HexagonConstPropagation.cpp 97.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
//===- HexagonConstPropagation.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hcp"

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

  // Properties of a value that are tracked by the propagation.
  // A property that is marked as present (i.e. bit is set) dentes that the
  // value is known (proven) to have this property. Not all combinations
  // of bits make sense, for example Zero and NonZero are mutually exclusive,
  // but on the other hand, Zero implies Finite. In this case, whenever
  // the Zero property is present, Finite should also be present.
  class ConstantProperties {
  public:
    enum {
      Unknown   = 0x0000,
      Zero      = 0x0001,
      NonZero   = 0x0002,
      Finite    = 0x0004,
      Infinity  = 0x0008,
      NaN       = 0x0010,
      SignedZero = 0x0020,
      NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
      PosOrZero       = 0x0100,
      NegOrZero       = 0x0200,
      SignProperties  = (PosOrZero|NegOrZero),
      Everything      = (NumericProperties|SignProperties)
    };

    // For a given constant, deduce the set of trackable properties that this
    // constant has.
    static uint32_t deduce(const Constant *C);
  };

  // A representation of a register as it can appear in a MachineOperand,
  // i.e. a pair register:subregister.

  // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
  // HexagonGenPredicate
  struct RegisterSubReg {
    unsigned Reg, SubReg;

    explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
    explicit RegisterSubReg(const MachineOperand &MO)
      : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}

    void print(const TargetRegisterInfo *TRI = nullptr) const {
      dbgs() << printReg(Reg, TRI, SubReg);
    }

    bool operator== (const RegisterSubReg &R) const {
      return (Reg == R.Reg) && (SubReg == R.SubReg);
    }
  };

  // Lattice cell, based on that was described in the W-Z paper on constant
  // propagation.
  // Latice cell will be allowed to hold multiple constant values. While
  // multiple values would normally indicate "bottom", we can still derive
  // some useful information from them. For example, comparison X > 0
  // could be folded if all the values in the cell associated with X are
  // positive.
  class LatticeCell {
  private:
    enum { Normal, Top, Bottom };

    static const unsigned MaxCellSize = 4;

    unsigned Kind:2;
    unsigned Size:3;
    unsigned IsSpecial:1;
    unsigned :0;

  public:
    union {
      uint32_t Properties;
      const Constant *Value;
      const Constant *Values[MaxCellSize];
    };

    LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
      for (unsigned i = 0; i < MaxCellSize; ++i)
        Values[i] = nullptr;
    }

    bool meet(const LatticeCell &L);
    bool add(const Constant *C);
    bool add(uint32_t Property);
    uint32_t properties() const;
    unsigned size() const { return Size; }

    LatticeCell(const LatticeCell &L) {
      // This memcpy also copies Properties (when L.Size == 0).
      uint32_t N =
          L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *);
      memcpy(Values, L.Values, N);
      Kind = L.Kind;
      Size = L.Size;
      IsSpecial = L.IsSpecial;
    }

    LatticeCell &operator=(const LatticeCell &L) {
      if (this != &L) {
        // This memcpy also copies Properties (when L.Size == 0).
        uint32_t N = L.IsSpecial ? sizeof L.Properties
                                 : L.Size * sizeof(const Constant *);
        memcpy(Values, L.Values, N);
        Kind = L.Kind;
        Size = L.Size;
        IsSpecial = L.IsSpecial;
      }
      return *this;
    }

    bool isSingle() const { return size() == 1; }
    bool isProperty() const { return IsSpecial; }
    bool isTop() const { return Kind == Top; }
    bool isBottom() const { return Kind == Bottom; }

    bool setBottom() {
      bool Changed = (Kind != Bottom);
      Kind = Bottom;
      Size = 0;
      IsSpecial = false;
      return Changed;
    }

    void print(raw_ostream &os) const;

  private:
    void setProperty() {
      IsSpecial = true;
      Size = 0;
      Kind = Normal;
    }

    bool convertToProperty();
  };

#ifndef NDEBUG
  raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
    L.print(os);
    return os;
  }
#endif

  class MachineConstEvaluator;

  class MachineConstPropagator {
  public:
    MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
      Bottom.setBottom();
    }

    // Mapping: vreg -> cell
    // The keys are registers _without_ subregisters. This won't allow
    // definitions in the form of "vreg:subreg = ...". Such definitions
    // would be questionable from the point of view of SSA, since the "vreg"
    // could not be initialized in its entirety (specifically, an instruction
    // defining the "other part" of "vreg" would also count as a definition
    // of "vreg", which would violate the SSA).
    // If a value of a pair vreg:subreg needs to be obtained, the cell for
    // "vreg" needs to be looked up, and then the value of subregister "subreg"
    // needs to be evaluated.
    class CellMap {
    public:
      CellMap() {
        assert(Top.isTop());
        Bottom.setBottom();
      }

      void clear() { Map.clear(); }

      bool has(unsigned R) const {
        // All non-virtual registers are considered "bottom".
        if (!Register::isVirtualRegister(R))
          return true;
        MapType::const_iterator F = Map.find(R);
        return F != Map.end();
      }

      const LatticeCell &get(unsigned R) const {
        if (!Register::isVirtualRegister(R))
          return Bottom;
        MapType::const_iterator F = Map.find(R);
        if (F != Map.end())
          return F->second;
        return Top;
      }

      // Invalidates any const references.
      void update(unsigned R, const LatticeCell &L) {
        Map[R] = L;
      }

      void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;

    private:
      using MapType = std::map<unsigned, LatticeCell>;

      MapType Map;
      // To avoid creating "top" entries, return a const reference to
      // this cell in "get". Also, have a "Bottom" cell to return from
      // get when a value of a physical register is requested.
      LatticeCell Top, Bottom;

    public:
      using const_iterator = MapType::const_iterator;

      const_iterator begin() const { return Map.begin(); }
      const_iterator end() const { return Map.end(); }
    };

    bool run(MachineFunction &MF);

  private:
    void visitPHI(const MachineInstr &PN);
    void visitNonBranch(const MachineInstr &MI);
    void visitBranchesFrom(const MachineInstr &BrI);
    void visitUsesOf(unsigned R);
    bool computeBlockSuccessors(const MachineBasicBlock *MB,
          SetVector<const MachineBasicBlock*> &Targets);
    void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);

    void propagate(MachineFunction &MF);
    bool rewrite(MachineFunction &MF);

    MachineRegisterInfo      *MRI = nullptr;
    MachineConstEvaluator    &MCE;

    using CFGEdge = std::pair<unsigned, unsigned>;
    using SetOfCFGEdge = std::set<CFGEdge>;
    using SetOfInstr = std::set<const MachineInstr *>;
    using QueueOfCFGEdge = std::queue<CFGEdge>;

    LatticeCell     Bottom;
    CellMap         Cells;
    SetOfCFGEdge    EdgeExec;
    SetOfInstr      InstrExec;
    QueueOfCFGEdge  FlowQ;
  };

  // The "evaluator/rewriter" of machine instructions. This is an abstract
  // base class that provides the interface that the propagator will use,
  // as well as some helper functions that are target-independent.
  class MachineConstEvaluator {
  public:
    MachineConstEvaluator(MachineFunction &Fn)
      : TRI(*Fn.getSubtarget().getRegisterInfo()),
        MF(Fn), CX(Fn.getFunction().getContext()) {}
    virtual ~MachineConstEvaluator() = default;

    // The required interface:
    // - A set of three "evaluate" functions. Each returns "true" if the
    //       computation succeeded, "false" otherwise.
    //   (1) Given an instruction MI, and the map with input values "Inputs",
    //       compute the set of output values "Outputs". An example of when
    //       the computation can "fail" is if MI is not an instruction that
    //       is recognized by the evaluator.
    //   (2) Given a register R (as reg:subreg), compute the cell that
    //       corresponds to the "subreg" part of the given register.
    //   (3) Given a branch instruction BrI, compute the set of target blocks.
    //       If the branch can fall-through, add null (0) to the list of
    //       possible targets.
    // - A function "rewrite", that given the cell map after propagation,
    //   could rewrite instruction MI in a more beneficial form. Return
    //   "true" if a change has been made, "false" otherwise.
    using CellMap = MachineConstPropagator::CellMap;
    virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
                          CellMap &Outputs) = 0;
    virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
                          LatticeCell &Result) = 0;
    virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
                          SetVector<const MachineBasicBlock*> &Targets,
                          bool &CanFallThru) = 0;
    virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;

    const TargetRegisterInfo &TRI;

  protected:
    MachineFunction &MF;
    LLVMContext     &CX;

    struct Comparison {
      enum {
        Unk = 0x00,
        EQ  = 0x01,
        NE  = 0x02,
        L   = 0x04, // Less-than property.
        G   = 0x08, // Greater-than property.
        U   = 0x40, // Unsigned property.
        LTs = L,
        LEs = L | EQ,
        GTs = G,
        GEs = G | EQ,
        LTu = L      | U,
        LEu = L | EQ | U,
        GTu = G      | U,
        GEu = G | EQ | U
      };

      static uint32_t negate(uint32_t Cmp) {
        if (Cmp == EQ)
          return NE;
        if (Cmp == NE)
          return EQ;
        assert((Cmp & (L|G)) != (L|G));
        return Cmp ^ (L|G);
      }
    };

    // Helper functions.

    bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
    bool constToInt(const Constant *C, APInt &Val) const;
    bool constToFloat(const Constant *C, APFloat &Val) const;
    const ConstantInt *intToConst(const APInt &Val) const;

    // Compares.
    bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
          const CellMap &Inputs, bool &Result);
    bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
          bool &Result);
    bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
          bool &Result);
    bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
          bool &Result);

    bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
          LatticeCell &Result);

    // Logical operations.
    bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
    bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
    bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);

    // Extensions.
    bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
          APInt &Result);
    bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
          APInt &Result);

    // Leading/trailing bits.
    bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
    bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);

    // Bitfield extract.
    bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
          unsigned Offset, bool Signed, const CellMap &Inputs,
          LatticeCell &Result);
    bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
          bool Signed, APInt &Result);
    // Vector operations.
    bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
          const CellMap &Inputs, LatticeCell &Result);
    bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
          APInt &Result);
  };

