AMDGPUBaseInfo.cpp 41.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDGPUAsmUtils.h"
#include "AMDGPUTargetTransformInfo.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>

#include "MCTargetDesc/AMDGPUMCTargetDesc.h"

#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
#undef GET_INSTRINFO_NAMED_OPS

namespace {

/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
  return ((1 << Width) - 1) << Shift;
}

/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
  Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
  Dst |= (Src << Shift) & getBitMask(Shift, Width);
  return Dst;
}

/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
  return (Src & getBitMask(Shift, Width)) >> Shift;
}

/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo() { return 0; }

/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo() { return 4; }

/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }

/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }

/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }

/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
  return (VersionMajor >= 10) ? 6 : 4;
}

/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi() { return 14; }

/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi() { return 2; }

} // end namespace anonymous

namespace llvm {

namespace AMDGPU {

#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#define GET_MIMGMIPMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords) {
  const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
                                             VDataDwords, VAddrDwords);
  return Info ? Info->Opcode : -1;
}

const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
  const MIMGInfo *Info = getMIMGInfo(Opc);
  return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
}

int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
  const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
  const MIMGInfo *NewInfo =
      getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
                          NewChannels, OrigInfo->VAddrDwords);
  return NewInfo ? NewInfo->Opcode : -1;
}

struct MUBUFInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t elements;
  bool has_vaddr;
  bool has_srsrc;
  bool has_soffset;
};

struct MTBUFInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t elements;
  bool has_vaddr;
  bool has_srsrc;
  bool has_soffset;
};

#define GET_MTBUFInfoTable_DECL
#define GET_MTBUFInfoTable_IMPL
#define GET_MUBUFInfoTable_DECL
#define GET_MUBUFInfoTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMTBUFBaseOpcode(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
  return Info ? Info->BaseOpcode : -1;
}

int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
  const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
  return Info ? Info->Opcode : -1;
}

int getMTBUFElements(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->elements : 0;
}

bool getMTBUFHasVAddr(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_vaddr : false;
}

bool getMTBUFHasSrsrc(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_srsrc : false;
}

bool getMTBUFHasSoffset(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_soffset : false;
}

int getMUBUFBaseOpcode(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
  return Info ? Info->BaseOpcode : -1;
}

int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
  const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
  return Info ? Info->Opcode : -1;
}

int getMUBUFElements(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->elements : 0;
}

bool getMUBUFHasVAddr(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_vaddr : false;
}

bool getMUBUFHasSrsrc(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_srsrc : false;
}

bool getMUBUFHasSoffset(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_soffset : false;
}

// Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
  return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}

namespace IsaInfo {

void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
  auto TargetTriple = STI->getTargetTriple();
  auto Version = getIsaVersion(STI->getCPU());

  Stream << TargetTriple.getArchName() << '-'
         << TargetTriple.getVendorName() << '-'
         << TargetTriple.getOSName() << '-'
         << TargetTriple.getEnvironmentName() << '-'
         << "gfx"
         << Version.Major
         << Version.Minor
         << Version.Stepping;

  if (hasXNACK(*STI))
    Stream << "+xnack";
  if (hasSRAMECC(*STI))
    Stream << "+sram-ecc";

  Stream.flush();
}

bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
  return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
             STI->getFeatureBits().test(FeatureCodeObjectV3);
}

unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureWavefrontSize16))
    return 16;
  if (STI->getFeatureBits().test(FeatureWavefrontSize32))
    return 32;

  return 64;
}

unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
    return 32768;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
    return 65536;

  return 0;
}

unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
  return 4;
}

unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
                               unsigned FlatWorkGroupSize) {
  assert(FlatWorkGroupSize != 0);
  if (STI->getTargetTriple().getArch() != Triple::amdgcn)
    return 8;
  unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
  if (N == 1)
    return 40;
  N = 40 / N;
  return std::min(N, 16u);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
  return getMaxWavesPerEU(STI) * getEUsPerCU(STI);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
}

unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
  // FIXME: Need to take scratch memory into account.
  if (!isGFX10(*STI))
    return 10;
  return 20;
}

unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
                 getEUsPerCU(STI)) / getEUsPerCU(STI);
}

unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  // Some subtargets allow encoding 2048, but this isn't tested or supported.
  return 1024;
}

unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
                              unsigned FlatWorkGroupSize) {
  return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
                 getWavefrontSize(STI);
}

unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return getAddressableNumSGPRs(STI);
  if (Version.Major >= 8)
    return 16;
  return 8;
}

unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
  return 8;
}

unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 800;
  return 512;
}

unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureSGPRInitBug))
    return FIXED_NUM_SGPRS_FOR_INIT_BUG;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 106;
  if (Version.Major >= 8)
    return 102;
  return 104;
}

unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 0;

  if (WavesPerEU >= getMaxWavesPerEU(STI))
    return 0;

  unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
  return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}

unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
                        bool Addressable) {
  assert(WavesPerEU != 0);

  unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return Addressable ? AddressableNumSGPRs : 108;
  if (Version.Major >= 8 && !Addressable)
    AddressableNumSGPRs = 112;
  unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
  return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed) {
  unsigned ExtraSGPRs = 0;
  if (VCCUsed)
    ExtraSGPRs = 2;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return ExtraSGPRs;

  if (Version.Major < 8) {
    if (FlatScrUsed)
      ExtraSGPRs = 4;
  } else {
    if (XNACKUsed)
      ExtraSGPRs = 4;

    if (FlatScrUsed)
      ExtraSGPRs = 6;
  }

  return ExtraSGPRs;
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed) {
  return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
                          STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}

unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
  NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
  // SGPRBlocks is actual number of SGPR blocks minus 1.
  return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}

unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
                             Optional<bool> EnableWavefrontSize32) {
  bool IsWave32 = EnableWavefrontSize32 ?
      *EnableWavefrontSize32 :
      STI->getFeatureBits().test(FeatureWavefrontSize32);
  return IsWave32 ? 8 : 4;
}

unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
                                Optional<bool> EnableWavefrontSize32) {
  return getVGPRAllocGranule(STI, EnableWavefrontSize32);
}

unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
  if (!isGFX10(*STI))
    return 256;
  return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
}

unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
  return 256;
}

unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  if (WavesPerEU >= getMaxWavesPerEU(STI))
    return 0;
  unsigned MinNumVGPRs =
      alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
                getVGPRAllocGranule(STI)) + 1;
  return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
}

unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
                                   getVGPRAllocGranule(STI));
  unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
  return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}

unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
                          Optional<bool> EnableWavefrontSize32) {
  NumVGPRs = alignTo(std::max(1u, NumVGPRs),
                     getVGPREncodingGranule(STI, EnableWavefrontSize32));
  // VGPRBlocks is actual number of VGPR blocks minus 1.
  return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
}

} // end namespace IsaInfo

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  memset(&Header, 0, sizeof(Header));

  Header.amd_kernel_code_version_major = 1;
  Header.amd_kernel_code_version_minor = 2;
  Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
  Header.amd_machine_version_major = Version.Major;
  Header.amd_machine_version_minor = Version.Minor;
  Header.amd_machine_version_stepping = Version.Stepping;
  Header.kernel_code_entry_byte_offset = sizeof(Header);
  Header.wavefront_size = 6;

  // If the code object does not support indirect functions, then the value must
  // be 0xffffffff.
  Header.call_convention = -1;

  // These alignment values are specified in powers of two, so alignment =
  // 2^n.  The minimum alignment is 2^4 = 16.
  Header.kernarg_segment_alignment = 4;
  Header.group_segment_alignment = 4;
  Header.private_segment_alignment = 4;

  if (Version.Major >= 10) {
    if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
      Header.wavefront_size = 5;
      Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
    }
    Header.compute_pgm_resource_registers |=
      S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
      S_00B848_MEM_ORDERED(1);
  }
}

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
    const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  amdhsa::kernel_descriptor_t KD;
  memset(&KD, 0, sizeof(KD));

