SIMemoryLegalizer.cpp 45.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
//===- SIMemoryLegalizer.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Memory legalizer - implements memory model. More information can be
/// found here:
///   http://llvm.org/docs/AMDGPUUsage.html#memory-model
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUMachineModuleInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <list>

using namespace llvm;
using namespace llvm::AMDGPU;

#define DEBUG_TYPE "si-memory-legalizer"
#define PASS_NAME "SI Memory Legalizer"

namespace {

LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();

/// Memory operation flags. Can be ORed together.
enum class SIMemOp {
  NONE = 0u,
  LOAD = 1u << 0,
  STORE = 1u << 1,
  LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE)
};

/// Position to insert a new instruction relative to an existing
/// instruction.
enum class Position {
  BEFORE,
  AFTER
};

/// The atomic synchronization scopes supported by the AMDGPU target.
enum class SIAtomicScope {
  NONE,
  SINGLETHREAD,
  WAVEFRONT,
  WORKGROUP,
  AGENT,
  SYSTEM
};

/// The distinct address spaces supported by the AMDGPU target for
/// atomic memory operation. Can be ORed toether.
enum class SIAtomicAddrSpace {
  NONE = 0u,
  GLOBAL = 1u << 0,
  LDS = 1u << 1,
  SCRATCH = 1u << 2,
  GDS = 1u << 3,
  OTHER = 1u << 4,

  /// The address spaces that can be accessed by a FLAT instruction.
  FLAT = GLOBAL | LDS | SCRATCH,

  /// The address spaces that support atomic instructions.
  ATOMIC = GLOBAL | LDS | SCRATCH | GDS,

  /// All address spaces.
  ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER,

  LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
};

/// Sets named bit \p BitName to "true" if present in instruction \p MI.
/// \returns Returns true if \p MI is modified, false otherwise.
template <uint16_t BitName>
bool enableNamedBit(const MachineBasicBlock::iterator &MI) {
  int BitIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), BitName);
  if (BitIdx == -1)
    return false;

  MachineOperand &Bit = MI->getOperand(BitIdx);
  if (Bit.getImm() != 0)
    return false;

  Bit.setImm(1);
  return true;
}

class SIMemOpInfo final {
private:

  friend class SIMemOpAccess;

  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
  AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
  SIAtomicScope Scope = SIAtomicScope::SYSTEM;
  SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
  SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
  bool IsCrossAddressSpaceOrdering = false;
  bool IsNonTemporal = false;

  SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent,
              SIAtomicScope Scope = SIAtomicScope::SYSTEM,
              SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC,
              SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL,
              bool IsCrossAddressSpaceOrdering = true,
              AtomicOrdering FailureOrdering =
                AtomicOrdering::SequentiallyConsistent,
              bool IsNonTemporal = false)
    : Ordering(Ordering), FailureOrdering(FailureOrdering),
      Scope(Scope), OrderingAddrSpace(OrderingAddrSpace),
      InstrAddrSpace(InstrAddrSpace),
      IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering),
      IsNonTemporal(IsNonTemporal) {
    // There is also no cross address space ordering if the ordering
    // address space is the same as the instruction address space and
    // only contains a single address space.
    if ((OrderingAddrSpace == InstrAddrSpace) &&
        isPowerOf2_32(uint32_t(InstrAddrSpace)))
      this->IsCrossAddressSpaceOrdering = false;
  }

public:
  /// \returns Atomic synchronization scope of the machine instruction used to
  /// create this SIMemOpInfo.
  SIAtomicScope getScope() const {
    return Scope;
  }

  /// \returns Ordering constraint of the machine instruction used to
  /// create this SIMemOpInfo.
  AtomicOrdering getOrdering() const {
    return Ordering;
  }

  /// \returns Failure ordering constraint of the machine instruction used to
  /// create this SIMemOpInfo.
  AtomicOrdering getFailureOrdering() const {
    return FailureOrdering;
  }

  /// \returns The address spaces be accessed by the machine
  /// instruction used to create this SiMemOpInfo.
  SIAtomicAddrSpace getInstrAddrSpace() const {
    return InstrAddrSpace;
  }

  /// \returns The address spaces that must be ordered by the machine
  /// instruction used to create this SiMemOpInfo.
  SIAtomicAddrSpace getOrderingAddrSpace() const {
    return OrderingAddrSpace;
  }