} // end anonymous namespace

uint32_t ConstantProperties::deduce(const Constant *C) {
  if (isa<ConstantInt>(C)) {
    const ConstantInt *CI = cast<ConstantInt>(C);
    if (CI->isZero())
      return Zero | PosOrZero | NegOrZero | Finite;
    uint32_t Props = (NonZero | Finite);
    if (CI->isNegative())
      return Props | NegOrZero;
    return Props | PosOrZero;
  }

  if (isa<ConstantFP>(C)) {
    const ConstantFP *CF = cast<ConstantFP>(C);
    uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
                                      : PosOrZero;
    if (CF->isZero())
      return (Props & ~NumericProperties) | (Zero|Finite);
    Props = (Props & ~NumericProperties) | NonZero;
    if (CF->isNaN())
      return (Props & ~NumericProperties) | NaN;
    const APFloat &Val = CF->getValueAPF();
    if (Val.isInfinity())
      return (Props & ~NumericProperties) | Infinity;
    Props |= Finite;
    return Props;
  }

  return Unknown;
}

// Convert a cell from a set of specific values to a cell that tracks
// properties.
bool LatticeCell::convertToProperty() {
  if (isProperty())
    return false;
  // Corner case: converting a fresh (top) cell to "special".
  // This can happen, when adding a property to a top cell.
  uint32_t Everything = ConstantProperties::Everything;
  uint32_t Ps = !isTop() ? properties()
                         : Everything;
  if (Ps != ConstantProperties::Unknown) {
    Properties = Ps;
    setProperty();
  } else {
    setBottom();
  }
  return true;
}

#ifndef NDEBUG
void LatticeCell::print(raw_ostream &os) const {
  if (isProperty()) {
    os << "{ ";
    uint32_t Ps = properties();
    if (Ps & ConstantProperties::Zero)
      os << "zero ";
    if (Ps & ConstantProperties::NonZero)
      os << "nonzero ";
    if (Ps & ConstantProperties::Finite)
      os << "finite ";
    if (Ps & ConstantProperties::Infinity)
      os << "infinity ";
    if (Ps & ConstantProperties::NaN)
      os << "nan ";
    if (Ps & ConstantProperties::PosOrZero)
      os << "poz ";
    if (Ps & ConstantProperties::NegOrZero)
      os << "nez ";
    os << '}';
    return;
  }

  os << "{ ";
  if (isBottom()) {
    os << "bottom";
  } else if (isTop()) {
    os << "top";
  } else {
    for (unsigned i = 0; i < size(); ++i) {
      const Constant *C = Values[i];
      if (i != 0)
        os << ", ";
      C->print(os);
    }
  }
  os << " }";
}
#endif

// "Meet" operation on two cells. This is the key of the propagation
// algorithm.
bool LatticeCell::meet(const LatticeCell &L) {
  bool Changed = false;
  if (L.isBottom())
    Changed = setBottom();
  if (isBottom() || L.isTop())
    return Changed;
  if (isTop()) {
    *this = L;
    // L can be neither Top nor Bottom, so *this must have changed.
    return true;
  }

  // Top/bottom cases covered. Need to integrate L's set into ours.
  if (L.isProperty())
    return add(L.properties());
  for (unsigned i = 0; i < L.size(); ++i) {
    const Constant *LC = L.Values[i];
    Changed |= add(LC);
  }
  return Changed;
}

// Add a new constant to the cell. This is actually where the cell update
// happens. If a cell has room for more constants, the new constant is added.
// Otherwise, the cell is converted to a "property" cell (i.e. a cell that
// will track properties of the associated values, and not the values
// themselves. Care is taken to handle special cases, like "bottom", etc.
bool LatticeCell::add(const Constant *LC) {
  assert(LC);
  if (isBottom())
    return false;

  if (!isProperty()) {
    // Cell is not special. Try to add the constant here first,
    // if there is room.
    unsigned Index = 0;
    while (Index < Size) {
      const Constant *C = Values[Index];
      // If the constant is already here, no change is needed.
      if (C == LC)
        return false;
      Index++;
    }
    if (Index < MaxCellSize) {
      Values[Index] = LC;
      Kind = Normal;
      Size++;
      return true;
    }
  }

  bool Changed = false;

  // This cell is special, or is not special, but is full. After this
  // it will be special.
  Changed = convertToProperty();
  uint32_t Ps = properties();
  uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
  if (NewPs == ConstantProperties::Unknown) {
    setBottom();
    return true;
  }
  if (Ps != NewPs) {
    Properties = NewPs;
    Changed = true;
  }
  return Changed;
}

// Add a property to the cell. This will force the cell to become a property-
// tracking cell.
bool LatticeCell::add(uint32_t Property) {
  bool Changed = convertToProperty();
  uint32_t Ps = properties();
  if (Ps == (Ps & Property))
    return Changed;
  Properties = Property & Ps;
  return true;
}

// Return the properties of the values in the cell. This is valid for any
// cell, and does not alter the cell itself.
uint32_t LatticeCell::properties() const {
  if (isProperty())
    return Properties;
  assert(!isTop() && "Should not call this for a top cell");
  if (isBottom())
    return ConstantProperties::Unknown;

  assert(size() > 0 && "Empty cell");
  uint32_t Ps = ConstantProperties::deduce(Values[0]);
  for (unsigned i = 1; i < size(); ++i) {
    if (Ps == ConstantProperties::Unknown)
      break;
    Ps &= ConstantProperties::deduce(Values[i]);
  }
  return Ps;
}

#ifndef NDEBUG
void MachineConstPropagator::CellMap::print(raw_ostream &os,
      const TargetRegisterInfo &TRI) const {
  for (auto &I : Map)
    dbgs() << "  " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
}
#endif

void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
  const MachineBasicBlock *MB = PN.getParent();
  unsigned MBN = MB->getNumber();
  LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);

  const MachineOperand &MD = PN.getOperand(0);
  RegisterSubReg DefR(MD);
  assert(Register::isVirtualRegister(DefR.Reg));

  bool Changed = false;

  // If the def has a sub-register, set the corresponding cell to "bottom".
  if (DefR.SubReg) {
Bottomize:
    const LatticeCell &T = Cells.get(DefR.Reg);
    Changed = !T.isBottom();
    Cells.update(DefR.Reg, Bottom);
    if (Changed)
      visitUsesOf(DefR.Reg);
    return;
  }

  LatticeCell DefC = Cells.get(DefR.Reg);

  for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
    const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
    unsigned PBN = PB->getNumber();
    if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
      LLVM_DEBUG(dbgs() << "  edge " << printMBBReference(*PB) << "->"
                        << printMBBReference(*MB) << " not executable\n");
      continue;
    }
    const MachineOperand &SO = PN.getOperand(i);
    RegisterSubReg UseR(SO);
    // If the input is not a virtual register, we don't really know what
    // value it holds.
    if (!Register::isVirtualRegister(UseR.Reg))
      goto Bottomize;
    // If there is no cell for an input register, it means top.
    if (!Cells.has(UseR.Reg))
      continue;

    LatticeCell SrcC;
    bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
    LLVM_DEBUG(dbgs() << "  edge from " << printMBBReference(*PB) << ": "
                      << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
                      << '\n');
    Changed |= Eval ? DefC.meet(SrcC)
                    : DefC.setBottom();
    Cells.update(DefR.Reg, DefC);
    if (DefC.isBottom())
      break;
  }
  if (Changed)
    visitUsesOf(DefR.Reg);
}

void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
  LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
                    << "): " << MI);
  CellMap Outputs;
  bool Eval = MCE.evaluate(MI, Cells, Outputs);
  LLVM_DEBUG({
    if (Eval) {
      dbgs() << "  outputs:";
      for (auto &I : Outputs)
        dbgs() << ' ' << I.second;
      dbgs() << '\n';
    }
  });

  // Update outputs. If the value was not computed, set all the
  // def cells to bottom.
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    RegisterSubReg DefR(MO);
    // Only track virtual registers.
    if (!Register::isVirtualRegister(DefR.Reg))
      continue;
    bool Changed = false;
    // If the evaluation failed, set cells for all output registers to bottom.
    if (!Eval) {
      const LatticeCell &T = Cells.get(DefR.Reg);
      Changed = !T.isBottom();
      Cells.update(DefR.Reg, Bottom);
    } else {
      // Find the corresponding cell in the computed outputs.
      // If it's not there, go on to the next def.
      if (!Outputs.has(DefR.Reg))
        continue;
      LatticeCell RC = Cells.get(DefR.Reg);
      Changed = RC.meet(Outputs.get(DefR.Reg));
      Cells.update(DefR.Reg, RC);
    }
    if (Changed)
      visitUsesOf(DefR.Reg);
  }
}

// Starting at a given branch, visit remaining branches in the block.
// Traverse over the subsequent branches for as long as the preceding one
// can fall through. Add all the possible targets to the flow work queue,
// including the potential fall-through to the layout-successor block.
void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
  const MachineBasicBlock &B = *BrI.getParent();
  unsigned MBN = B.getNumber();
  MachineBasicBlock::const_iterator It = BrI.getIterator();
  MachineBasicBlock::const_iterator End = B.end();

  SetVector<const MachineBasicBlock*> Targets;
  bool EvalOk = true, FallsThru = true;
  while (It != End) {
    const MachineInstr &MI = *It;
    InstrExec.insert(&MI);
    LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
                      << printMBBReference(B) << "): " << MI);
    // Do not evaluate subsequent branches if the evaluation of any of the
    // previous branches failed. Keep iterating over the branches only
    // to mark them as executable.
    EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
    if (!EvalOk)
      FallsThru = true;
    if (!FallsThru)
      break;
    ++It;
  }

  if (EvalOk) {
    // Need to add all CFG successors that lead to EH landing pads.
    // There won't be explicit branches to these blocks, but they must
    // be processed.
    for (const MachineBasicBlock *SB : B.successors()) {
      if (SB->isEHPad())
        Targets.insert(SB);
    }
    if (FallsThru) {
      const MachineFunction &MF = *B.getParent();
      MachineFunction::const_iterator BI = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BI);
      if (Next != MF.end())
        Targets.insert(&*Next);
    }
  } else {
    // If the evaluation of the branches failed, make "Targets" to be the
    // set of all successors of the block from the CFG.
    // If the evaluation succeeded for all visited branches, then if the
    // last one set "FallsThru", then add an edge to the layout successor
    // to the targets.
    Targets.clear();
    LLVM_DEBUG(dbgs() << "  failed to evaluate a branch...adding all CFG "
                         "successors\n");
    for (const MachineBasicBlock *SB : B.successors())
      Targets.insert(SB);
  }

  for (const MachineBasicBlock *TB : Targets) {
    unsigned TBN = TB->getNumber();
    LLVM_DEBUG(dbgs() << "  pushing edge " << printMBBReference(B) << " -> "
                      << printMBBReference(*TB) << "\n");
    FlowQ.push(CFGEdge(MBN, TBN));
  }
}

void MachineConstPropagator::visitUsesOf(unsigned Reg) {
  LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
                    << Cells.get(Reg) << '\n');
  for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    // Do not process non-executable instructions. They can become exceutable
    // later (via a flow-edge in the work queue). In such case, the instruc-
    // tion will be visited at that time.
    if (!InstrExec.count(&MI))
      continue;
    if (MI.isPHI())
      visitPHI(MI);
    else if (!MI.isBranch())
      visitNonBranch(MI);
    else
      visitBranchesFrom(MI);
  }
}

bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
      SetVector<const MachineBasicBlock*> &Targets) {
  MachineBasicBlock::const_iterator FirstBr = MB->end();
  for (const MachineInstr &MI : *MB) {
    if (MI.isDebugInstr())
      continue;
    if (MI.isBranch()) {
      FirstBr = MI.getIterator();
      break;
    }
  }