  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
                  amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
                  amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
  if (Version.Major >= 10) {
    AMDHSA_BITS_SET(KD.kernel_code_properties,
                    amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
                    STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
                    STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
  }
  return KD;
}

bool isGroupSegment(const GlobalValue *GV) {
  return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}

bool isGlobalSegment(const GlobalValue *GV) {
  return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}

bool isReadOnlySegment(const GlobalValue *GV) {
  unsigned AS = GV->getAddressSpace();
  return AS == AMDGPUAS::CONSTANT_ADDRESS ||
         AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}

bool shouldEmitConstantsToTextSection(const Triple &TT) {
  return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600;
}

int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
  Attribute A = F.getFnAttribute(Name);
  int Result = Default;

  if (A.isStringAttribute()) {
    StringRef Str = A.getValueAsString();
    if (Str.getAsInteger(0, Result)) {
      LLVMContext &Ctx = F.getContext();
      Ctx.emitError("can't parse integer attribute " + Name);
    }
  }

  return Result;
}

std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired) {
  Attribute A = F.getFnAttribute(Name);
  if (!A.isStringAttribute())
    return Default;

  LLVMContext &Ctx = F.getContext();
  std::pair<int, int> Ints = Default;
  std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
  if (Strs.first.trim().getAsInteger(0, Ints.first)) {
    Ctx.emitError("can't parse first integer attribute " + Name);
    return Default;
  }
  if (Strs.second.trim().getAsInteger(0, Ints.second)) {
    if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
      Ctx.emitError("can't parse second integer attribute " + Name);
      return Default;
    }
  }

  return Ints;
}

unsigned getVmcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned getExpcntBitMask(const IsaVersion &Version) {
  return (1 << getExpcntBitWidth()) - 1;
}

unsigned getLgkmcntBitMask(const IsaVersion &Version) {
  return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
}

unsigned getWaitcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
  unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
  unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
                                getLgkmcntBitWidth(Version.Major));
  unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
  if (Version.Major < 9)
    return Waitcnt;

  unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
  return Waitcnt | VmcntHi;
}

unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  unsigned VmcntLo =
      unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi =
      unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
  VmcntHi <<= getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getLgkmcntBitShift(),
                    getLgkmcntBitWidth(Version.Major));
}

void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
  Vmcnt = decodeVmcnt(Version, Waitcnt);
  Expcnt = decodeExpcnt(Version, Waitcnt);
  Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}

Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
  Waitcnt Decoded;
  Decoded.VmCnt = decodeVmcnt(Version, Encoded);
  Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
  Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
  return Decoded;
}

unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt) {
  Waitcnt =
      packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return Waitcnt;

  Vmcnt >>= getVmcntBitWidthLo();
  return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
}

unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt) {
  return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt) {
  return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
                                    getLgkmcntBitWidth(Version.Major));
}

unsigned encodeWaitcnt(const IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
  unsigned Waitcnt = getWaitcntBitMask(Version);
  Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
  Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
  Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
  return Waitcnt;
}

unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
  return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
}

//===----------------------------------------------------------------------===//
// hwreg
//===----------------------------------------------------------------------===//

namespace Hwreg {

int64_t getHwregId(const StringRef Name) {
  for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
    if (IdSymbolic[Id] && Name == IdSymbolic[Id])
      return Id;
  }
  return ID_UNKNOWN_;
}

static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
  if (isSI(STI) || isCI(STI) || isVI(STI))
    return ID_SYMBOLIC_FIRST_GFX9_;
  else if (isGFX9(STI))
    return ID_SYMBOLIC_FIRST_GFX10_;
  else
    return ID_SYMBOLIC_LAST_;
}

bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
  return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
         IdSymbolic[Id];
}

bool isValidHwreg(int64_t Id) {
  return 0 <= Id && isUInt<ID_WIDTH_>(Id);
}

bool isValidHwregOffset(int64_t Offset) {
  return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
}

bool isValidHwregWidth(int64_t Width) {
  return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
}

uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
  return (Id << ID_SHIFT_) |
         (Offset << OFFSET_SHIFT_) |
         ((Width - 1) << WIDTH_M1_SHIFT_);
}

StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
  return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
}

void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
  Id = (Val & ID_MASK_) >> ID_SHIFT_;
  Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
  Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
}