  /// \returns Return true iff memory ordering of operations on
  /// different address spaces is required.
  bool getIsCrossAddressSpaceOrdering() const {
    return IsCrossAddressSpaceOrdering;
  }

  /// \returns True if memory access of the machine instruction used to
  /// create this SIMemOpInfo is non-temporal, false otherwise.
  bool isNonTemporal() const {
    return IsNonTemporal;
  }

  /// \returns True if ordering constraint of the machine instruction used to
  /// create this SIMemOpInfo is unordered or higher, false otherwise.
  bool isAtomic() const {
    return Ordering != AtomicOrdering::NotAtomic;
  }

};

class SIMemOpAccess final {
private:
  AMDGPUMachineModuleInfo *MMI = nullptr;

  /// Reports unsupported message \p Msg for \p MI to LLVM context.
  void reportUnsupported(const MachineBasicBlock::iterator &MI,
                         const char *Msg) const;

  /// Inspects the target synchonization scope \p SSID and determines
  /// the SI atomic scope it corresponds to, the address spaces it
  /// covers, and whether the memory ordering applies between address
  /// spaces.
  Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
  toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrScope) const;

  /// \return Return a bit set of the address spaces accessed by \p AS.
  SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const;

  /// \returns Info constructed from \p MI, which has at least machine memory
  /// operand.
  Optional<SIMemOpInfo> constructFromMIWithMMO(
      const MachineBasicBlock::iterator &MI) const;

public:
  /// Construct class to support accessing the machine memory operands
  /// of instructions in the machine function \p MF.
  SIMemOpAccess(MachineFunction &MF);

  /// \returns Load info if \p MI is a load operation, "None" otherwise.
  Optional<SIMemOpInfo> getLoadInfo(
      const MachineBasicBlock::iterator &MI) const;

  /// \returns Store info if \p MI is a store operation, "None" otherwise.
  Optional<SIMemOpInfo> getStoreInfo(
      const MachineBasicBlock::iterator &MI) const;

  /// \returns Atomic fence info if \p MI is an atomic fence operation,
  /// "None" otherwise.
  Optional<SIMemOpInfo> getAtomicFenceInfo(
      const MachineBasicBlock::iterator &MI) const;

  /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or
  /// rmw operation, "None" otherwise.
  Optional<SIMemOpInfo> getAtomicCmpxchgOrRmwInfo(
      const MachineBasicBlock::iterator &MI) const;
};

class SICacheControl {
protected:

  /// Instruction info.
  const SIInstrInfo *TII = nullptr;

  IsaVersion IV;

  SICacheControl(const GCNSubtarget &ST);

public:

  /// Create a cache control for the subtarget \p ST.
  static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST);

  /// Update \p MI memory load instruction to bypass any caches up to
  /// the \p Scope memory scope for address spaces \p
  /// AddrSpace. Return true iff the instruction was modified.
  virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
                                     SIAtomicScope Scope,
                                     SIAtomicAddrSpace AddrSpace) const = 0;

  /// Update \p MI memory instruction to indicate it is
  /// nontemporal. Return true iff the instruction was modified.
  virtual bool enableNonTemporal(const MachineBasicBlock::iterator &MI)
    const = 0;

  /// Inserts any necessary instructions at position \p Pos relative
  /// to instruction \p MI to ensure any caches associated with
  /// address spaces \p AddrSpace for memory scopes up to memory scope
  /// \p Scope are invalidated. Returns true iff any instructions
  /// inserted.
  virtual bool insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                                     SIAtomicScope Scope,
                                     SIAtomicAddrSpace AddrSpace,
                                     Position Pos) const = 0;

  /// Inserts any necessary instructions at position \p Pos relative
  /// to instruction \p MI to ensure memory instructions of kind \p Op
  /// associated with address spaces \p AddrSpace have completed as
  /// observed by other memory instructions executing in memory scope
  /// \p Scope. \p IsCrossAddrSpaceOrdering indicates if the memory
  /// ordering is between address spaces. Returns true iff any
  /// instructions inserted.
  virtual bool insertWait(MachineBasicBlock::iterator &MI,
                          SIAtomicScope Scope,
                          SIAtomicAddrSpace AddrSpace,
                          SIMemOp Op,
                          bool IsCrossAddrSpaceOrdering,
                          Position Pos) const = 0;

  /// Virtual destructor to allow derivations to be deleted.
  virtual ~SICacheControl() = default;

