskedReg ? CurMaskedReg : ExecReg);
  }
}