} // namespace Hwreg

//===----------------------------------------------------------------------===//
// SendMsg
//===----------------------------------------------------------------------===//

namespace SendMsg {

int64_t getMsgId(const StringRef Name) {
  for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
    if (IdSymbolic[i] && Name == IdSymbolic[i])
      return i;
  }
  return ID_UNKNOWN_;
}

static bool isValidMsgId(int64_t MsgId) {
  return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
}

bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
  if (Strict) {
    if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
      return isGFX9(STI) || isGFX10(STI);
    else
      return isValidMsgId(MsgId);
  } else {
    return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
  }
}

StringRef getMsgName(int64_t MsgId) {
  return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
}

int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
  const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
  const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
  const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
  for (int i = F; i < L; ++i) {
    if (Name == S[i]) {
      return i;
    }
  }
  return OP_UNKNOWN_;
}

bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {

  if (!Strict)
    return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);

  switch(MsgId)
  {
  case ID_GS:
    return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
  case ID_GS_DONE:
    return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
  case ID_SYSMSG:
    return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
  default:
    return OpId == OP_NONE_;
  }
}

StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
  assert(msgRequiresOp(MsgId));
  return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
}

bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {

  if (!Strict)
    return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);

  switch(MsgId)
  {
  case ID_GS:
    return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
  case ID_GS_DONE:
    return (OpId == OP_GS_NOP)?
           (StreamId == STREAM_ID_NONE_) :
           (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
  default:
    return StreamId == STREAM_ID_NONE_;
  }
}

bool msgRequiresOp(int64_t MsgId) {
  return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
}

bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
  return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
}

void decodeMsg(unsigned Val,
               uint16_t &MsgId,
               uint16_t &OpId,
               uint16_t &StreamId) {
  MsgId = Val & ID_MASK_;
  OpId = (Val & OP_MASK_) >> OP_SHIFT_;
  StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
}

uint64_t encodeMsg(uint64_t MsgId,
                   uint64_t OpId,
                   uint64_t StreamId) {
  return (MsgId << ID_SHIFT_) |
         (OpId << OP_SHIFT_) |
         (StreamId << STREAM_ID_SHIFT_);
}

} // namespace SendMsg

//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//

unsigned getInitialPSInputAddr(const Function &F) {
  return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}

bool isShader(CallingConv::ID cc) {
  switch(cc) {
    case CallingConv::AMDGPU_VS:
    case CallingConv::AMDGPU_LS:
    case CallingConv::AMDGPU_HS:
    case CallingConv::AMDGPU_ES:
    case CallingConv::AMDGPU_GS:
    case CallingConv::AMDGPU_PS:
    case CallingConv::AMDGPU_CS:
      return true;
    default:
      return false;
  }
}

bool isCompute(CallingConv::ID cc) {
  return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
}

bool isEntryFunctionCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_LS:
    return true;
  default:
    return false;
  }
}

bool hasXNACK(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
}

bool hasSRAMECC(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
}

bool hasMIMG_R128(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
}

bool hasPackedD16(const MCSubtargetInfo &STI) {
  return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
}

bool isSI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}

bool isCI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}

bool isVI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}

bool isGFX9(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
}

bool isGFX10(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
}

bool isGCN3Encoding(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
}

bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
  const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
  const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
  return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
    Reg == AMDGPU::SCC;
}

bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
  for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
    if (*R == Reg1) return true;
  }
  return false;
}

#define MAP_REG2REG \
  using namespace AMDGPU; \
  switch(Reg) { \
  default: return Reg; \
  CASE_CI_VI(FLAT_SCR) \
  CASE_CI_VI(FLAT_SCR_LO) \
  CASE_CI_VI(FLAT_SCR_HI) \
  CASE_VI_GFX9_GFX10(TTMP0) \
  CASE_VI_GFX9_GFX10(TTMP1) \
  CASE_VI_GFX9_GFX10(TTMP2) \
  CASE_VI_GFX9_GFX10(TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4) \
  CASE_VI_GFX9_GFX10(TTMP5) \
  CASE_VI_GFX9_GFX10(TTMP6) \
  CASE_VI_GFX9_GFX10(TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8) \
  CASE_VI_GFX9_GFX10(TTMP9) \
  CASE_VI_GFX9_GFX10(TTMP10) \
  CASE_VI_GFX9_GFX10(TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12) \
  CASE_VI_GFX9_GFX10(TTMP13) \
  CASE_VI_GFX9_GFX10(TTMP14) \
  CASE_VI_GFX9_GFX10(TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
  CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
  CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
  CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
  CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  }

