SIModeRegister.cpp 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
//===-- SIModeRegister.cpp - Mode Register --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass inserts changes to the Mode register settings as required.
/// Note that currently it only deals with the Double Precision Floating Point
/// rounding mode setting, but is intended to be generic enough to be easily
/// expanded.
///
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <queue>

#define DEBUG_TYPE "si-mode-register"

STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");

using namespace llvm;

struct Status {
  // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
  // known value
  unsigned Mask;
  unsigned Mode;

  Status() : Mask(0), Mode(0){};

  Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
    Mode &= Mask;
  };

  // merge two status values such that only values that don't conflict are
  // preserved
  Status merge(const Status &S) const {
    return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
  }

  // merge an unknown value by using the unknown value's mask to remove bits
  // from the result
  Status mergeUnknown(unsigned newMask) {
    return Status(Mask & ~newMask, Mode & ~newMask);
  }

  // intersect two Status values to produce a mode and mask that is a subset
  // of both values
  Status intersect(const Status &S) const {
    unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
    unsigned NewMode = (Mode & NewMask);
    return Status(NewMask, NewMode);
  }

  // produce the delta required to change the Mode to the required Mode
  Status delta(const Status &S) const {
    return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
  }

  bool operator==(const Status &S) const {
    return (Mask == S.Mask) && (Mode == S.Mode);
  }

  bool operator!=(const Status &S) const { return !(*this == S); }

  bool isCompatible(Status &S) {
    return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
  }

  bool isCombinable(Status &S) {
    return !(Mask & S.Mask) || isCompatible(S);
  }
};

class BlockData {
public:
  // The Status that represents the mode register settings required by the
  // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
  Status Require;

  // The Status that represents the net changes to the Mode register made by
  // this block, Calculated in Phase 1.
  Status Change;

  // The Status that represents the mode register settings on exit from this
  // block. Calculated in Phase 2.
  Status Exit;

  // The Status that represents the intersection of exit Mode register settings
  // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
  Status Pred;

  // In Phase 1 we record the first instruction that has a mode requirement,
  // which is used in Phase 3 if we need to insert a mode change.
  MachineInstr *FirstInsertionPoint;

  BlockData() : FirstInsertionPoint(nullptr) {};
};

namespace {

class SIModeRegister : public MachineFunctionPass {
public:
  static char ID;

  std::vector<std::unique_ptr<BlockData>> BlockInfo;
  std::queue<MachineBasicBlock *> Phase2List;

  // The default mode register setting currently only caters for the floating
  // point double precision rounding mode.
  // We currently assume the default rounding mode is Round to Nearest
  // NOTE: this should come from a per function rounding mode setting once such
  // a setting exists.
  unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
  Status DefaultStatus =
      Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));

public:
  SIModeRegister() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);

  void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
                    const SIInstrInfo *TII, Status InstrMode);
};
} // End anonymous namespace.

INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
                "Insert required mode register values", false, false)

char SIModeRegister::ID = 0;

char &llvm::SIModeRegisterID = SIModeRegister::ID;

FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }

// Determine the Mode register setting required for this instruction.
// Instructions which don't use the Mode register return a null Status.
// Note this currently only deals with instructions that use the floating point
// double precision setting.
Status SIModeRegister::getInstructionMode(MachineInstr &MI,
                                          const SIInstrInfo *TII) {
  if (TII->usesFPDPRounding(MI)) {
    switch (MI.getOpcode()) {
    case AMDGPU::V_INTERP_P1LL_F16:
    case AMDGPU::V_INTERP_P1LV_F16:
    case AMDGPU::V_INTERP_P2_F16:
      // f16 interpolation instructions need double precision round to zero
      return Status(FP_ROUND_MODE_DP(3),
                    FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
    default:
      return DefaultStatus;
    }
  }
  return Status();
}

// Insert a setreg instruction to update the Mode register.
// It is possible (though unlikely) for an instruction to require a change to
// the value of disjoint parts of the Mode register when we don't know the
// value of the intervening bits. In that case we need to use more than one
// setreg instruction.
void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
                                  const SIInstrInfo *TII, Status InstrMode) {
  while (InstrMode.Mask) {
    unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
    unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
    unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
    BuildMI(MBB, MI, 0, TII->get(AMDGPU::S_SETREG_IMM32_B32))
        .addImm(Value)
        .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
                (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
    ++NumSetregInserted;
    InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
  }
}

// In Phase 1 we iterate through the instructions of the block and for each
// instruction we get its mode usage. If the instruction uses the Mode register
// we:
// - update the Change status, which tracks the changes to the Mode register
//   made by this block
// - if this instruction's requirements are compatible with the current setting
//   of the Mode register we merge the modes
// - if it isn't compatible and an InsertionPoint isn't set, then we set the
//   InsertionPoint to the current instruction, and we remember the current
//   mode
// - if it isn't compatible and InsertionPoint is set we insert a seteg before
//   that instruction (unless this instruction forms part of the block's
//   entry requirements in which case the insertion is deferred until Phase 3
//   when predecessor exit values are known), and move the insertion point to
//   this instruction
// - if this is a setreg instruction we treat it as an incompatible instruction.
//   This is sub-optimal but avoids some nasty corner cases, and is expected to
//   occur very rarely.
// - on exit we have set the Require, Change, and initial Exit modes.
void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
  auto NewInfo = std::make_unique<BlockData>();
  MachineInstr *InsertionPoint = nullptr;
  // RequirePending is used to indicate whether we are collecting the initial
  // requirements for the block, and need to defer the first InsertionPoint to
  // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
  // we discover an explict setreg that means this block doesn't have any
  // initial requirements.
  bool RequirePending = true;
  Status IPChange;
  for (MachineInstr &MI : MBB) {
    Status InstrMode = getInstructionMode(MI, TII);
    if ((MI.getOpcode() == AMDGPU::S_SETREG_B32) ||
        (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32)) {
      // We preserve any explicit mode register setreg instruction we encounter,
      // as we assume it has been inserted by a higher authority (this is
      // likely to be a very rare occurrence).
      unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
      if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
          AMDGPU::Hwreg::ID_MODE)
        continue;

      unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
                        AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
                       1;
      unsigned Offset =
          (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
      unsigned Mask = ((1 << Width) - 1) << Offset;