};

class SIGfx6CacheControl : public SICacheControl {
protected:

  /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI
  /// is modified, false otherwise.
  bool enableGLCBit(const MachineBasicBlock::iterator &MI) const {
    return enableNamedBit<AMDGPU::OpName::glc>(MI);
  }

  /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI
  /// is modified, false otherwise.
  bool enableSLCBit(const MachineBasicBlock::iterator &MI) const {
    return enableNamedBit<AMDGPU::OpName::slc>(MI);
  }

public:

  SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {};

  bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
                             SIAtomicScope Scope,
                             SIAtomicAddrSpace AddrSpace) const override;

  bool enableNonTemporal(const MachineBasicBlock::iterator &MI) const override;

  bool insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                             SIAtomicScope Scope,
                             SIAtomicAddrSpace AddrSpace,
                             Position Pos) const override;

  bool insertWait(MachineBasicBlock::iterator &MI,
                  SIAtomicScope Scope,
                  SIAtomicAddrSpace AddrSpace,
                  SIMemOp Op,
                  bool IsCrossAddrSpaceOrdering,
                  Position Pos) const override;
};

class SIGfx7CacheControl : public SIGfx6CacheControl {
public:

  SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {};

  bool insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                             SIAtomicScope Scope,
                             SIAtomicAddrSpace AddrSpace,
                             Position Pos) const override;

};

class SIGfx10CacheControl : public SIGfx7CacheControl {
protected:
  bool CuMode = false;

  /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI
  /// is modified, false otherwise.
  bool enableDLCBit(const MachineBasicBlock::iterator &MI) const {
    return enableNamedBit<AMDGPU::OpName::dlc>(MI);
  }

public:

  SIGfx10CacheControl(const GCNSubtarget &ST, bool CuMode) :
    SIGfx7CacheControl(ST), CuMode(CuMode) {};

  bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
                             SIAtomicScope Scope,
                             SIAtomicAddrSpace AddrSpace) const override;

  bool enableNonTemporal(const MachineBasicBlock::iterator &MI) const override;

  bool insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                             SIAtomicScope Scope,
                             SIAtomicAddrSpace AddrSpace,
                             Position Pos) const override;

  bool insertWait(MachineBasicBlock::iterator &MI,
                  SIAtomicScope Scope,
                  SIAtomicAddrSpace AddrSpace,
                  SIMemOp Op,
                  bool IsCrossAddrSpaceOrdering,
                  Position Pos) const override;
};

class SIMemoryLegalizer final : public MachineFunctionPass {
private:

  /// Cache Control.
  std::unique_ptr<SICacheControl> CC = nullptr;

  /// List of atomic pseudo instructions.
  std::list<MachineBasicBlock::iterator> AtomicPseudoMIs;

  /// Return true iff instruction \p MI is a atomic instruction that
  /// returns a result.
  bool isAtomicRet(const MachineInstr &MI) const {
    return AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1;
  }

  /// Removes all processed atomic pseudo instructions from the current
  /// function. Returns true if current function is modified, false otherwise.
  bool removeAtomicPseudoMIs();

  /// Expands load operation \p MI. Returns true if instructions are
  /// added/deleted or \p MI is modified, false otherwise.
  bool expandLoad(const SIMemOpInfo &MOI,
                  MachineBasicBlock::iterator &MI);
  /// Expands store operation \p MI. Returns true if instructions are
  /// added/deleted or \p MI is modified, false otherwise.
  bool expandStore(const SIMemOpInfo &MOI,
                   MachineBasicBlock::iterator &MI);
  /// Expands atomic fence operation \p MI. Returns true if
  /// instructions are added/deleted or \p MI is modified, false otherwise.
  bool expandAtomicFence(const SIMemOpInfo &MOI,
                         MachineBasicBlock::iterator &MI);
  /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if
  /// instructions are added/deleted or \p MI is modified, false otherwise.
  bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
                                MachineBasicBlock::iterator &MI);

public:
  static char ID;

  SIMemoryLegalizer() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override {
    return PASS_NAME;
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // end namespace anonymous

void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI,
                                      const char *Msg) const {
  const Function &Func = MI->getParent()->getParent()->getFunction();
  DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc());
  Func.getContext().diagnose(Diag);
}

Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID,
                               SIAtomicAddrSpace InstrScope) const {
  if (SSID == SyncScope::System)
    return std::make_tuple(SIAtomicScope::SYSTEM,
                           SIAtomicAddrSpace::ATOMIC,
                           true);
  if (SSID == MMI->getAgentSSID())
    return std::make_tuple(SIAtomicScope::AGENT,
                           SIAtomicAddrSpace::ATOMIC,
                           true);
  if (SSID == MMI->getWorkgroupSSID())
    return std::make_tuple(SIAtomicScope::WORKGROUP,
                           SIAtomicAddrSpace::ATOMIC,
                           true);
  if (SSID == MMI->getWavefrontSSID())
    return std::make_tuple(SIAtomicScope::WAVEFRONT,
                           SIAtomicAddrSpace::ATOMIC,
                           true);
  if (SSID == SyncScope::SingleThread)
    return std::make_tuple(SIAtomicScope::SINGLETHREAD,
                           SIAtomicAddrSpace::ATOMIC,
                           true);
  if (SSID == MMI->getSystemOneAddressSpaceSSID())
    return std::make_tuple(SIAtomicScope::SYSTEM,
                           SIAtomicAddrSpace::ATOMIC & InstrScope,
                           false);
  if (SSID == MMI->getAgentOneAddressSpaceSSID())
    return std::make_tuple(SIAtomicScope::AGENT,
                           SIAtomicAddrSpace::ATOMIC & InstrScope,
                           false);
  if (SSID == MMI->getWorkgroupOneAddressSpaceSSID())
    return std::make_tuple(SIAtomicScope::WORKGROUP,
                           SIAtomicAddrSpace::ATOMIC & InstrScope,
                           false);
  if (SSID == MMI->getWavefrontOneAddressSpaceSSID())
    return std::make_tuple(SIAtomicScope::WAVEFRONT,
                           SIAtomicAddrSpace::ATOMIC & InstrScope,
                           false);
  if (SSID == MMI->getSingleThreadOneAddressSpaceSSID())
    return std::make_tuple(SIAtomicScope::SINGLETHREAD,
                           SIAtomicAddrSpace::ATOMIC & InstrScope,
                           false);
  return None;
}

SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const {
  if (AS == AMDGPUAS::FLAT_ADDRESS)
    return SIAtomicAddrSpace::FLAT;
  if (AS == AMDGPUAS::GLOBAL_ADDRESS)
    return SIAtomicAddrSpace::GLOBAL;
  if (AS == AMDGPUAS::LOCAL_ADDRESS)
    return SIAtomicAddrSpace::LDS;
  if (AS == AMDGPUAS::PRIVATE_ADDRESS)
    return SIAtomicAddrSpace::SCRATCH;
  if (AS == AMDGPUAS::REGION_ADDRESS)
    return SIAtomicAddrSpace::GDS;

  return SIAtomicAddrSpace::OTHER;
}

SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) {
  MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>();
}

Optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->getNumMemOperands() > 0);

  SyncScope::ID SSID = SyncScope::SingleThread;
  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
  AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
  SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
  bool IsNonTemporal = true;

  // Validator should check whether or not MMOs cover the entire set of
  // locations accessed by the memory instruction.
  for (const auto &MMO : MI->memoperands()) {
    IsNonTemporal &= MMO->isNonTemporal();
    InstrAddrSpace |=
      toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace());
    AtomicOrdering OpOrdering = MMO->getOrdering();
    if (OpOrdering != AtomicOrdering::NotAtomic) {
      const auto &IsSyncScopeInclusion =
          MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID());
      if (!IsSyncScopeInclusion) {
        reportUnsupported(MI,
          "Unsupported non-inclusive atomic synchronization scope");
        return None;
      }

      SSID = IsSyncScopeInclusion.getValue() ? SSID : MMO->getSyncScopeID();
      Ordering =
          isStrongerThan(Ordering, OpOrdering) ?
              Ordering : MMO->getOrdering();
      assert(MMO->getFailureOrdering() != AtomicOrdering::Release &&
             MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease);
      FailureOrdering =
          isStrongerThan(FailureOrdering, MMO->getFailureOrdering()) ?
              FailureOrdering : MMO->getFailureOrdering();
    }
  }

