AMDGPUBaseInfo.h 23.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
//===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H

#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include <cstdint>
#include <string>
#include <utility>

namespace llvm {

class Argument;
class AMDGPUSubtarget;
class FeatureBitset;
class Function;
class GCNSubtarget;
class GlobalValue;
class MCContext;
class MCRegisterClass;
class MCRegisterInfo;
class MCSection;
class MCSubtargetInfo;
class MachineMemOperand;
class Triple;

namespace AMDGPU {

struct GcnBufferFormatInfo {
  unsigned Format;
  unsigned BitsPerComp;
  unsigned NumComponents;
  unsigned NumFormat;
  unsigned DataFormat;
};

#define GET_MIMGBaseOpcode_DECL
#define GET_MIMGDim_DECL
#define GET_MIMGEncoding_DECL
#define GET_MIMGLZMapping_DECL
#define GET_MIMGMIPMapping_DECL
#include "AMDGPUGenSearchableTables.inc"

namespace IsaInfo {

enum {
  // The closed Vulkan driver sets 96, which limits the wave count to 8 but
  // doesn't spill SGPRs as much as when 80 is set.
  FIXED_NUM_SGPRS_FOR_INIT_BUG = 96,
  TRAP_NUM_SGPRS = 16
};

/// Streams isa version string for given subtarget \p STI into \p Stream.
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream);

/// \returns True if given subtarget \p STI supports code object version 3,
/// false otherwise.
bool hasCodeObjectV3(const MCSubtargetInfo *STI);

/// \returns Wavefront size for given subtarget \p STI.
unsigned getWavefrontSize(const MCSubtargetInfo *STI);

/// \returns Local memory size in bytes for given subtarget \p STI.
unsigned getLocalMemorySize(const MCSubtargetInfo *STI);

/// \returns Number of execution units per compute unit for given subtarget \p
/// STI.
unsigned getEUsPerCU(const MCSubtargetInfo *STI);

/// \returns Maximum number of work groups per compute unit for given subtarget
/// \p STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
                               unsigned FlatWorkGroupSize);

/// \returns Maximum number of waves per compute unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI);

/// \returns Maximum number of waves per compute unit for given subtarget \p
/// STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize);

/// \returns Minimum number of waves per execution unit for given subtarget \p
/// STI.
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI);

/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI);

/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize);

/// \returns Minimum flat work group size for given subtarget \p STI.
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI);

/// \returns Maximum flat work group size for given subtarget \p STI.
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI);

/// \returns Number of waves per work group for given subtarget \p STI and
/// limited by given \p FlatWorkGroupSize.
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
                              unsigned FlatWorkGroupSize);

/// \returns SGPR allocation granularity for given subtarget \p STI.
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI);

/// \returns SGPR encoding granularity for given subtarget \p STI.
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI);

/// \returns Total number of SGPRs for given subtarget \p STI.
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI);

/// \returns Addressable number of SGPRs for given subtarget \p STI.
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI);

/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);

/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
                        bool Addressable);

/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed);

/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used. XNACK is inferred from
/// \p STI.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed);

/// \returns Number of SGPR blocks needed for given subtarget \p STI when
/// \p NumSGPRs are used. \p NumSGPRs should already include any special
/// register counts.
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs);

/// \returns VGPR allocation granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
                             Optional<bool> EnableWavefrontSize32 = None);

/// \returns VGPR encoding granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
                                Optional<bool> EnableWavefrontSize32 = None);

/// \returns Total number of VGPRs for given subtarget \p STI.
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI);

/// \returns Addressable number of VGPRs for given subtarget \p STI.
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI);

/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);

/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);

/// \returns Number of VGPR blocks needed for given subtarget \p STI when
/// \p NumVGPRs are used.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match the
/// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs,
                          Optional<bool> EnableWavefrontSize32 = None);

} // end namespace IsaInfo

LLVM_READONLY
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx);

LLVM_READONLY
int getSOPPWithRelaxation(uint16_t Opcode);

struct MIMGBaseOpcodeInfo {
  MIMGBaseOpcode BaseOpcode;
  bool Store;
  bool Atomic;
  bool AtomicX2;
  bool Sampler;
  bool Gather4;

  uint8_t NumExtraArgs;
  bool Gradients;
  bool Coordinates;
  bool LodOrClampOrMip;
  bool HasD16;
};

LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode);

struct MIMGDimInfo {
  MIMGDim Dim;
  uint8_t NumCoords;
  uint8_t NumGradients;
  bool DA;
  uint8_t Encoding;
  const char *AsmSuffix;
};

LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfo(unsigned DimEnum);

LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc);

LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix);

struct MIMGLZMappingInfo {
  MIMGBaseOpcode L;
  MIMGBaseOpcode LZ;
};

struct MIMGMIPMappingInfo {
  MIMGBaseOpcode MIP;
  MIMGBaseOpcode NONMIP;
};

LLVM_READONLY
const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L);

LLVM_READONLY
const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned L);

LLVM_READONLY
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords);

LLVM_READONLY
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels);

struct MIMGInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t MIMGEncoding;
  uint8_t VDataDwords;
  uint8_t VAddrDwords;
};

LLVM_READONLY
const MIMGInfo *getMIMGInfo(unsigned Opc);

LLVM_READONLY
int getMTBUFBaseOpcode(unsigned Opc);

LLVM_READONLY
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements);

LLVM_READONLY
int getMTBUFElements(unsigned Opc);

LLVM_READONLY
bool getMTBUFHasVAddr(unsigned Opc);

LLVM_READONLY
bool getMTBUFHasSrsrc(unsigned Opc);

LLVM_READONLY
bool getMTBUFHasSoffset(unsigned Opc);

LLVM_READONLY
int getMUBUFBaseOpcode(unsigned Opc);

LLVM_READONLY
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements);

LLVM_READONLY
int getMUBUFElements(unsigned Opc);

LLVM_READONLY
bool getMUBUFHasVAddr(unsigned Opc);

LLVM_READONLY
bool getMUBUFHasSrsrc(unsigned Opc);

LLVM_READONLY
bool getMUBUFHasSoffset(unsigned Opc);

LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
                                                  uint8_t NumComponents,
                                                  uint8_t NumFormat,
                                                  const MCSubtargetInfo &STI);
LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
                                                  const MCSubtargetInfo &STI);

LLVM_READONLY
int getMCOpcode(uint16_t Opcode, unsigned Gen);

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const MCSubtargetInfo *STI);

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
    const MCSubtargetInfo *STI);

bool isGroupSegment(const GlobalValue *GV);
bool isGlobalSegment(const GlobalValue *GV);
bool isReadOnlySegment(const GlobalValue *GV);

/// \returns True if constants should be emitted to .text section for given
/// target triple \p TT, false otherwise.
bool shouldEmitConstantsToTextSection(const Triple &TT);

/// \returns Integer value requested using \p F's \p Name attribute.
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if requested value cannot be converted
/// to integer.
int getIntegerAttribute(const Function &F, StringRef Name, int Default);

/// \returns A pair of integer values requested using \p F's \p Name attribute
/// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired
/// is false).
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if one of the requested values cannot be
/// converted to integer, or \p OnlyFirstRequired is false and "second" value is
/// not present.
std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired = false);

/// Represents the counter values to wait for in an s_waitcnt instruction.
///
/// Large values (including the maximum possible integer) can be used to
/// represent "don't care" waits.
struct Waitcnt {
  unsigned VmCnt = ~0u;
  unsigned ExpCnt = ~0u;
  unsigned LgkmCnt = ~0u;
  unsigned VsCnt = ~0u;

  Waitcnt() {}
  Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt)
      : VmCnt(VmCnt), ExpCnt(ExpCnt), LgkmCnt(LgkmCnt), VsCnt(VsCnt) {}

  static Waitcnt allZero(const IsaVersion &Version) {
    return Waitcnt(0, 0, 0, Version.Major >= 10 ? 0 : ~0u);
  }
  static Waitcnt allZeroExceptVsCnt() { return Waitcnt(0, 0, 0, ~0u); }

  bool hasWait() const {
    return VmCnt != ~0u || ExpCnt != ~0u || LgkmCnt != ~0u || VsCnt != ~0u;
  }

  bool dominates(const Waitcnt &Other) const {
    return VmCnt <= Other.VmCnt && ExpCnt <= Other.ExpCnt &&
           LgkmCnt <= Other.LgkmCnt && VsCnt <= Other.VsCnt;
  }

  Waitcnt combined(const Waitcnt &Other) const {
    return Waitcnt(std::min(VmCnt, Other.VmCnt), std::min(ExpCnt, Other.ExpCnt),
                   std::min(LgkmCnt, Other.LgkmCnt),
                   std::min(VsCnt, Other.VsCnt));
  }
};