  Targets.clear();
  MachineBasicBlock::const_iterator End = MB->end();

  bool DoNext = true;
  for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
    const MachineInstr &MI = *I;
    // Can there be debug instructions between branches?
    if (MI.isDebugInstr())
      continue;
    if (!InstrExec.count(&MI))
      continue;
    bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
    if (!Eval)
      return false;
    if (!DoNext)
      break;
  }
  // If the last branch could fall-through, add block's layout successor.
  if (DoNext) {
    MachineFunction::const_iterator BI = MB->getIterator();
    MachineFunction::const_iterator NextI = std::next(BI);
    if (NextI != MB->getParent()->end())
      Targets.insert(&*NextI);
  }

  // Add all the EH landing pads.
  for (const MachineBasicBlock *SB : MB->successors())
    if (SB->isEHPad())
      Targets.insert(SB);

  return true;
}

void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
      MachineBasicBlock *To) {
  // First, remove the CFG successor/predecessor information.
  From->removeSuccessor(To);
  // Remove all corresponding PHI operands in the To block.
  for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
    MachineInstr *PN = &*I;
    // reg0 = PHI reg1, bb2, reg3, bb4, ...
    int N = PN->getNumOperands()-2;
    while (N > 0) {
      if (PN->getOperand(N+1).getMBB() == From) {
        PN->RemoveOperand(N+1);
        PN->RemoveOperand(N);
      }
      N -= 2;
    }
  }
}

void MachineConstPropagator::propagate(MachineFunction &MF) {
  MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
  unsigned EntryNum = Entry->getNumber();

  // Start with a fake edge, just to process the entry node.
  FlowQ.push(CFGEdge(EntryNum, EntryNum));

  while (!FlowQ.empty()) {
    CFGEdge Edge = FlowQ.front();
    FlowQ.pop();

    LLVM_DEBUG(
        dbgs() << "Picked edge "
               << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
               << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
    if (Edge.first != EntryNum)
      if (EdgeExec.count(Edge))
        continue;
    EdgeExec.insert(Edge);
    MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);

    // Process the block in three stages:
    // - visit all PHI nodes,
    // - visit all non-branch instructions,
    // - visit block branches.
    MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();

    // Visit PHI nodes in the successor block.
    while (It != End && It->isPHI()) {
      InstrExec.insert(&*It);
      visitPHI(*It);
      ++It;
    }

    // If the successor block just became executable, visit all instructions.
    // To see if this is the first time we're visiting it, check the first
    // non-debug instruction to see if it is executable.
    while (It != End && It->isDebugInstr())
      ++It;
    assert(It == End || !It->isPHI());
    // If this block has been visited, go on to the next one.
    if (It != End && InstrExec.count(&*It))
      continue;
    // For now, scan all non-branch instructions. Branches require different
    // processing.
    while (It != End && !It->isBranch()) {
      if (!It->isDebugInstr()) {
        InstrExec.insert(&*It);
        visitNonBranch(*It);
      }
      ++It;
    }

    // Time to process the end of the block. This is different from
    // processing regular (non-branch) instructions, because there can
    // be multiple branches in a block, and they can cause the block to
    // terminate early.
    if (It != End) {
      visitBranchesFrom(*It);
    } else {
      // If the block didn't have a branch, add all successor edges to the
      // work queue. (There should really be only one successor in such case.)
      unsigned SBN = SB->getNumber();
      for (const MachineBasicBlock *SSB : SB->successors())
        FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
    }
  } // while (FlowQ)

  LLVM_DEBUG({
    dbgs() << "Cells after propagation:\n";
    Cells.print(dbgs(), MCE.TRI);
    dbgs() << "Dead CFG edges:\n";
    for (const MachineBasicBlock &B : MF) {
      unsigned BN = B.getNumber();
      for (const MachineBasicBlock *SB : B.successors()) {
        unsigned SN = SB->getNumber();
        if (!EdgeExec.count(CFGEdge(BN, SN)))
          dbgs() << "  " << printMBBReference(B) << " -> "
                 << printMBBReference(*SB) << '\n';
      }
    }
  });
}

bool MachineConstPropagator::rewrite(MachineFunction &MF) {
  bool Changed = false;
  // Rewrite all instructions based on the collected cell information.
  //
  // Traverse the instructions in a post-order, so that rewriting an
  // instruction can make changes "downstream" in terms of control-flow
  // without affecting the rewriting process. (We should not change
  // instructions that have not yet been visited by the rewriter.)
  // The reason for this is that the rewriter can introduce new vregs,
  // and replace uses of old vregs (which had corresponding cells
  // computed during propagation) with these new vregs (which at this
  // point would not have any cells, and would appear to be "top").
  // If an attempt was made to evaluate an instruction with a fresh
  // "top" vreg, it would cause an error (abend) in the evaluator.

  // Collect the post-order-traversal block ordering. The subsequent
  // traversal/rewrite will update block successors, so it's safer
  // if the visiting order it computed ahead of time.
  std::vector<MachineBasicBlock*> POT;
  for (MachineBasicBlock *B : post_order(&MF))
    if (!B->empty())
      POT.push_back(B);

  for (MachineBasicBlock *B : POT) {
    // Walk the block backwards (which usually begin with the branches).
    // If any branch is rewritten, we may need to update the successor
    // information for this block. Unless the block's successors can be
    // precisely determined (which may not be the case for indirect
    // branches), we cannot modify any branch.

    // Compute the successor information.
    SetVector<const MachineBasicBlock*> Targets;
    bool HaveTargets = computeBlockSuccessors(B, Targets);
    // Rewrite the executable instructions. Skip branches if we don't
    // have block successor information.
    for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
      MachineInstr &MI = *I;
      if (InstrExec.count(&MI)) {
        if (MI.isBranch() && !HaveTargets)
          continue;
        Changed |= MCE.rewrite(MI, Cells);
      }
    }
    // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
    // regular instructions to appear in between PHI nodes. Bring all
    // the PHI nodes to the beginning of the block.
    for (auto I = B->begin(), E = B->end(); I != E; ++I) {
      if (I->isPHI())
        continue;
      // I is not PHI. Find the next PHI node P.
      auto P = I;
      while (++P != E)
        if (P->isPHI())
          break;
      // Not found.
      if (P == E)
        break;
      // Splice P right before I.
      B->splice(I, B, P);
      // Reset I to point at the just spliced PHI node.
      --I;
    }
    // Update the block successor information: remove unnecessary successors.
    if (HaveTargets) {
      SmallVector<MachineBasicBlock*,2> ToRemove;
      for (MachineBasicBlock *SB : B->successors()) {
        if (!Targets.count(SB))
          ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
        Targets.remove(SB);
      }
      for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
        removeCFGEdge(B, ToRemove[i]);
      // If there are any blocks left in the computed targets, it means that
      // we think that the block could go somewhere, but the CFG does not.
      // This could legitimately happen in blocks that have non-returning
      // calls---we would think that the execution can continue, but the
      // CFG will not have a successor edge.
    }
  }
  // Need to do some final post-processing.
  // If a branch was not executable, it will not get rewritten, but should
  // be removed (or replaced with something equivalent to a A2_nop). We can't
  // erase instructions during rewriting, so this needs to be delayed until
  // now.
  for (MachineBasicBlock &B : MF) {
    MachineBasicBlock::iterator I = B.begin(), E = B.end();
    while (I != E) {
      auto Next = std::next(I);
      if (I->isBranch() && !InstrExec.count(&*I))
        B.erase(I);
      I = Next;
    }
  }
  return Changed;
}

// This is the constant propagation algorithm as described by Wegman-Zadeck.
// Most of the terminology comes from there.
bool MachineConstPropagator::run(MachineFunction &MF) {
  LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));

  MRI = &MF.getRegInfo();

  Cells.clear();
  EdgeExec.clear();
  InstrExec.clear();
  assert(FlowQ.empty());

  propagate(MF);
  bool Changed = rewrite(MF);

  LLVM_DEBUG({
    dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
    if (Changed)
      MF.print(dbgs(), nullptr);
  });
  return Changed;
}

// --------------------------------------------------------------------
// Machine const evaluator.

bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
      LatticeCell &RC) {
  if (!Register::isVirtualRegister(R.Reg))
    return false;
  const LatticeCell &L = Inputs.get(R.Reg);
  if (!R.SubReg) {
    RC = L;
    return !RC.isBottom();
  }
  bool Eval = evaluate(R, L, RC);
  return Eval && !RC.isBottom();
}

bool MachineConstEvaluator::constToInt(const Constant *C,
      APInt &Val) const {
  const ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI)
    return false;
  Val = CI->getValue();
  return true;
}

const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
  return ConstantInt::get(CX, Val);
}

bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  LatticeCell LS1, LS2;
  if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
    return false;

  bool IsProp1 = LS1.isProperty();
  bool IsProp2 = LS2.isProperty();
  if (IsProp1) {
    uint32_t Prop1 = LS1.properties();
    if (IsProp2)
      return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
    uint32_t NegCmp = Comparison::negate(Cmp);
    return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
  }
  if (IsProp2) {
    uint32_t Prop2 = LS2.properties();
    return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
  }