  SIAtomicScope Scope = SIAtomicScope::NONE;
  SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
  bool IsCrossAddressSpaceOrdering = false;
  if (Ordering != AtomicOrdering::NotAtomic) {
    auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace);
    if (!ScopeOrNone) {
      reportUnsupported(MI, "Unsupported atomic synchronization scope");
      return None;
    }
    std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
      ScopeOrNone.getValue();
    if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
        ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) {
      reportUnsupported(MI, "Unsupported atomic address space");
      return None;
    }
  }
  return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace,
                     IsCrossAddressSpaceOrdering, FailureOrdering, IsNonTemporal);
}

Optional<SIMemOpInfo> SIMemOpAccess::getLoadInfo(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);

  if (!(MI->mayLoad() && !MI->mayStore()))
    return None;

  // Be conservative if there are no memory operands.
  if (MI->getNumMemOperands() == 0)
    return SIMemOpInfo();

  return constructFromMIWithMMO(MI);
}

Optional<SIMemOpInfo> SIMemOpAccess::getStoreInfo(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);

  if (!(!MI->mayLoad() && MI->mayStore()))
    return None;

  // Be conservative if there are no memory operands.
  if (MI->getNumMemOperands() == 0)
    return SIMemOpInfo();

  return constructFromMIWithMMO(MI);
}

Optional<SIMemOpInfo> SIMemOpAccess::getAtomicFenceInfo(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);

  if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE)
    return None;

  AtomicOrdering Ordering =
    static_cast<AtomicOrdering>(MI->getOperand(0).getImm());

  SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm());
  auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC);
  if (!ScopeOrNone) {
    reportUnsupported(MI, "Unsupported atomic synchronization scope");
    return None;
  }

  SIAtomicScope Scope = SIAtomicScope::NONE;
  SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
  bool IsCrossAddressSpaceOrdering = false;
  std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
    ScopeOrNone.getValue();

  if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
      ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) {
    reportUnsupported(MI, "Unsupported atomic address space");
    return None;
  }

  return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC,
                     IsCrossAddressSpaceOrdering);
}

Optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);

  if (!(MI->mayLoad() && MI->mayStore()))
    return None;

  // Be conservative if there are no memory operands.
  if (MI->getNumMemOperands() == 0)
    return SIMemOpInfo();

  return constructFromMIWithMMO(MI);
}

SICacheControl::SICacheControl(const GCNSubtarget &ST) {
  TII = ST.getInstrInfo();
  IV = getIsaVersion(ST.getCPU());
}

/* static */
std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) {
  GCNSubtarget::Generation Generation = ST.getGeneration();
  if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS)
    return std::make_unique<SIGfx6CacheControl>(ST);
  if (Generation < AMDGPUSubtarget::GFX10)
    return std::make_unique<SIGfx7CacheControl>(ST);
  return std::make_unique<SIGfx10CacheControl>(ST, ST.isCuModeEnabled());
}

bool SIGfx6CacheControl::enableLoadCacheBypass(
    const MachineBasicBlock::iterator &MI,
    SIAtomicScope Scope,
    SIAtomicAddrSpace AddrSpace) const {
  assert(MI->mayLoad() && !MI->mayStore());
  bool Changed = false;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    /// TODO: Do not set glc for rmw atomic operations as they
    /// implicitly bypass the L1 cache.

    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      Changed |= enableGLCBit(MI);
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // No cache to bypass.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  /// The scratch address space does not need the global memory caches
  /// to be bypassed as all memory operations by the same thread are
  /// sequentially consistent, and no other thread can access scratch
  /// memory.

  /// Other address spaces do not hava a cache.

  return Changed;
}

bool SIGfx6CacheControl::enableNonTemporal(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->mayLoad() ^ MI->mayStore());
  bool Changed = false;

  /// TODO: Do not enableGLCBit if rmw atomic.
  Changed |= enableGLCBit(MI);
  Changed |= enableSLCBit(MI);

  return Changed;
}

bool SIGfx6CacheControl::insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                                               SIAtomicScope Scope,
                                               SIAtomicAddrSpace AddrSpace,
                                               Position Pos) const {
  bool Changed = false;

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  if (Pos == Position::AFTER)
    ++MI;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1));
      Changed = true;
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // No cache to invalidate.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  /// The scratch address space does not need the global memory cache
  /// to be flushed as all memory operations by the same thread are
  /// sequentially consistent, and no other thread can access scratch
  /// memory.