/// \returns Vmcnt bit mask for given isa \p Version.
unsigned getVmcntBitMask(const IsaVersion &Version);

/// \returns Expcnt bit mask for given isa \p Version.
unsigned getExpcntBitMask(const IsaVersion &Version);

/// \returns Lgkmcnt bit mask for given isa \p Version.
unsigned getLgkmcntBitMask(const IsaVersion &Version);

/// \returns Waitcnt bit mask for given isa \p Version.
unsigned getWaitcntBitMask(const IsaVersion &Version);

/// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt);

/// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt);

/// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt);

/// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa
/// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and
/// \p Lgkmcnt respectively.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows:
///     \p Vmcnt = \p Waitcnt[3:0]                      (pre-gfx9 only)
///     \p Vmcnt = \p Waitcnt[3:0] | \p Waitcnt[15:14]  (gfx9+ only)
///     \p Expcnt = \p Waitcnt[6:4]
///     \p Lgkmcnt = \p Waitcnt[11:8]                   (pre-gfx10 only)
///     \p Lgkmcnt = \p Waitcnt[13:8]                   (gfx10+ only)
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt);

Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded);

/// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version.
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt);

/// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version.
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt);

/// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version.
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt);

/// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa
/// \p Version.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows:
///     Waitcnt[3:0]   = \p Vmcnt       (pre-gfx9 only)
///     Waitcnt[3:0]   = \p Vmcnt[3:0]  (gfx9+ only)
///     Waitcnt[6:4]   = \p Expcnt
///     Waitcnt[11:8]  = \p Lgkmcnt     (pre-gfx10 only)
///     Waitcnt[13:8]  = \p Lgkmcnt     (gfx10+ only)
///     Waitcnt[15:14] = \p Vmcnt[5:4]  (gfx9+ only)
///
/// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given
/// isa \p Version.
unsigned encodeWaitcnt(const IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt);

unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded);

namespace Hwreg {

LLVM_READONLY
int64_t getHwregId(const StringRef Name);

LLVM_READNONE
bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI);

LLVM_READNONE
bool isValidHwreg(int64_t Id);

LLVM_READNONE
bool isValidHwregOffset(int64_t Offset);

LLVM_READNONE
bool isValidHwregWidth(int64_t Width);

LLVM_READNONE
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width);

LLVM_READNONE
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI);

void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width);

} // namespace Hwreg

namespace SendMsg {

LLVM_READONLY
int64_t getMsgId(const StringRef Name);

LLVM_READONLY
int64_t getMsgOpId(int64_t MsgId, const StringRef Name);

LLVM_READNONE
StringRef getMsgName(int64_t MsgId);

LLVM_READNONE
StringRef getMsgOpName(int64_t MsgId, int64_t OpId);

LLVM_READNONE
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict = true);

LLVM_READNONE
bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict = true);

LLVM_READNONE
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict = true);

LLVM_READNONE
bool msgRequiresOp(int64_t MsgId);

LLVM_READNONE
bool msgSupportsStream(int64_t MsgId, int64_t OpId);

void decodeMsg(unsigned Val,
               uint16_t &MsgId,
               uint16_t &OpId,
               uint16_t &StreamId);

LLVM_READNONE
uint64_t encodeMsg(uint64_t MsgId,
                   uint64_t OpId,
                   uint64_t StreamId);

} // namespace SendMsg


unsigned getInitialPSInputAddr(const Function &F);

LLVM_READNONE
bool isShader(CallingConv::ID CC);

LLVM_READNONE
bool isCompute(CallingConv::ID CC);

LLVM_READNONE
bool isEntryFunctionCC(CallingConv::ID CC);

// FIXME: Remove this when calling conventions cleaned up
LLVM_READNONE
inline bool isKernel(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  default:
    return false;
  }
}

bool hasXNACK(const MCSubtargetInfo &STI);
bool hasSRAMECC(const MCSubtargetInfo &STI);
bool hasMIMG_R128(const MCSubtargetInfo &STI);
bool hasPackedD16(const MCSubtargetInfo &STI);

bool isSI(const MCSubtargetInfo &STI);
bool isCI(const MCSubtargetInfo &STI);
bool isVI(const MCSubtargetInfo &STI);
bool isGFX9(const MCSubtargetInfo &STI);
bool isGFX10(const MCSubtargetInfo &STI);

/// Is Reg - scalar register
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI);