  APInt A;
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS2.Values[i], A) &&
                    evaluateCMPri(Cmp, R1, A, Inputs, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  // The actual logical value of the comparison is same as IsTrue.
  Result = IsTrue;
  // Return true if the result was proven to be true or proven to be false.
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS;
  if (!getCell(R1, Inputs, LS))
    return false;
  if (LS.isProperty())
    return evaluateCMPpi(Cmp, LS.properties(), A2, Result);

  APInt A;
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS.Values[i], A) &&
                    evaluateCMPii(Cmp, A, A2, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  // The actual logical value of the comparison is same as IsTrue.
  Result = IsTrue;
  // Return true if the result was proven to be true or proven to be false.
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
      uint64_t Props2, const CellMap &Inputs, bool &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS;
  if (!getCell(R1, Inputs, LS))
    return false;
  if (LS.isProperty())
    return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);

  APInt A;
  uint32_t NegCmp = Comparison::negate(Cmp);
  bool IsTrue = true, IsFalse = true;
  for (unsigned i = 0; i < LS.size(); ++i) {
    bool Res;
    bool Computed = constToInt(LS.Values[i], A) &&
                    evaluateCMPpi(NegCmp, Props2, A, Res);
    if (!Computed)
      return false;
    IsTrue &= Res;
    IsFalse &= !Res;
  }
  assert(!IsTrue || !IsFalse);
  Result = IsTrue;
  return IsTrue || IsFalse;
}

bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
      const APInt &A2, bool &Result) {
  // NE is a special kind of comparison (not composed of smaller properties).
  if (Cmp == Comparison::NE) {
    Result = !APInt::isSameValue(A1, A2);
    return true;
  }
  if (Cmp == Comparison::EQ) {
    Result = APInt::isSameValue(A1, A2);
    return true;
  }
  if (Cmp & Comparison::EQ) {
    if (APInt::isSameValue(A1, A2))
      return (Result = true);
  }
  assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
  Result = false;

  unsigned W1 = A1.getBitWidth();
  unsigned W2 = A2.getBitWidth();
  unsigned MaxW = (W1 >= W2) ? W1 : W2;
  if (Cmp & Comparison::U) {
    const APInt Zx1 = A1.zextOrSelf(MaxW);
    const APInt Zx2 = A2.zextOrSelf(MaxW);
    if (Cmp & Comparison::L)
      Result = Zx1.ult(Zx2);
    else if (Cmp & Comparison::G)
      Result = Zx2.ult(Zx1);
    return true;
  }

  // Signed comparison.
  const APInt Sx1 = A1.sextOrSelf(MaxW);
  const APInt Sx2 = A2.sextOrSelf(MaxW);
  if (Cmp & Comparison::L)
    Result = Sx1.slt(Sx2);
  else if (Cmp & Comparison::G)
    Result = Sx2.slt(Sx1);
  return true;
}

bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
      const APInt &A2, bool &Result) {
  if (Props == ConstantProperties::Unknown)
    return false;

  // Should never see NaN here, but check for it for completeness.
  if (Props & ConstantProperties::NaN)
    return false;
  // Infinity could theoretically be compared to a number, but the
  // presence of infinity here would be very suspicious. If we don't
  // know for sure that the number is finite, bail out.
  if (!(Props & ConstantProperties::Finite))
    return false;

  // Let X be a number that has properties Props.

  if (Cmp & Comparison::U) {
    // In case of unsigned comparisons, we can only compare against 0.
    if (A2 == 0) {
      // Any x!=0 will be considered >0 in an unsigned comparison.
      if (Props & ConstantProperties::Zero)
        Result = (Cmp & Comparison::EQ);
      else if (Props & ConstantProperties::NonZero)
        Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
      else
        return false;
      return true;
    }
    // A2 is not zero. The only handled case is if X = 0.
    if (Props & ConstantProperties::Zero) {
      Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
      return true;
    }
    return false;
  }

  // Signed comparisons are different.
  if (Props & ConstantProperties::Zero) {
    if (A2 == 0)
      Result = (Cmp & Comparison::EQ);
    else
      Result = (Cmp == Comparison::NE) ||
               ((Cmp & Comparison::L) && !A2.isNegative()) ||
               ((Cmp & Comparison::G) &&  A2.isNegative());
    return true;
  }
  if (Props & ConstantProperties::PosOrZero) {
    // X >= 0 and !(A2 < 0) => cannot compare
    if (!A2.isNegative())
      return false;
    // X >= 0 and A2 < 0
    Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
    return true;
  }
  if (Props & ConstantProperties::NegOrZero) {
    // X <= 0 and Src1 < 0 => cannot compare
    if (A2 == 0 || A2.isNegative())
      return false;
    // X <= 0 and A2 > 0
    Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
    return true;
  }

  return false;
}

bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
      uint32_t Props2, bool &Result) {
  using P = ConstantProperties;

  if ((Props1 & P::NaN) && (Props2 & P::NaN))
    return false;
  if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
    return false;

  bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
  bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
  if (Zero1 && Zero2) {
    Result = (Cmp & Comparison::EQ);
    return true;
  }
  if (Cmp == Comparison::NE) {
    if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
      return (Result = true);
    return false;
  }

  if (Cmp & Comparison::U) {
    // In unsigned comparisons, we can only compare against a known zero,
    // or a known non-zero.
    if (Zero1 && NonZero2) {
      Result = (Cmp & Comparison::L);
      return true;
    }
    if (NonZero1 && Zero2) {
      Result = (Cmp & Comparison::G);
      return true;
    }
    return false;
  }

  // Signed comparison. The comparison is not NE.
  bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
  bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
  if (Nez1 && Poz2) {
    if (NonZero1 || NonZero2) {
      Result = (Cmp & Comparison::L);
      return true;
    }
    // Either (or both) could be zero. Can only say that X <= Y.
    if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
      return (Result = true);
  }
  if (Poz1 && Nez2) {
    if (NonZero1 || NonZero2) {
      Result = (Cmp & Comparison::G);
      return true;
    }
    // Either (or both) could be zero. Can only say that X >= Y.
    if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
      return (Result = true);
  }

  return false;
}

bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
      const CellMap &Inputs, LatticeCell &Result) {
  return getCell(R1, Inputs, Result);
}

bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  const LatticeCell &L1 = Inputs.get(R2.Reg);
  const LatticeCell &L2 = Inputs.get(R2.Reg);
  // If both sources are bottom, exit. Otherwise try to evaluate ANDri
  // with the non-bottom argument passed as the immediate. This is to
  // catch cases of ANDing with 0.
  if (L2.isBottom()) {
    if (L1.isBottom())
      return false;
    return evaluateANDrr(R2, R1, Inputs, Result);
  }
  LatticeCell LS2;
  if (!evaluate(R2, L2, LS2))
    return false;
  if (LS2.isBottom() || LS2.isProperty())
    return false;

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateANDri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  if (A2 == -1)
    return getCell(R1, Inputs, Result);
  if (A2 == 0) {
    LatticeCell RC;
    RC.add(intToConst(A2));
    // Overwrite Result.
    Result = RC;
    return true;
  }
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, ResA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateANDii(A, A2, ResA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(ResA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 & A2;
  return true;
}

bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  const LatticeCell &L1 = Inputs.get(R2.Reg);
  const LatticeCell &L2 = Inputs.get(R2.Reg);
  // If both sources are bottom, exit. Otherwise try to evaluate ORri
  // with the non-bottom argument passed as the immediate. This is to
  // catch cases of ORing with -1.
  if (L2.isBottom()) {
    if (L1.isBottom())
      return false;
    return evaluateORrr(R2, R1, Inputs, Result);
  }
  LatticeCell LS2;
  if (!evaluate(R2, L2, LS2))
    return false;
  if (LS2.isBottom() || LS2.isProperty())
    return false;

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateORri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  if (A2 == 0)
    return getCell(R1, Inputs, Result);
  if (A2 == -1) {
    LatticeCell RC;
    RC.add(intToConst(A2));
    // Overwrite Result.
    Result = RC;
    return true;
  }
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, ResA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateORii(A, A2, ResA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(ResA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateORii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 | A2;
  return true;
}

bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
      const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
  LatticeCell LS1, LS2;
  if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
    return false;
  if (LS1.isProperty()) {
    if (LS1.properties() & ConstantProperties::Zero)
      return !(Result = LS2).isBottom();
    return false;
  }
  if (LS2.isProperty()) {
    if (LS2.properties() & ConstantProperties::Zero)
      return !(Result = LS1).isBottom();
    return false;
  }

  APInt A;
  for (unsigned i = 0; i < LS2.size(); ++i) {
    LatticeCell RC;
    bool Eval = constToInt(LS2.Values[i], A) &&
                evaluateXORri(R1, A, Inputs, RC);
    if (!Eval)
      return false;
    Result.meet(RC);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
      const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isProperty()) {
    if (LS1.properties() & ConstantProperties::Zero) {
      const Constant *C = intToConst(A2);
      Result.add(C);
      return !Result.isBottom();
    }
    return false;
  }

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateXORii(A, A2, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return !Result.isBottom();
}

bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
      const APInt &A2, APInt &Result) {
  Result = A1 ^ A2;
  return true;
}

bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
      unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isProperty())
    return false;