  /// Other address spaces do not hava a cache.

  if (Pos == Position::AFTER)
    --MI;

  return Changed;
}

bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI,
                                    SIAtomicScope Scope,
                                    SIAtomicAddrSpace AddrSpace,
                                    SIMemOp Op,
                                    bool IsCrossAddrSpaceOrdering,
                                    Position Pos) const {
  bool Changed = false;

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  if (Pos == Position::AFTER)
    ++MI;

  bool VMCnt = false;
  bool LGKMCnt = false;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      VMCnt |= true;
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The L1 cache keeps all memory operations in order for
      // wavefronts in the same work-group.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
    case SIAtomicScope::WORKGROUP:
      // If no cross address space ordering then an LDS waitcnt is not
      // needed as LDS operations for all waves are executed in a
      // total global ordering as observed by all waves. Required if
      // also synchronizing with global/GDS memory as LDS operations
      // could be reordered with respect to later global/GDS memory
      // operations of the same wave.
      LGKMCnt |= IsCrossAddrSpaceOrdering;
      break;
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The LDS keeps all memory operations in order for
      // the same wavesfront.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      // If no cross address space ordering then an GDS waitcnt is not
      // needed as GDS operations for all waves are executed in a
      // total global ordering as observed by all waves. Required if
      // also synchronizing with global/LDS memory as GDS operations
      // could be reordered with respect to later global/LDS memory
      // operations of the same wave.
      LGKMCnt |= IsCrossAddrSpaceOrdering;
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The GDS keeps all memory operations in order for
      // the same work-group.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if (VMCnt || LGKMCnt) {
    unsigned WaitCntImmediate =
      AMDGPU::encodeWaitcnt(IV,
                            VMCnt ? 0 : getVmcntBitMask(IV),
                            getExpcntBitMask(IV),
                            LGKMCnt ? 0 : getLgkmcntBitMask(IV));
    BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
    Changed = true;
  }

  if (Pos == Position::AFTER)
    --MI;

  return Changed;
}

bool SIGfx7CacheControl::insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                                               SIAtomicScope Scope,
                                               SIAtomicAddrSpace AddrSpace,
                                               Position Pos) const {
  bool Changed = false;

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>();

  const unsigned Flush = STM.isAmdPalOS() || STM.isMesa3DOS()
                             ? AMDGPU::BUFFER_WBINVL1
                             : AMDGPU::BUFFER_WBINVL1_VOL;

  if (Pos == Position::AFTER)
    ++MI;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      BuildMI(MBB, MI, DL, TII->get(Flush));
      Changed = true;
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // No cache to invalidate.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  /// The scratch address space does not need the global memory cache
  /// to be flushed as all memory operations by the same thread are
  /// sequentially consistent, and no other thread can access scratch
  /// memory.

  /// Other address spaces do not hava a cache.

  if (Pos == Position::AFTER)
    --MI;

  return Changed;
}

bool SIGfx10CacheControl::enableLoadCacheBypass(
    const MachineBasicBlock::iterator &MI,
    SIAtomicScope Scope,
    SIAtomicAddrSpace AddrSpace) const {
  assert(MI->mayLoad() && !MI->mayStore());
  bool Changed = false;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    /// TODO Do not set glc for rmw atomic operations as they
    /// implicitly bypass the L0/L1 caches.

    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      Changed |= enableGLCBit(MI);
      Changed |= enableDLCBit(MI);
      break;
    case SIAtomicScope::WORKGROUP:
      // In WGP mode the waves of a work-group can be executing on either CU of
      // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in
      // CU mode and all waves of a work-group are on the same CU, and so the
      // L0 does not need to be bypassed.
      if (!CuMode) Changed |= enableGLCBit(MI);
      break;
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // No cache to bypass.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  /// The scratch address space does not need the global memory caches
  /// to be bypassed as all memory operations by the same thread are
  /// sequentially consistent, and no other thread can access scratch
  /// memory.

  /// Other address spaces do not hava a cache.

  return Changed;
}

bool SIGfx10CacheControl::enableNonTemporal(
    const MachineBasicBlock::iterator &MI) const {
  assert(MI->mayLoad() ^ MI->mayStore());
  bool Changed = false;

  Changed |= enableSLCBit(MI);
  /// TODO for store (non-rmw atomic) instructions also enableGLCBit(MI)

  return Changed;
}

bool SIGfx10CacheControl::insertCacheInvalidate(MachineBasicBlock::iterator &MI,
                                                SIAtomicScope Scope,
                                                SIAtomicAddrSpace AddrSpace,
                                                Position Pos) const {
  bool Changed = false;

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  if (Pos == Position::AFTER)
    ++MI;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV));
      Changed = true;
      break;
    case SIAtomicScope::WORKGROUP:
      // In WGP mode the waves of a work-group can be executing on either CU of
      // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise
      // in CU mode and all waves of a work-group are on the same CU, and so the
      // L0 does not need to be invalidated.
      if (!CuMode) {
        BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
        Changed = true;
      }
      break;
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // No cache to invalidate.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  /// The scratch address space does not need the global memory cache
  /// to be flushed as all memory operations by the same thread are
  /// sequentially consistent, and no other thread can access scratch
  /// memory.