/// Is there any intersection between registers
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI);

/// If \p Reg is a pseudo reg, return the correct hardware register given
/// \p STI otherwise return \p Reg.
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI);

/// Convert hardware register \p Reg to a pseudo register
LLVM_READNONE
unsigned mc2PseudoReg(unsigned Reg);

/// Can this operand also contain immediate values?
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Is this floating-point operand?
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Does this opearnd support only inlinable literals?
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(unsigned RCID);

/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(const MCRegisterClass &RC);

/// Get size of register operand
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo);

LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
  switch (OpInfo.OperandType) {
  case AMDGPU::OPERAND_REG_IMM_INT32:
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_INT32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
    return 4;

  case AMDGPU::OPERAND_REG_IMM_INT64:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_INT64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
    return 8;

  case AMDGPU::OPERAND_REG_IMM_INT16:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
  case AMDGPU::OPERAND_REG_IMM_V2INT16:
  case AMDGPU::OPERAND_REG_IMM_V2FP16:
    return 2;

  default:
    llvm_unreachable("unhandled operand type");
  }
}

LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
  return getOperandSize(Desc.OpInfo[OpNo]);
}

/// Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi);

bool isArgPassedInSGPR(const Argument *Arg);

/// \returns The encoding that will be used for \p ByteOffset in the SMRD
/// offset field.
int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);

/// \returns true if this offset is small enough to fit in the SMRD
/// offset field.  \p ByteOffset should be the offset in bytes and
/// not the encoded offset.
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);

bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
                      const GCNSubtarget *Subtarget, uint32_t Align = 4);

/// \returns true if the intrinsic is divergent
bool isIntrinsicSourceOfDivergence(unsigned IntrID);

// Track defaults for fields in the MODE registser.
struct SIModeRegisterDefaults {
  /// Floating point opcodes that support exception flag gathering quiet and
  /// propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
  /// become IEEE 754- 2008 compliant due to signaling NaN propagation and
  /// quieting.
  bool IEEE : 1;

  /// Used by the vector ALU to force DX10-style treatment of NaNs: when set,
  /// clamp NaN to zero; otherwise, pass NaN through.
  bool DX10Clamp : 1;

  /// If this is set, neither input or output denormals are flushed for most f32
  /// instructions.
  ///
  /// TODO: Split into separate input and output fields if necessary like the
  /// control bits really provide?
  bool FP32Denormals : 1;

  /// If this is set, neither input or output denormals are flushed for both f64
  /// and f16/v2f16 instructions.
  bool FP64FP16Denormals : 1;

  SIModeRegisterDefaults() :
    IEEE(true),
    DX10Clamp(true),
    FP32Denormals(true),
    FP64FP16Denormals(true) {}

  // FIXME: Should not depend on the subtarget
  SIModeRegisterDefaults(const Function &F, const GCNSubtarget &ST);

  static SIModeRegisterDefaults getDefaultForCallingConv(CallingConv::ID CC) {
    const bool IsCompute = AMDGPU::isCompute(CC);

    SIModeRegisterDefaults Mode;
    Mode.DX10Clamp = true;
    Mode.IEEE = IsCompute;
    Mode.FP32Denormals = false; // FIXME: Should be on by default.
    Mode.FP64FP16Denormals = true;
    return Mode;
  }

  bool operator ==(const SIModeRegisterDefaults Other) const {
    return IEEE == Other.IEEE && DX10Clamp == Other.DX10Clamp &&
           FP32Denormals == Other.FP32Denormals &&
           FP64FP16Denormals == Other.FP64FP16Denormals;
  }

  /// Returns true if a flag is compatible if it's enabled in the callee, but
  /// disabled in the caller.
  static bool oneWayCompatible(bool CallerMode, bool CalleeMode) {
    return CallerMode == CalleeMode || (CallerMode && !CalleeMode);
  }

  // FIXME: Inlining should be OK for dx10-clamp, since the caller's mode should
  // be able to override.
  bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const {
    if (DX10Clamp != CalleeMode.DX10Clamp)
      return false;
    if (IEEE != CalleeMode.IEEE)
      return false;

    // Allow inlining denormals enabled into denormals flushed functions.
    return oneWayCompatible(FP64FP16Denormals, CalleeMode.FP64FP16Denormals) &&
           oneWayCompatible(FP32Denormals, CalleeMode.FP32Denormals);
  }
};

} // end namespace AMDGPU
} // end namespace llvm

#endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H