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateZEXTi(A, Width, Bits, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
      unsigned Bits, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  (void)BW;
  assert(Width >= Bits && BW >= Bits);
  APInt Mask = APInt::getLowBitsSet(Width, Bits);
  Result = A1.zextOrTrunc(Width) & Mask;
  return true;
}

bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
      unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, XA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateSEXTi(A, Width, Bits, XA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(XA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
      unsigned Bits, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  assert(Width >= Bits && BW >= Bits);
  // Special case to make things faster for smaller source widths.
  // Sign extension of 0 bits generates 0 as a result. This is consistent
  // with what the HW does.
  if (Bits == 0) {
    Result = APInt(Width, 0);
    return true;
  }
  // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
  if (BW <= 64 && Bits != 0) {
    int64_t V = A1.getSExtValue();
    switch (Bits) {
      case 8:
        V = static_cast<int8_t>(V);
        break;
      case 16:
        V = static_cast<int16_t>(V);
        break;
      case 32:
        V = static_cast<int32_t>(V);
        break;
      default:
        // Shift left to lose all bits except lower "Bits" bits, then shift
        // the value back, replicating what was a sign bit after the first
        // shift.
        V = (V << (64-Bits)) >> (64-Bits);
        break;
    }
    // V is a 64-bit sign-extended value. Convert it to APInt of desired
    // width.
    Result = APInt(Width, V, true);
    return true;
  }
  // Slow case: the value doesn't fit in int64_t.
  if (Bits < BW)
    Result = A1.trunc(Bits).sext(Width);
  else // Bits == BW
    Result = A1.sext(Width);
  return true;
}

bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
      bool Ones, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateCLBi(A, Zeros, Ones, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
      bool Ones, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  if (!Zeros && !Ones)
    return false;
  unsigned Count = 0;
  if (Zeros && (Count == 0))
    Count = A1.countLeadingZeros();
  if (Ones && (Count == 0))
    Count = A1.countLeadingOnes();
  Result = APInt(BW, static_cast<uint64_t>(Count), false);
  return true;
}

bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
      bool Ones, const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateCTBi(A, Zeros, Ones, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
      bool Ones, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  if (!Zeros && !Ones)
    return false;
  unsigned Count = 0;
  if (Zeros && (Count == 0))
    Count = A1.countTrailingZeros();
  if (Ones && (Count == 0))
    Count = A1.countTrailingOnes();
  Result = APInt(BW, static_cast<uint64_t>(Count), false);
  return true;
}

bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
      unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
      const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  assert(Bits+Offset <= Width);
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom())
    return false;
  if (LS1.isProperty()) {
    uint32_t Ps = LS1.properties();
    if (Ps & ConstantProperties::Zero) {
      const Constant *C = intToConst(APInt(Width, 0, false));
      Result.add(C);
      return true;
    }
    return false;
  }

  APInt A, CA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(CA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
      unsigned Offset, bool Signed, APInt &Result) {
  unsigned BW = A1.getBitWidth();
  assert(Bits+Offset <= BW);
  // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
  if (Bits == 0) {
    Result = APInt(BW, 0);
    return true;
  }
  if (BW <= 64) {
    int64_t V = A1.getZExtValue();
    V <<= (64-Bits-Offset);
    if (Signed)
      V >>= (64-Bits);
    else
      V = static_cast<uint64_t>(V) >> (64-Bits);
    Result = APInt(BW, V, Signed);
    return true;
  }
  if (Signed)
    Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
  else
    Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
  return true;
}

bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
      unsigned Bits, unsigned Count, const CellMap &Inputs,
      LatticeCell &Result) {
  assert(Inputs.has(R1.Reg));
  LatticeCell LS1;
  if (!getCell(R1, Inputs, LS1))
    return false;
  if (LS1.isBottom() || LS1.isProperty())
    return false;

  APInt A, SA;
  for (unsigned i = 0; i < LS1.size(); ++i) {
    bool Eval = constToInt(LS1.Values[i], A) &&
                evaluateSplati(A, Bits, Count, SA);
    if (!Eval)
      return false;
    const Constant *C = intToConst(SA);
    Result.add(C);
  }
  return true;
}

bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
      unsigned Count, APInt &Result) {
  assert(Count > 0);
  unsigned BW = A1.getBitWidth(), SW = Count*Bits;
  APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
  if (Count > 1)
    LoBits = LoBits.zext(SW);

  APInt Res(SW, 0, false);
  for (unsigned i = 0; i < Count; ++i) {
    Res <<= Bits;
    Res |= LoBits;
  }
  Result = Res;
  return true;
}

// ----------------------------------------------------------------------
// Hexagon-specific code.

namespace llvm {

  FunctionPass *createHexagonConstPropagationPass();
  void initializeHexagonConstPropagationPass(PassRegistry &Registry);

} // end namespace llvm

namespace {

  class HexagonConstEvaluator : public MachineConstEvaluator {
  public:
    HexagonConstEvaluator(MachineFunction &Fn);

    bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs) override;
    bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
          LatticeCell &Result) override;
    bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
          SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
          override;
    bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;

  private:
    unsigned getRegBitWidth(unsigned Reg) const;

    static uint32_t getCmp(unsigned Opc);
    static APInt getCmpImm(unsigned Opc, unsigned OpX,
          const MachineOperand &MO);
    void replaceWithNop(MachineInstr &MI);

    bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
          LatticeCell &Result);
    bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    // This is suitable to be called for compare-and-jump instructions.
    bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
          const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
    bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);
    bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
          CellMap &Outputs);

    void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
    bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
    bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
          bool &AllDefs);
    bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);

    MachineRegisterInfo *MRI;
    const HexagonInstrInfo &HII;
    const HexagonRegisterInfo &HRI;
  };

  class HexagonConstPropagation : public MachineFunctionPass {
  public:
    static char ID;

    HexagonConstPropagation() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon Constant Propagation";
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      const Function &F = MF.getFunction();
      if (skipFunction(F))
        return false;

      HexagonConstEvaluator HCE(MF);
      return MachineConstPropagator(HCE).run(MF);
    }
  };

} // end anonymous namespace

char HexagonConstPropagation::ID = 0;

INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
  "Hexagon Constant Propagation", false, false)

HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
  : MachineConstEvaluator(Fn),
    HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
    HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
  MRI = &Fn.getRegInfo();
}

bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  if (MI.isCall())
    return false;
  if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
    return false;
  const MachineOperand &MD = MI.getOperand(0);
  if (!MD.isDef())
    return false;

  unsigned Opc = MI.getOpcode();
  RegisterSubReg DefR(MD);
  assert(!DefR.SubReg);
  if (!Register::isVirtualRegister(DefR.Reg))
    return false;

  if (MI.isCopy()) {
    LatticeCell RC;
    RegisterSubReg SrcR(MI.getOperand(1));
    bool Eval = evaluateCOPY(SrcR, Inputs, RC);
    if (!Eval)
      return false;
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (MI.isRegSequence()) {
    unsigned Sub1 = MI.getOperand(2).getImm();
    unsigned Sub2 = MI.getOperand(4).getImm();
    const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
    unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
    unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
    if (Sub1 != SubLo && Sub1 != SubHi)
      return false;
    if (Sub2 != SubLo && Sub2 != SubHi)
      return false;
    assert(Sub1 != Sub2);
    bool LoIs1 = (Sub1 == SubLo);
    const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
    const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
    LatticeCell RC;
    RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
    bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
    if (!Eval)
      return false;
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (MI.isCompare()) {
    bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
    return Eval;
  }

  switch (Opc) {
    default:
      return false;
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
    {
      const MachineOperand &VO = MI.getOperand(1);
      // The operand of CONST32 can be a blockaddress, e.g.
      //   %0 = CONST32 <blockaddress(@eat, %l)>
      // Do this check for all instructions for safety.
      if (!VO.isImm())
        return false;
      int64_t V = MI.getOperand(1).getImm();
      unsigned W = getRegBitWidth(DefR.Reg);
      if (W != 32 && W != 64)
        return false;
      IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
                                  : Type::getInt64Ty(CX);
      const ConstantInt *CI = ConstantInt::get(Ty, V, true);
      LatticeCell RC = Outputs.get(DefR.Reg);
      RC.add(CI);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::PS_true:
    case Hexagon::PS_false:
    {
      LatticeCell RC = Outputs.get(DefR.Reg);
      bool NonZero = (Opc == Hexagon::PS_true);
      uint32_t P = NonZero ? ConstantProperties::NonZero
                           : ConstantProperties::Zero;
      RC.add(P);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::A2_and:
    case Hexagon::A2_andir:
    case Hexagon::A2_andp:
    case Hexagon::A2_or:
    case Hexagon::A2_orir:
    case Hexagon::A2_orp:
    case Hexagon::A2_xor:
    case Hexagon::A2_xorp:
    {
      bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::A2_combineii:  // combine(#s8Ext, #s8)
    case Hexagon::A4_combineii:  // combine(#s8, #u6Ext)
    {
      if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
        return false;
      uint64_t Hi = MI.getOperand(1).getImm();
      uint64_t Lo = MI.getOperand(2).getImm();
      uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
      IntegerType *Ty = Type::getInt64Ty(CX);
      const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
      LatticeCell RC = Outputs.get(DefR.Reg);
      RC.add(CI);
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_setbit_i:
    {
      int64_t B = MI.getOperand(2).getImm();
      assert(B >=0 && B < 32);
      APInt A(32, (1ull << B), false);
      RegisterSubReg R(MI.getOperand(1));
      LatticeCell RC = Outputs.get(DefR.Reg);
      bool Eval = evaluateORri(R, A, Inputs, RC);
      if (!Eval)
        return false;
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::C2_mux:
    case Hexagon::C2_muxir:
    case Hexagon::C2_muxri:
    case Hexagon::C2_muxii:
    {
      bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::A2_sxtb:
    case Hexagon::A2_sxth:
    case Hexagon::A2_sxtw:
    case Hexagon::A2_zxtb:
    case Hexagon::A2_zxth:
    {
      bool Eval = evaluateHexExt(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    case Hexagon::S2_ct0:
    case Hexagon::S2_ct0p:
    case Hexagon::S2_ct1:
    case Hexagon::S2_ct1p:
    {
      using namespace Hexagon;

      bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
      RegisterSubReg R1(MI.getOperand(1));
      assert(Inputs.has(R1.Reg));
      LatticeCell T;
      bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
      if (!Eval)
        return false;
      // All of these instructions return a 32-bit value. The evaluate
      // will generate the same type as the operand, so truncate the
      // result if necessary.
      APInt C;
      LatticeCell RC = Outputs.get(DefR.Reg);
      for (unsigned i = 0; i < T.size(); ++i) {
        const Constant *CI = T.Values[i];
        if (constToInt(CI, C) && C.getBitWidth() > 32)
          CI = intToConst(C.trunc(32));
        RC.add(CI);
      }
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_cl0:
    case Hexagon::S2_cl0p:
    case Hexagon::S2_cl1:
    case Hexagon::S2_cl1p:
    case Hexagon::S2_clb:
    case Hexagon::S2_clbp:
    {
      using namespace Hexagon;

      bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
      bool OnlyOnes =  (Opc == S2_cl1) || (Opc == S2_cl1p);
      RegisterSubReg R1(MI.getOperand(1));
      assert(Inputs.has(R1.Reg));
      LatticeCell T;
      bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
      if (!Eval)
        return false;
      // All of these instructions return a 32-bit value. The evaluate
      // will generate the same type as the operand, so truncate the
      // result if necessary.
      APInt C;
      LatticeCell RC = Outputs.get(DefR.Reg);
      for (unsigned i = 0; i < T.size(); ++i) {
        const Constant *CI = T.Values[i];
        if (constToInt(CI, C) && C.getBitWidth() > 32)
          CI = intToConst(C.trunc(32));
        RC.add(CI);
      }
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S4_extract:
    case Hexagon::S4_extractp:
    case Hexagon::S2_extractu:
    case Hexagon::S2_extractup:
    {
      bool Signed = (Opc == Hexagon::S4_extract) ||
                    (Opc == Hexagon::S4_extractp);
      RegisterSubReg R1(MI.getOperand(1));
      unsigned BW = getRegBitWidth(R1.Reg);
      unsigned Bits = MI.getOperand(2).getImm();
      unsigned Offset = MI.getOperand(3).getImm();
      LatticeCell RC = Outputs.get(DefR.Reg);
      if (Offset >= BW) {
        APInt Zero(BW, 0, false);
        RC.add(intToConst(Zero));
        break;
      }
      if (Offset+Bits > BW) {
        // If the requested bitfield extends beyond the most significant bit,
        // the extra bits are treated as 0s. To emulate this behavior, reduce
        // the number of requested bits, and make the extract unsigned.
        Bits = BW-Offset;
        Signed = false;
      }
      bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
      if (!Eval)
        return false;
      Outputs.update(DefR.Reg, RC);
      break;
    }

    case Hexagon::S2_vsplatrb:
    case Hexagon::S2_vsplatrh:
    // vabsh, vabsh:sat
    // vabsw, vabsw:sat
    // vconj:sat
    // vrndwh, vrndwh:sat
    // vsathb, vsathub, vsatwuh
    // vsxtbh, vsxthw
    // vtrunehb, vtrunohb
    // vzxtbh, vzxthw
    {
      bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
      if (!Eval)
        return false;
      break;
    }

    // TODO:
    // A2_vaddh
    // A2_vaddhs
    // A2_vaddw
    // A2_vaddws
  }

  return true;
}

bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
      const LatticeCell &Input, LatticeCell &Result) {
  if (!R.SubReg) {
    Result = Input;
    return true;
  }
  const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
  if (RC != &Hexagon::DoubleRegsRegClass)
    return false;
  if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
    return false;

  assert(!Input.isTop());
  if (Input.isBottom())
    return false;

  using P = ConstantProperties;

  if (Input.isProperty()) {
    uint32_t Ps = Input.properties();
    if (Ps & (P::Zero|P::NaN)) {
      uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
      Result.add(Ns);
      return true;
    }
    if (R.SubReg == Hexagon::isub_hi) {
      uint32_t Ns = (Ps & P::SignProperties);
      Result.add(Ns);
      return true;
    }
    return false;
  }

  // The Input cell contains some known values. Pick the word corresponding
  // to the subregister.
  APInt A;
  for (unsigned i = 0; i < Input.size(); ++i) {
    const Constant *C = Input.Values[i];
    if (!constToInt(C, A))
      return false;
    if (!A.isIntN(64))
      return false;
    uint64_t U = A.getZExtValue();
    if (R.SubReg == Hexagon::isub_hi)
      U >>= 32;
    U &= 0xFFFFFFFFULL;
    uint32_t U32 = Lo_32(U);
    int32_t V32;
    memcpy(&V32, &U32, sizeof V32);
    IntegerType *Ty = Type::getInt32Ty(CX);
    const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
    Result.add(C32);
  }
  return true;
}

bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
      const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
      bool &FallsThru) {
  // We need to evaluate one branch at a time. TII::analyzeBranch checks
  // all the branches in a basic block at once, so we cannot use it.
  unsigned Opc = BrI.getOpcode();
  bool SimpleBranch = false;
  bool Negated = false;
  switch (Opc) {
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumpfnewpt:
      Negated = true;
      LLVM_FALLTHROUGH;
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumptnewpt:
      // Simple branch:  if([!]Pn) jump ...
      // i.e. Op0 = predicate, Op1 = branch target.
      SimpleBranch = true;
      break;
    case Hexagon::J2_jump:
      Targets.insert(BrI.getOperand(0).getMBB());
      FallsThru = false;
      return true;
    default:
Undetermined:
      // If the branch is of unknown type, assume that all successors are
      // executable.
      FallsThru = !BrI.isUnconditionalBranch();
      return false;
  }

  if (SimpleBranch) {
    const MachineOperand &MD = BrI.getOperand(0);
    RegisterSubReg PR(MD);
    // If the condition operand has a subregister, this is not something
    // we currently recognize.
    if (PR.SubReg)
      goto Undetermined;
    assert(Inputs.has(PR.Reg));
    const LatticeCell &PredC = Inputs.get(PR.Reg);
    if (PredC.isBottom())
      goto Undetermined;

    uint32_t Props = PredC.properties();
    bool CTrue = false, CFalse = false;
    if (Props & ConstantProperties::Zero)
      CFalse = true;
    else if (Props & ConstantProperties::NonZero)
      CTrue = true;
    // If the condition is not known to be either, bail out.
    if (!CTrue && !CFalse)
      goto Undetermined;

    const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();

    FallsThru = false;
    if ((!Negated && CTrue) || (Negated && CFalse))
      Targets.insert(BranchTarget);
    else if ((!Negated && CFalse) || (Negated && CTrue))
      FallsThru = true;
    else
      goto Undetermined;
  }

  return true;
}

bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
  if (MI.isBranch())
    return rewriteHexBranch(MI, Inputs);

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    default:
      break;
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
    case Hexagon::PS_true:
    case Hexagon::PS_false:
      return false;
  }

  unsigned NumOp = MI.getNumOperands();
  if (NumOp == 0)
    return false;

  bool AllDefs, Changed;
  Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
  // If not all defs have been rewritten (i.e. the instruction defines
  // a register that is not compile-time constant), then try to rewrite
  // register operands that are known to be constant with immediates.
  if (!AllDefs)
    Changed |= rewriteHexConstUses(MI, Inputs);

  return Changed;
}

unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
    return 32;
  if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
    return 64;
  if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
    return 8;
  llvm_unreachable("Invalid register");
  return 0;
}

uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::A4_cmpbeq:
    case Hexagon::A4_cmpheq:
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpheqi:
    case Hexagon::C2_cmpeqi:
    case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
    case Hexagon::J4_cmpeqn1_t_jumpnv_t:
    case Hexagon::J4_cmpeqi_t_jumpnv_nt:
    case Hexagon::J4_cmpeqi_t_jumpnv_t:
    case Hexagon::J4_cmpeq_t_jumpnv_nt:
    case Hexagon::J4_cmpeq_t_jumpnv_t:
      return Comparison::EQ;

    case Hexagon::C4_cmpneq:
    case Hexagon::C4_cmpneqi:
    case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
    case Hexagon::J4_cmpeqn1_f_jumpnv_t:
    case Hexagon::J4_cmpeqi_f_jumpnv_nt:
    case Hexagon::J4_cmpeqi_f_jumpnv_t:
    case Hexagon::J4_cmpeq_f_jumpnv_nt:
    case Hexagon::J4_cmpeq_f_jumpnv_t:
      return Comparison::NE;

    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::A4_cmpbgt:
    case Hexagon::A4_cmphgt:
    case Hexagon::A4_cmpbgti:
    case Hexagon::A4_cmphgti:
    case Hexagon::C2_cmpgti:
    case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
    case Hexagon::J4_cmpgtn1_t_jumpnv_t:
    case Hexagon::J4_cmpgti_t_jumpnv_nt:
    case Hexagon::J4_cmpgti_t_jumpnv_t:
    case Hexagon::J4_cmpgt_t_jumpnv_nt:
    case Hexagon::J4_cmpgt_t_jumpnv_t:
      return Comparison::GTs;

    case Hexagon::C4_cmplte:
    case Hexagon::C4_cmpltei:
    case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
    case Hexagon::J4_cmpgtn1_f_jumpnv_t:
    case Hexagon::J4_cmpgti_f_jumpnv_nt:
    case Hexagon::J4_cmpgti_f_jumpnv_t:
    case Hexagon::J4_cmpgt_f_jumpnv_nt:
    case Hexagon::J4_cmpgt_f_jumpnv_t:
      return Comparison::LEs;

    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::A4_cmpbgtu:
    case Hexagon::A4_cmpbgtui:
    case Hexagon::A4_cmphgtu:
    case Hexagon::A4_cmphgtui:
    case Hexagon::C2_cmpgtui:
    case Hexagon::J4_cmpgtui_t_jumpnv_nt:
    case Hexagon::J4_cmpgtui_t_jumpnv_t:
    case Hexagon::J4_cmpgtu_t_jumpnv_nt:
    case Hexagon::J4_cmpgtu_t_jumpnv_t:
      return Comparison::GTu;

    case Hexagon::J4_cmpltu_f_jumpnv_nt:
    case Hexagon::J4_cmpltu_f_jumpnv_t:
      return Comparison::GEu;

    case Hexagon::J4_cmpltu_t_jumpnv_nt:
    case Hexagon::J4_cmpltu_t_jumpnv_t:
      return Comparison::LTu;

    case Hexagon::J4_cmplt_f_jumpnv_nt:
    case Hexagon::J4_cmplt_f_jumpnv_t:
      return Comparison::GEs;

    case Hexagon::C4_cmplteu:
    case Hexagon::C4_cmplteui:
    case Hexagon::J4_cmpgtui_f_jumpnv_nt:
    case Hexagon::J4_cmpgtui_f_jumpnv_t:
    case Hexagon::J4_cmpgtu_f_jumpnv_nt:
    case Hexagon::J4_cmpgtu_f_jumpnv_t:
      return Comparison::LEu;

    case Hexagon::J4_cmplt_t_jumpnv_nt:
    case Hexagon::J4_cmplt_t_jumpnv_t:
      return Comparison::LTs;