  /// Other address spaces do not hava a cache.

  if (Pos == Position::AFTER)
    --MI;

  return Changed;
}

bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI,
                                     SIAtomicScope Scope,
                                     SIAtomicAddrSpace AddrSpace,
                                     SIMemOp Op,
                                     bool IsCrossAddrSpaceOrdering,
                                     Position Pos) const {
  bool Changed = false;

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  if (Pos == Position::AFTER)
    ++MI;

  bool VMCnt = false;
  bool VSCnt = false;
  bool LGKMCnt = false;

  if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
        VMCnt |= true;
      if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
        VSCnt |= true;
      break;
    case SIAtomicScope::WORKGROUP:
      // In WGP mode the waves of a work-group can be executing on either CU of
      // the WGP. Therefore need to wait for operations to complete to ensure
      // they are visible to waves in the other CU as the L0 is per CU.
      // Otherwise in CU mode and all waves of a work-group are on the same CU
      // which shares the same L0.
      if (!CuMode) {
        if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
          VMCnt |= true;
        if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
          VSCnt |= true;
      }
      break;
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The L0 cache keeps all memory operations in order for
      // work-items in the same wavefront.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
    case SIAtomicScope::WORKGROUP:
      // If no cross address space ordering then an LDS waitcnt is not
      // needed as LDS operations for all waves are executed in a
      // total global ordering as observed by all waves. Required if
      // also synchronizing with global/GDS memory as LDS operations
      // could be reordered with respect to later global/GDS memory
      // operations of the same wave.
      LGKMCnt |= IsCrossAddrSpaceOrdering;
      break;
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The LDS keeps all memory operations in order for
      // the same wavesfront.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
    switch (Scope) {
    case SIAtomicScope::SYSTEM:
    case SIAtomicScope::AGENT:
      // If no cross address space ordering then an GDS waitcnt is not
      // needed as GDS operations for all waves are executed in a
      // total global ordering as observed by all waves. Required if
      // also synchronizing with global/LDS memory as GDS operations
      // could be reordered with respect to later global/LDS memory
      // operations of the same wave.
      LGKMCnt |= IsCrossAddrSpaceOrdering;
      break;
    case SIAtomicScope::WORKGROUP:
    case SIAtomicScope::WAVEFRONT:
    case SIAtomicScope::SINGLETHREAD:
      // The GDS keeps all memory operations in order for
      // the same work-group.
      break;
    default:
      llvm_unreachable("Unsupported synchronization scope");
    }
  }

  if (VMCnt || LGKMCnt) {
    unsigned WaitCntImmediate =
      AMDGPU::encodeWaitcnt(IV,
                            VMCnt ? 0 : getVmcntBitMask(IV),
                            getExpcntBitMask(IV),
                            LGKMCnt ? 0 : getLgkmcntBitMask(IV));
    BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
    Changed = true;
  }

  if (VSCnt) {
    BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
      .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
      .addImm(0);
    Changed = true;
  }

  if (Pos == Position::AFTER)
    --MI;

  return Changed;
}

bool SIMemoryLegalizer::removeAtomicPseudoMIs() {
  if (AtomicPseudoMIs.empty())
    return false;

  for (auto &MI : AtomicPseudoMIs)
    MI->eraseFromParent();