#define CASE_CI_VI(node) \
  assert(!isSI(STI)); \
  case node: return isCI(STI) ? node##_ci : node##_vi;

#define CASE_VI_GFX9_GFX10(node) \
  case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;

unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
  if (STI.getTargetTriple().getArch() == Triple::r600)
    return Reg;
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9_GFX10

#define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
#define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;

unsigned mc2PseudoReg(unsigned Reg) {
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9_GFX10
#undef MAP_REG2REG

bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
         OpType <= AMDGPU::OPERAND_SRC_LAST;
}

bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_IMM_V2FP16:
  case AMDGPU::OPERAND_REG_IMM_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
    return true;
  default:
    return false;
  }
}

bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
         OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}

// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
  switch (RCID) {
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::VGPR_32RegClassID:
  case AMDGPU::VRegOrLds_32RegClassID:
  case AMDGPU::AGPR_32RegClassID:
  case AMDGPU::VS_32RegClassID:
  case AMDGPU::AV_32RegClassID:
  case AMDGPU::SReg_32RegClassID:
  case AMDGPU::SReg_32_XM0RegClassID:
  case AMDGPU::SRegOrLds_32RegClassID:
    return 32;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::VS_64RegClassID:
  case AMDGPU::AV_64RegClassID:
  case AMDGPU::SReg_64RegClassID:
  case AMDGPU::VReg_64RegClassID:
  case AMDGPU::AReg_64RegClassID:
  case AMDGPU::SReg_64_XEXECRegClassID:
    return 64;
  case AMDGPU::SGPR_96RegClassID:
  case AMDGPU::SReg_96RegClassID:
  case AMDGPU::VReg_96RegClassID:
    return 96;
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::SReg_128RegClassID:
  case AMDGPU::VReg_128RegClassID:
  case AMDGPU::AReg_128RegClassID:
    return 128;
  case AMDGPU::SGPR_160RegClassID:
  case AMDGPU::SReg_160RegClassID:
  case AMDGPU::VReg_160RegClassID:
    return 160;
  case AMDGPU::SReg_256RegClassID:
  case AMDGPU::VReg_256RegClassID:
    return 256;
  case AMDGPU::SReg_512RegClassID:
  case AMDGPU::VReg_512RegClassID:
  case AMDGPU::AReg_512RegClassID:
    return 512;
  case AMDGPU::SReg_1024RegClassID:
  case AMDGPU::VReg_1024RegClassID:
  case AMDGPU::AReg_1024RegClassID:
    return 1024;
  default:
    llvm_unreachable("Unexpected register class");
  }
}

unsigned getRegBitWidth(const MCRegisterClass &RC) {
  return getRegBitWidth(RC.getID());
}

unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned RCID = Desc.OpInfo[OpNo].RegClass;
  return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}

bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  uint64_t Val = static_cast<uint64_t>(Literal);
  return (Val == DoubleToBits(0.0)) ||
         (Val == DoubleToBits(1.0)) ||
         (Val == DoubleToBits(-1.0)) ||
         (Val == DoubleToBits(0.5)) ||
         (Val == DoubleToBits(-0.5)) ||
         (Val == DoubleToBits(2.0)) ||
         (Val == DoubleToBits(-2.0)) ||
         (Val == DoubleToBits(4.0)) ||
         (Val == DoubleToBits(-4.0)) ||
         (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}

bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.

  uint32_t Val = static_cast<uint32_t>(Literal);
  return (Val == FloatToBits(0.0f)) ||
         (Val == FloatToBits(1.0f)) ||
         (Val == FloatToBits(-1.0f)) ||
         (Val == FloatToBits(0.5f)) ||
         (Val == FloatToBits(-0.5f)) ||
         (Val == FloatToBits(2.0f)) ||
         (Val == FloatToBits(-2.0f)) ||
         (Val == FloatToBits(4.0f)) ||
         (Val == FloatToBits(-4.0f)) ||
         (Val == 0x3e22f983 && HasInv2Pi);
}

bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;

  if (Literal >= -16 && Literal <= 64)
    return true;