    default:
      break;
  }
  return Comparison::Unk;
}

APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
      const MachineOperand &MO) {
  bool Signed = false;
  switch (Opc) {
    case Hexagon::A4_cmpbgtui:   // u7
    case Hexagon::A4_cmphgtui:   // u7
      break;
    case Hexagon::A4_cmpheqi:    // s8
    case Hexagon::C4_cmpneqi:   // s8
      Signed = true;
      break;
    case Hexagon::A4_cmpbeqi:    // u8
      break;
    case Hexagon::C2_cmpgtui:      // u9
    case Hexagon::C4_cmplteui:  // u9
      break;
    case Hexagon::C2_cmpeqi:       // s10
    case Hexagon::C2_cmpgti:       // s10
    case Hexagon::C4_cmpltei:   // s10
      Signed = true;
      break;
    case Hexagon::J4_cmpeqi_f_jumpnv_nt:   // u5
    case Hexagon::J4_cmpeqi_f_jumpnv_t:    // u5
    case Hexagon::J4_cmpeqi_t_jumpnv_nt:   // u5
    case Hexagon::J4_cmpeqi_t_jumpnv_t:    // u5
    case Hexagon::J4_cmpgti_f_jumpnv_nt:   // u5
    case Hexagon::J4_cmpgti_f_jumpnv_t:    // u5
    case Hexagon::J4_cmpgti_t_jumpnv_nt:   // u5
    case Hexagon::J4_cmpgti_t_jumpnv_t:    // u5
    case Hexagon::J4_cmpgtui_f_jumpnv_nt:  // u5
    case Hexagon::J4_cmpgtui_f_jumpnv_t:   // u5
    case Hexagon::J4_cmpgtui_t_jumpnv_nt:  // u5
    case Hexagon::J4_cmpgtui_t_jumpnv_t:   // u5
      break;
    default:
      llvm_unreachable("Unhandled instruction");
      break;
  }

  uint64_t Val = MO.getImm();
  return APInt(32, Val, Signed);
}

void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
  MI.setDesc(HII.get(Hexagon::A2_nop));
  while (MI.getNumOperands() > 0)
    MI.RemoveOperand(0);
}

bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
      const CellMap &Inputs, LatticeCell &Result) {
  assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
  LatticeCell LSL, LSH;
  if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
    return false;
  if (LSL.isProperty() || LSH.isProperty())
    return false;

  unsigned LN = LSL.size(), HN = LSH.size();
  SmallVector<APInt,4> LoVs(LN), HiVs(HN);
  for (unsigned i = 0; i < LN; ++i) {
    bool Eval = constToInt(LSL.Values[i], LoVs[i]);
    if (!Eval)
      return false;
    assert(LoVs[i].getBitWidth() == 32);
  }
  for (unsigned i = 0; i < HN; ++i) {
    bool Eval = constToInt(LSH.Values[i], HiVs[i]);
    if (!Eval)
      return false;
    assert(HiVs[i].getBitWidth() == 32);
  }

  for (unsigned i = 0; i < HiVs.size(); ++i) {
    APInt HV = HiVs[i].zextOrSelf(64) << 32;
    for (unsigned j = 0; j < LoVs.size(); ++j) {
      APInt LV = LoVs[j].zextOrSelf(64);
      const Constant *C = intToConst(HV | LV);
      Result.add(C);
      if (Result.isBottom())
        return false;
    }
  }
  return !Result.isBottom();
}

bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  unsigned Opc = MI.getOpcode();
  bool Classic = false;
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpgti:
    case Hexagon::C2_cmpgtui:
      // Classic compare:  Dst0 = CMP Src1, Src2
      Classic = true;
      break;
    default:
      // Not handling other compare instructions now.
      return false;
  }

  if (Classic) {
    const MachineOperand &Src1 = MI.getOperand(1);
    const MachineOperand &Src2 = MI.getOperand(2);

    bool Result;
    unsigned Opc = MI.getOpcode();
    bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
    if (Computed) {
      // Only create a zero/non-zero cell. At this time there isn't really
      // much need for specific values.
      RegisterSubReg DefR(MI.getOperand(0));
      LatticeCell L = Outputs.get(DefR.Reg);
      uint32_t P = Result ? ConstantProperties::NonZero
                          : ConstantProperties::Zero;
      L.add(P);
      Outputs.update(DefR.Reg, L);
      return true;
    }
  }

  return false;
}

bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
      const MachineOperand &Src1, const MachineOperand &Src2,
      const CellMap &Inputs, bool &Result) {
  uint32_t Cmp = getCmp(Opc);
  bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
  bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
  if (Reg1) {
    RegisterSubReg R1(Src1);
    if (Reg2) {
      RegisterSubReg R2(Src2);
      return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
    } else if (Imm2) {
      APInt A2 = getCmpImm(Opc, 2, Src2);
      return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
    }
  } else if (Imm1) {
    APInt A1 = getCmpImm(Opc, 1, Src1);
    if (Reg2) {
      RegisterSubReg R2(Src2);
      uint32_t NegCmp = Comparison::negate(Cmp);
      return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
    } else if (Imm2) {
      APInt A2 = getCmpImm(Opc, 2, Src2);
      return evaluateCMPii(Cmp, A1, A2, Result);
    }
  }
  // Unknown kind of comparison.
  return false;
}

bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  unsigned Opc = MI.getOpcode();
  if (MI.getNumOperands() != 3)
    return false;
  const MachineOperand &Src1 = MI.getOperand(1);
  const MachineOperand &Src2 = MI.getOperand(2);
  RegisterSubReg R1(Src1);
  bool Eval = false;
  LatticeCell RC;
  switch (Opc) {
    default:
      return false;
    case Hexagon::A2_and:
    case Hexagon::A2_andp:
      Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
    case Hexagon::A2_andir: {
      if (!Src2.isImm())
        return false;
      APInt A(32, Src2.getImm(), true);
      Eval = evaluateANDri(R1, A, Inputs, RC);
      break;
    }
    case Hexagon::A2_or:
    case Hexagon::A2_orp:
      Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
    case Hexagon::A2_orir: {
      if (!Src2.isImm())
        return false;
      APInt A(32, Src2.getImm(), true);
      Eval = evaluateORri(R1, A, Inputs, RC);
      break;
    }
    case Hexagon::A2_xor:
    case Hexagon::A2_xorp:
      Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
      break;
  }
  if (Eval) {
    RegisterSubReg DefR(MI.getOperand(0));
    Outputs.update(DefR.Reg, RC);
  }
  return Eval;
}

bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // Dst0 = Cond1 ? Src2 : Src3
  RegisterSubReg CR(MI.getOperand(1));
  assert(Inputs.has(CR.Reg));
  LatticeCell LS;
  if (!getCell(CR, Inputs, LS))
    return false;
  uint32_t Ps = LS.properties();
  unsigned TakeOp;
  if (Ps & ConstantProperties::Zero)
    TakeOp = 3;
  else if (Ps & ConstantProperties::NonZero)
    TakeOp = 2;
  else
    return false;

  const MachineOperand &ValOp = MI.getOperand(TakeOp);
  RegisterSubReg DefR(MI.getOperand(0));
  LatticeCell RC = Outputs.get(DefR.Reg);

  if (ValOp.isImm()) {
    int64_t V = ValOp.getImm();
    unsigned W = getRegBitWidth(DefR.Reg);
    APInt A(W, V, true);
    const Constant *C = intToConst(A);
    RC.add(C);
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  if (ValOp.isReg()) {
    RegisterSubReg R(ValOp);
    const LatticeCell &LR = Inputs.get(R.Reg);
    LatticeCell LSR;
    if (!evaluate(R, LR, LSR))
      return false;
    RC.meet(LSR);
    Outputs.update(DefR.Reg, RC);
    return true;
  }
  return false;
}

bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // Dst0 = ext R1
  RegisterSubReg R1(MI.getOperand(1));
  assert(Inputs.has(R1.Reg));

  unsigned Opc = MI.getOpcode();
  unsigned Bits;
  switch (Opc) {
    case Hexagon::A2_sxtb:
    case Hexagon::A2_zxtb:
      Bits = 8;
      break;
    case Hexagon::A2_sxth:
    case Hexagon::A2_zxth:
      Bits = 16;
      break;
    case Hexagon::A2_sxtw:
      Bits = 32;
      break;
    default:
      llvm_unreachable("Unhandled extension opcode");
  }

  bool Signed = false;
  switch (Opc) {
    case Hexagon::A2_sxtb:
    case Hexagon::A2_sxth:
    case Hexagon::A2_sxtw:
      Signed = true;
      break;
  }

  RegisterSubReg DefR(MI.getOperand(0));
  unsigned BW = getRegBitWidth(DefR.Reg);
  LatticeCell RC = Outputs.get(DefR.Reg);
  bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
                     : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
  if (!Eval)
    return false;
  Outputs.update(DefR.Reg, RC);
  return true;
}

bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
      const CellMap &Inputs, CellMap &Outputs) {
  // DefR = op R1
  RegisterSubReg DefR(MI.getOperand(0));
  RegisterSubReg R1(MI.getOperand(1));
  assert(Inputs.has(R1.Reg));
  LatticeCell RC = Outputs.get(DefR.Reg);
  bool Eval;

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_vsplatrb:
      // Rd = 4 times Rs:0..7
      Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
      break;
    case Hexagon::S2_vsplatrh:
      // Rdd = 4 times Rs:0..15
      Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
      break;
    default:
      return false;
  }

  if (!Eval)
    return false;
  Outputs.update(DefR.Reg, RC);
  return true;
}

bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
      const CellMap &Inputs, bool &AllDefs) {
  AllDefs = false;

  // Some diagnostics.
  // LLVM_DEBUG({...}) gets confused with all this code as an argument.
#ifndef NDEBUG
  bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
  if (Debugging) {
    bool Const = true, HasUse = false;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
        continue;
      RegisterSubReg R(MO);
      if (!Register::isVirtualRegister(R.Reg))
        continue;
      HasUse = true;
      // PHIs can legitimately have "top" cells after propagation.
      if (!MI.isPHI() && !Inputs.has(R.Reg)) {
        dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
               << " in MI: " << MI;
        continue;
      }
      const LatticeCell &L = Inputs.get(R.Reg);
      Const &= L.isSingle();
      if (!Const)
        break;
    }
    if (HasUse && Const) {
      if (!MI.isCopy()) {
        dbgs() << "CONST: " << MI;
        for (const MachineOperand &MO : MI.operands()) {
          if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
            continue;
          Register R = MO.getReg();
          dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
        }
      }
    }
  }
#endif

  // Avoid generating TFRIs for register transfers---this will keep the
  // coalescing opportunities.
  if (MI.isCopy())
    return false;