  AtomicPseudoMIs.clear();
  return true;
}

bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI,
                                   MachineBasicBlock::iterator &MI) {
  assert(MI->mayLoad() && !MI->mayStore());

  bool Changed = false;

  if (MOI.isAtomic()) {
    if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
        MOI.getOrdering() == AtomicOrdering::Acquire ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
      Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(),
                                           MOI.getOrderingAddrSpace());
    }

    if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getOrderingAddrSpace(),
                                SIMemOp::LOAD | SIMemOp::STORE,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::BEFORE);

    if (MOI.getOrdering() == AtomicOrdering::Acquire ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getInstrAddrSpace(),
                                SIMemOp::LOAD,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::AFTER);
      Changed |= CC->insertCacheInvalidate(MI, MOI.getScope(),
                                           MOI.getOrderingAddrSpace(),
                                           Position::AFTER);
    }

    return Changed;
  }

  // Atomic instructions do not have the nontemporal attribute.
  if (MOI.isNonTemporal()) {
    Changed |= CC->enableNonTemporal(MI);
    return Changed;
  }

  return Changed;
}

bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI,
                                    MachineBasicBlock::iterator &MI) {
  assert(!MI->mayLoad() && MI->mayStore());

  bool Changed = false;

  if (MOI.isAtomic()) {
    if (MOI.getOrdering() == AtomicOrdering::Release ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getOrderingAddrSpace(),
                                SIMemOp::LOAD | SIMemOp::STORE,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::BEFORE);

    return Changed;
  }

  // Atomic instructions do not have the nontemporal attribute.
  if (MOI.isNonTemporal()) {
    Changed |= CC->enableNonTemporal(MI);
    return Changed;
  }

  return Changed;
}

bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI,
                                          MachineBasicBlock::iterator &MI) {
  assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE);

  AtomicPseudoMIs.push_back(MI);
  bool Changed = false;

  if (MOI.isAtomic()) {
    if (MOI.getOrdering() == AtomicOrdering::Acquire ||
        MOI.getOrdering() == AtomicOrdering::Release ||
        MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
      /// TODO: This relies on a barrier always generating a waitcnt
      /// for LDS to ensure it is not reordered with the completion of
      /// the proceeding LDS operations. If barrier had a memory
      /// ordering and memory scope, then library does not need to
      /// generate a fence. Could add support in this file for
      /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally
      /// adding waitcnt before a S_BARRIER.
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getOrderingAddrSpace(),
                                SIMemOp::LOAD | SIMemOp::STORE,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::BEFORE);

    if (MOI.getOrdering() == AtomicOrdering::Acquire ||
        MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
      Changed |= CC->insertCacheInvalidate(MI, MOI.getScope(),
                                           MOI.getOrderingAddrSpace(),
                                           Position::BEFORE);

    return Changed;
  }

  return Changed;
}

bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
  MachineBasicBlock::iterator &MI) {
  assert(MI->mayLoad() && MI->mayStore());

  bool Changed = false;

  if (MOI.isAtomic()) {
    if (MOI.getOrdering() == AtomicOrdering::Release ||
        MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
        MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getOrderingAddrSpace(),
                                SIMemOp::LOAD | SIMemOp::STORE,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::BEFORE);

    if (MOI.getOrdering() == AtomicOrdering::Acquire ||
        MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
        MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
        MOI.getFailureOrdering() == AtomicOrdering::Acquire ||
        MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) {
      Changed |= CC->insertWait(MI, MOI.getScope(),
                                MOI.getOrderingAddrSpace(),
                                isAtomicRet(*MI) ? SIMemOp::LOAD :
                                                   SIMemOp::STORE,
                                MOI.getIsCrossAddressSpaceOrdering(),
                                Position::AFTER);
      Changed |= CC->insertCacheInvalidate(MI, MOI.getScope(),
                                           MOI.getOrderingAddrSpace(),
                                           Position::AFTER);
    }

    return Changed;
  }

  return Changed;
}

bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  SIMemOpAccess MOA(MF);
  CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>());

  for (auto &MBB : MF) {
    for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) {
      if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic))
        continue;

      if (const auto &MOI = MOA.getLoadInfo(MI))
        Changed |= expandLoad(MOI.getValue(), MI);
      else if (const auto &MOI = MOA.getStoreInfo(MI))
        Changed |= expandStore(MOI.getValue(), MI);
      else if (const auto &MOI = MOA.getAtomicFenceInfo(MI))
        Changed |= expandAtomicFence(MOI.getValue(), MI);
      else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI))
        Changed |= expandAtomicCmpxchgOrRmw(MOI.getValue(), MI);
    }
  }

  Changed |= removeAtomicPseudoMIs();
  return Changed;
}

INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false)

char SIMemoryLegalizer::ID = 0;
char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID;

FunctionPass *llvm::createSIMemoryLegalizerPass() {
  return new SIMemoryLegalizer();
}