      // If an InsertionPoint is set we will insert a setreg there.
      if (InsertionPoint) {
        insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
        InsertionPoint = nullptr;
      }
      // If this is an immediate then we know the value being set, but if it is
      // not an immediate then we treat the modified bits of the mode register
      // as unknown.
      if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32) {
        unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
        unsigned Mode = (Val << Offset) & Mask;
        Status Setreg = Status(Mask, Mode);
        // If we haven't already set the initial requirements for the block we
        // don't need to as the requirements start from this explicit setreg.
        RequirePending = false;
        NewInfo->Change = NewInfo->Change.merge(Setreg);
      } else {
        NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
      }
    } else if (!NewInfo->Change.isCompatible(InstrMode)) {
      // This instruction uses the Mode register and its requirements aren't
      // compatible with the current mode.
      if (InsertionPoint) {
        // If the required mode change cannot be included in the current
        // InsertionPoint changes, we need a setreg and start a new
        // InsertionPoint.
        if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
          if (RequirePending) {
            // This is the first insertionPoint in the block so we will defer
            // the insertion of the setreg to Phase 3 where we know whether or
            // not it is actually needed.
            NewInfo->FirstInsertionPoint = InsertionPoint;
            NewInfo->Require = NewInfo->Change;
            RequirePending = false;
          } else {
            insertSetreg(MBB, InsertionPoint, TII,
                         IPChange.delta(NewInfo->Change));
            IPChange = NewInfo->Change;
          }
          // Set the new InsertionPoint
          InsertionPoint = &MI;
        }
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      } else {
        // No InsertionPoint is currently set - this is either the first in
        // the block or we have previously seen an explicit setreg.
        InsertionPoint = &MI;
        IPChange = NewInfo->Change;
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      }
    }
  }
  if (RequirePending) {
    // If we haven't yet set the initial requirements for the block we set them
    // now.
    NewInfo->FirstInsertionPoint = InsertionPoint;
    NewInfo->Require = NewInfo->Change;
  } else if (InsertionPoint) {
    // We need to insert a setreg at the InsertionPoint
    insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
  }
  NewInfo->Exit = NewInfo->Change;
  BlockInfo[MBB.getNumber()] = std::move(NewInfo);
}

// In Phase 2 we revisit each block and calculate the common Mode register
// value provided by all predecessor blocks. If the Exit value for the block
// is changed, then we add the successor blocks to the worklist so that the
// exit value is propagated.
void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
//  BlockData *BI = BlockInfo[MBB.getNumber()];
  unsigned ThisBlock = MBB.getNumber();
  if (MBB.pred_empty()) {
    // There are no predecessors, so use the default starting status.
    BlockInfo[ThisBlock]->Pred = DefaultStatus;
  } else {
    // Build a status that is common to all the predecessors by intersecting
    // all the predecessor exit status values.
    MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
    MachineBasicBlock &PB = *(*P);
    BlockInfo[ThisBlock]->Pred = BlockInfo[PB.getNumber()]->Exit;

    for (P = std::next(P); P != E; P = std::next(P)) {
      MachineBasicBlock *Pred = *P;
      BlockInfo[ThisBlock]->Pred = BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[Pred->getNumber()]->Exit);
    }
  }
  Status TmpStatus = BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
  if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
    BlockInfo[ThisBlock]->Exit = TmpStatus;
    // Add the successors to the work list so we can propagate the changed exit
    // status.
    for (MachineBasicBlock::succ_iterator S = MBB.succ_begin(),
                                          E = MBB.succ_end();
         S != E; S = std::next(S)) {
      MachineBasicBlock &B = *(*S);
      Phase2List.push(&B);
    }
  }
}

// In Phase 3 we revisit each block and if it has an insertion point defined we
// check whether the predecessor mode meets the block's entry requirements. If
// not we insert an appropriate setreg instruction to modify the Mode register.
void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
//  BlockData *BI = BlockInfo[MBB.getNumber()];
  unsigned ThisBlock = MBB.getNumber();
  if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
    Status Delta = BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
    if (BlockInfo[ThisBlock]->FirstInsertionPoint)
      insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
    else
      insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
  }
}

bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
  BlockInfo.resize(MF.getNumBlockIDs());
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Processing is performed in a number of phases

  // Phase 1 - determine the initial mode required by each block, and add setreg
  // instructions for intra block requirements.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase1(BB, TII);

  // Phase 2 - determine the exit mode from each block. We add all blocks to the
  // list here, but will also add any that need to be revisited during Phase 2
  // processing.
  for (MachineBasicBlock &BB : MF)
    Phase2List.push(&BB);
  while (!Phase2List.empty()) {
    processBlockPhase2(*Phase2List.front(), TII);
    Phase2List.pop();
  }

  // Phase 3 - add an initial setreg to each block where the required entry mode
  // is not satisfied by the exit mode of all its predecessors.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase3(BB, TII);

  BlockInfo.clear();

  return NumSetregInserted > 0;
}