  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3C00 || // 1.0
         Val == 0xBC00 || // -1.0
         Val == 0x3800 || // 0.5
         Val == 0xB800 || // -0.5
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4400 || // 4.0
         Val == 0xC400 || // -4.0
         Val == 0x3118;   // 1/2pi
}

bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
  assert(HasInv2Pi);

  if (isInt<16>(Literal) || isUInt<16>(Literal)) {
    int16_t Trunc = static_cast<int16_t>(Literal);
    return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
  }
  if (!(Literal & 0xffff))
    return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);

  int16_t Lo16 = static_cast<int16_t>(Literal);
  int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
  return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}

bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();

  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
    // Everything else is in VGPRs.
    return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
           F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
  default:
    // TODO: Should calls support inreg for SGPR inputs?
    return false;
  }
}

static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
  return isGCN3Encoding(ST) || isGFX10(ST);
}

int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  if (hasSMEMByteOffset(ST))
    return ByteOffset;
  return ByteOffset >> 2;
}

bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
  return (hasSMEMByteOffset(ST)) ?
    isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
}

// Given Imm, split it into the values to put into the SOffset and ImmOffset
// fields in an MUBUF instruction. Return false if it is not possible (due to a
// hardware bug needing a workaround).
//
// The required alignment ensures that individual address components remain
// aligned if they are aligned to begin with. It also ensures that additional
// offsets within the given alignment can be added to the resulting ImmOffset.
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
                      const GCNSubtarget *Subtarget, uint32_t Align) {
  const uint32_t MaxImm = alignDown(4095, Align);
  uint32_t Overflow = 0;

  if (Imm > MaxImm) {
    if (Imm <= MaxImm + 64) {
      // Use an SOffset inline constant for 4..64
      Overflow = Imm - MaxImm;
      Imm = MaxImm;
    } else {
      // Try to keep the same value in SOffset for adjacent loads, so that
      // the corresponding register contents can be re-used.
      //
      // Load values with all low-bits (except for alignment bits) set into
      // SOffset, so that a larger range of values can be covered using
      // s_movk_i32.
      //
      // Atomic operations fail to work correctly when individual address
      // components are unaligned, even if their sum is aligned.
      uint32_t High = (Imm + Align) & ~4095;
      uint32_t Low = (Imm + Align) & 4095;
      Imm = Low;
      Overflow = High - Align;
    }
  }

  // There is a hardware bug in SI and CI which prevents address clamping in
  // MUBUF instructions from working correctly with SOffsets. The immediate
  // offset is unaffected.
  if (Overflow > 0 &&
      Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
    return false;

  ImmOffset = Imm;
  SOffset = Overflow;
  return true;
}

SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F,
                                               const GCNSubtarget &ST) {
  *this = getDefaultForCallingConv(F.getCallingConv());

  StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
  if (!IEEEAttr.empty())
    IEEE = IEEEAttr == "true";

  StringRef DX10ClampAttr
    = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
  if (!DX10ClampAttr.empty())
    DX10Clamp = DX10ClampAttr == "true";

  FP32Denormals = ST.hasFP32Denormals(F);
  FP64FP16Denormals = ST.hasFP64FP16Denormals(F);
}

namespace {

struct SourceOfDivergence {
  unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);

#define GET_SourcesOfDivergence_IMPL
#define GET_Gfx9BufferFormat_IMPL
#define GET_Gfx10PlusBufferFormat_IMPL
#include "AMDGPUGenSearchableTables.inc"

} // end anonymous namespace

bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
  return lookupSourceOfDivergence(IntrID);
}

const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
                                                  uint8_t NumComponents,
                                                  uint8_t NumFormat,
                                                  const MCSubtargetInfo &STI) {
  return isGFX10(STI)
             ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
                                            NumFormat)
             : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
}

const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
                                                  const MCSubtargetInfo &STI) {
  return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format)
                      : getGfx9BufferFormatInfo(Format);
}

} // namespace AMDGPU
} // namespace llvm