  // Collect all virtual register-def operands.
  SmallVector<unsigned,2> DefRegs;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    assert(!MO.getSubReg());
    assert(Inputs.has(R));
    DefRegs.push_back(R);
  }

  MachineBasicBlock &B = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  unsigned ChangedNum = 0;
#ifndef NDEBUG
  SmallVector<const MachineInstr*,4> NewInstrs;
#endif

  // For each defined register, if it is a constant, create an instruction
  //   NewR = const
  // and replace all uses of the defined register with NewR.
  for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
    unsigned R = DefRegs[i];
    const LatticeCell &L = Inputs.get(R);
    if (L.isBottom())
      continue;
    const TargetRegisterClass *RC = MRI->getRegClass(R);
    MachineBasicBlock::iterator At = MI.getIterator();

    if (!L.isSingle()) {
      // If this a zero/non-zero cell, we can fold a definition
      // of a predicate register.
      using P = ConstantProperties;

      uint64_t Ps = L.properties();
      if (!(Ps & (P::Zero|P::NonZero)))
        continue;
      const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
      if (RC != PredRC)
        continue;
      const MCInstrDesc *NewD = (Ps & P::Zero) ?
        &HII.get(Hexagon::PS_false) :
        &HII.get(Hexagon::PS_true);
      Register NewR = MRI->createVirtualRegister(PredRC);
      const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
      (void)MIB;
#ifndef NDEBUG
      NewInstrs.push_back(&*MIB);
#endif
      replaceAllRegUsesWith(R, NewR);
    } else {
      // This cell has a single value.
      APInt A;
      if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
        continue;
      const TargetRegisterClass *NewRC;
      const MCInstrDesc *NewD;

      unsigned W = getRegBitWidth(R);
      int64_t V = A.getSExtValue();
      assert(W == 32 || W == 64);
      if (W == 32)
        NewRC = &Hexagon::IntRegsRegClass;
      else
        NewRC = &Hexagon::DoubleRegsRegClass;
      Register NewR = MRI->createVirtualRegister(NewRC);
      const MachineInstr *NewMI;

      if (W == 32) {
        NewD = &HII.get(Hexagon::A2_tfrsi);
        NewMI = BuildMI(B, At, DL, *NewD, NewR)
                  .addImm(V);
      } else {
        if (A.isSignedIntN(8)) {
          NewD = &HII.get(Hexagon::A2_tfrpi);
          NewMI = BuildMI(B, At, DL, *NewD, NewR)
                    .addImm(V);
        } else {
          int32_t Hi = V >> 32;
          int32_t Lo = V & 0xFFFFFFFFLL;
          if (isInt<8>(Hi) && isInt<8>(Lo)) {
            NewD = &HII.get(Hexagon::A2_combineii);
            NewMI = BuildMI(B, At, DL, *NewD, NewR)
                      .addImm(Hi)
                      .addImm(Lo);
          } else {
            NewD = &HII.get(Hexagon::CONST64);
            NewMI = BuildMI(B, At, DL, *NewD, NewR)
                      .addImm(V);
          }
        }
      }
      (void)NewMI;
#ifndef NDEBUG
      NewInstrs.push_back(NewMI);
#endif
      replaceAllRegUsesWith(R, NewR);
    }
    ChangedNum++;
  }

  LLVM_DEBUG({
    if (!NewInstrs.empty()) {
      MachineFunction &MF = *MI.getParent()->getParent();
      dbgs() << "In function: " << MF.getName() << "\n";
      dbgs() << "Rewrite: for " << MI << "  created " << *NewInstrs[0];
      for (unsigned i = 1; i < NewInstrs.size(); ++i)
        dbgs() << "          " << *NewInstrs[i];
    }
  });

  AllDefs = (ChangedNum == DefRegs.size());
  return ChangedNum > 0;
}

bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
      const CellMap &Inputs) {
  bool Changed = false;
  unsigned Opc = MI.getOpcode();
  MachineBasicBlock &B = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator At = MI.getIterator();
  MachineInstr *NewMI = nullptr;

  switch (Opc) {
    case Hexagon::M2_maci:
    // Convert DefR += mpyi(R2, R3)
    //   to   DefR += mpyi(R, #imm),
    //   or   DefR -= mpyi(R, #imm).
    {
      RegisterSubReg DefR(MI.getOperand(0));
      assert(!DefR.SubReg);
      RegisterSubReg R2(MI.getOperand(2));
      RegisterSubReg R3(MI.getOperand(3));
      assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
      LatticeCell LS2, LS3;
      // It is enough to get one of the input cells, since we will only try
      // to replace one argument---whichever happens to be a single constant.
      bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
      if (!HasC2 && !HasC3)
        return false;
      bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
                   (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
      // If one of the operands is zero, eliminate the multiplication.
      if (Zero) {
        // DefR == R1 (tied operands).
        MachineOperand &Acc = MI.getOperand(1);
        RegisterSubReg R1(Acc);
        unsigned NewR = R1.Reg;
        if (R1.SubReg) {
          // Generate COPY. FIXME: Replace with the register:subregister.
          const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
          NewR = MRI->createVirtualRegister(RC);
          NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                    .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
        }
        replaceAllRegUsesWith(DefR.Reg, NewR);
        MRI->clearKillFlags(NewR);
        Changed = true;
        break;
      }

      bool Swap = false;
      if (!LS3.isSingle()) {
        if (!LS2.isSingle())
          return false;
        Swap = true;
      }
      const LatticeCell &LI = Swap ? LS2 : LS3;
      const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
                                        : MI.getOperand(2);
      // LI is single here.
      APInt A;
      if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
        return false;
      int64_t V = A.getSExtValue();
      const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
                                      : HII.get(Hexagon::M2_macsin);
      if (V < 0)
        V = -V;
      const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
      Register NewR = MRI->createVirtualRegister(RC);
      const MachineOperand &Src1 = MI.getOperand(1);
      NewMI = BuildMI(B, At, DL, D, NewR)
                .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
                .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
                .addImm(V);
      replaceAllRegUsesWith(DefR.Reg, NewR);
      Changed = true;
      break;
    }

    case Hexagon::A2_and:
    {
      RegisterSubReg R1(MI.getOperand(1));
      RegisterSubReg R2(MI.getOperand(2));
      assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
      LatticeCell LS1, LS2;
      unsigned CopyOf = 0;
      // Check if any of the operands is -1 (i.e. all bits set).
      if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
        APInt M1;
        if (constToInt(LS1.Value, M1) && !~M1)
          CopyOf = 2;
      }
      else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
        APInt M1;
        if (constToInt(LS2.Value, M1) && !~M1)
          CopyOf = 1;
      }
      if (!CopyOf)
        return false;
      MachineOperand &SO = MI.getOperand(CopyOf);
      RegisterSubReg SR(SO);
      RegisterSubReg DefR(MI.getOperand(0));
      unsigned NewR = SR.Reg;
      if (SR.SubReg) {
        const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
        NewR = MRI->createVirtualRegister(RC);
        NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                  .addReg(SR.Reg, getRegState(SO), SR.SubReg);
      }
      replaceAllRegUsesWith(DefR.Reg, NewR);
      MRI->clearKillFlags(NewR);
      Changed = true;
    }
    break;

    case Hexagon::A2_or:
    {
      RegisterSubReg R1(MI.getOperand(1));
      RegisterSubReg R2(MI.getOperand(2));
      assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
      LatticeCell LS1, LS2;
      unsigned CopyOf = 0;

      using P = ConstantProperties;

      if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
        CopyOf = 2;
      else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
        CopyOf = 1;
      if (!CopyOf)
        return false;
      MachineOperand &SO = MI.getOperand(CopyOf);
      RegisterSubReg SR(SO);
      RegisterSubReg DefR(MI.getOperand(0));
      unsigned NewR = SR.Reg;
      if (SR.SubReg) {
        const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
        NewR = MRI->createVirtualRegister(RC);
        NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
                  .addReg(SR.Reg, getRegState(SO), SR.SubReg);
      }
      replaceAllRegUsesWith(DefR.Reg, NewR);
      MRI->clearKillFlags(NewR);
      Changed = true;
    }
    break;
  }

  if (NewMI) {
    // clear all the kill flags of this new instruction.
    for (MachineOperand &MO : NewMI->operands())
      if (MO.isReg() && MO.isUse())
        MO.setIsKill(false);
  }

  LLVM_DEBUG({
    if (NewMI) {
      dbgs() << "Rewrite: for " << MI;
      if (NewMI != &MI)
        dbgs() << "  created " << *NewMI;
      else
        dbgs() << "  modified the instruction itself and created:" << *NewMI;
    }
  });

  return Changed;
}

void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
      unsigned ToReg) {
  assert(Register::isVirtualRegister(FromReg));
  assert(Register::isVirtualRegister(ToReg));
  for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
    MachineOperand &O = *I;
    ++I;
    O.setReg(ToReg);
  }
}

bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
      const CellMap &Inputs) {
  MachineBasicBlock &B = *BrI.getParent();
  unsigned NumOp = BrI.getNumOperands();
  if (!NumOp)
    return false;

  bool FallsThru;
  SetVector<const MachineBasicBlock*> Targets;
  bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
  unsigned NumTargets = Targets.size();
  if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
    return false;
  if (BrI.getOpcode() == Hexagon::J2_jump)
    return false;

  LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
  bool Rewritten = false;
  if (NumTargets > 0) {
    assert(!FallsThru && "This should have been checked before");
    // MIB.addMBB needs non-const pointer.
    MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
    bool Moot = B.isLayoutSuccessor(TargetB);
    if (!Moot) {
      // If we build a branch here, we must make sure that it won't be
      // erased as "non-executable". We can't mark any new instructions
      // as executable here, so we need to overwrite the BrI, which we
      // know is executable.
      const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
      auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
                  .addMBB(TargetB);
      BrI.setDesc(JD);
      while (BrI.getNumOperands() > 0)
        BrI.RemoveOperand(0);
      // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
      // are present in the rewritten branch.
      for (auto &Op : NI->operands())
        BrI.addOperand(Op);
      NI->eraseFromParent();
      Rewritten = true;
    }
  }

  // Do not erase instructions. A newly created instruction could get
  // the same address as an instruction marked as executable during the
  // propagation.
  if (!Rewritten)
    replaceWithNop(BrI);
  return true;
}

FunctionPass *llvm::createHexagonConstPropagationPass() {
  return new HexagonConstPropagation();
}