HexagonCopyToCombine.cpp 32 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
//===------- HexagonCopyToCombine.cpp - Hexagon Copy-To-Combine Pass ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass replaces transfer instructions by combine instructions.
// We walk along a basic block and look for two combinable instructions and try
// to move them together. If we can move them next to each other we do so and
// replace them with a combine instruction.
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "hexagon-copy-combine"

static
cl::opt<bool> IsCombinesDisabled("disable-merge-into-combines",
                                 cl::Hidden, cl::ZeroOrMore,
                                 cl::init(false),
                                 cl::desc("Disable merging into combines"));
static
cl::opt<bool> IsConst64Disabled("disable-const64",
                                 cl::Hidden, cl::ZeroOrMore,
                                 cl::init(false),
                                 cl::desc("Disable generation of const64"));
static
cl::opt<unsigned>
MaxNumOfInstsBetweenNewValueStoreAndTFR("max-num-inst-between-tfr-and-nv-store",
                   cl::Hidden, cl::init(4),
                   cl::desc("Maximum distance between a tfr feeding a store we "
                            "consider the store still to be newifiable"));

namespace llvm {
  FunctionPass *createHexagonCopyToCombine();
  void initializeHexagonCopyToCombinePass(PassRegistry&);
}


namespace {

class HexagonCopyToCombine : public MachineFunctionPass  {
  const HexagonInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const HexagonSubtarget *ST;
  bool ShouldCombineAggressively;

  DenseSet<MachineInstr *> PotentiallyNewifiableTFR;
  SmallVector<MachineInstr *, 8> DbgMItoMove;

public:
  static char ID;

  HexagonCopyToCombine() : MachineFunctionPass(ID) {
    initializeHexagonCopyToCombinePass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override {
    return "Hexagon Copy-To-Combine Pass";
  }

  bool runOnMachineFunction(MachineFunction &Fn) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  MachineInstr *findPairable(MachineInstr &I1, bool &DoInsertAtI1,
                             bool AllowC64);

  void findPotentialNewifiableTFRs(MachineBasicBlock &);

  void combine(MachineInstr &I1, MachineInstr &I2,
               MachineBasicBlock::iterator &MI, bool DoInsertAtI1,
               bool OptForSize);

  bool isSafeToMoveTogether(MachineInstr &I1, MachineInstr &I2,
                            unsigned I1DestReg, unsigned I2DestReg,
                            bool &DoInsertAtI1);

  void emitCombineRR(MachineBasicBlock::iterator &Before, unsigned DestReg,
                     MachineOperand &HiOperand, MachineOperand &LoOperand);

  void emitCombineRI(MachineBasicBlock::iterator &Before, unsigned DestReg,
                     MachineOperand &HiOperand, MachineOperand &LoOperand);

  void emitCombineIR(MachineBasicBlock::iterator &Before, unsigned DestReg,
                     MachineOperand &HiOperand, MachineOperand &LoOperand);

  void emitCombineII(MachineBasicBlock::iterator &Before, unsigned DestReg,
                     MachineOperand &HiOperand, MachineOperand &LoOperand);

  void emitConst64(MachineBasicBlock::iterator &Before, unsigned DestReg,
                   MachineOperand &HiOperand, MachineOperand &LoOperand);
};

} // End anonymous namespace.

char HexagonCopyToCombine::ID = 0;

INITIALIZE_PASS(HexagonCopyToCombine, "hexagon-copy-combine",
                "Hexagon Copy-To-Combine Pass", false, false)

static bool isCombinableInstType(MachineInstr &MI, const HexagonInstrInfo *TII,
                                 bool ShouldCombineAggressively) {
  switch (MI.getOpcode()) {
  case Hexagon::A2_tfr: {
    // A COPY instruction can be combined if its arguments are IntRegs (32bit).
    const MachineOperand &Op0 = MI.getOperand(0);
    const MachineOperand &Op1 = MI.getOperand(1);
    assert(Op0.isReg() && Op1.isReg());

    Register DestReg = Op0.getReg();
    Register SrcReg = Op1.getReg();
    return Hexagon::IntRegsRegClass.contains(DestReg) &&
           Hexagon::IntRegsRegClass.contains(SrcReg);
  }

  case Hexagon::A2_tfrsi: {
    // A transfer-immediate can be combined if its argument is a signed 8bit
    // value.
    const MachineOperand &Op0 = MI.getOperand(0);
    const MachineOperand &Op1 = MI.getOperand(1);
    assert(Op0.isReg());

    Register DestReg = Op0.getReg();
    // Ensure that TargetFlags are MO_NO_FLAG for a global. This is a
    // workaround for an ABI bug that prevents GOT relocations on combine
    // instructions
    if (!Op1.isImm() && Op1.getTargetFlags() != HexagonII::MO_NO_FLAG)
      return false;

    // Only combine constant extended A2_tfrsi if we are in aggressive mode.
    bool NotExt = Op1.isImm() && isInt<8>(Op1.getImm());
    return Hexagon::IntRegsRegClass.contains(DestReg) &&
           (ShouldCombineAggressively || NotExt);
  }

  case Hexagon::V6_vassign:
    return true;

  default:
    break;
  }

  return false;
}

template <unsigned N> static bool isGreaterThanNBitTFRI(const MachineInstr &I) {
  if (I.getOpcode() == Hexagon::TFRI64_V4 ||
      I.getOpcode() == Hexagon::A2_tfrsi) {
    const MachineOperand &Op = I.getOperand(1);
    return !Op.isImm() || !isInt<N>(Op.getImm());
  }
  return false;
}

/// areCombinableOperations - Returns true if the two instruction can be merge
/// into a combine (ignoring register constraints).
static bool areCombinableOperations(const TargetRegisterInfo *TRI,
                                    MachineInstr &HighRegInst,
                                    MachineInstr &LowRegInst, bool AllowC64) {
  unsigned HiOpc = HighRegInst.getOpcode();
  unsigned LoOpc = LowRegInst.getOpcode();

  auto verifyOpc = [](unsigned Opc) -> void {
    switch (Opc) {
      case Hexagon::A2_tfr:
      case Hexagon::A2_tfrsi:
      case Hexagon::V6_vassign:
        break;
      default:
        llvm_unreachable("Unexpected opcode");
    }
  };
  verifyOpc(HiOpc);
  verifyOpc(LoOpc);

  if (HiOpc == Hexagon::V6_vassign || LoOpc == Hexagon::V6_vassign)
    return HiOpc == LoOpc;

  if (!AllowC64) {
    // There is no combine of two constant extended values.
    if (isGreaterThanNBitTFRI<8>(HighRegInst) &&
        isGreaterThanNBitTFRI<6>(LowRegInst))
      return false;
  }

  // There is a combine of two constant extended values into CONST64,
  // provided both constants are true immediates.
  if (isGreaterThanNBitTFRI<16>(HighRegInst) &&
      isGreaterThanNBitTFRI<16>(LowRegInst))
    return (HighRegInst.getOperand(1).isImm() &&
            LowRegInst.getOperand(1).isImm());

  // There is no combine of two constant extended values, unless handled above
  // Make both 8-bit size checks to allow both combine (#,##) and combine(##,#)
  if (isGreaterThanNBitTFRI<8>(HighRegInst) &&
      isGreaterThanNBitTFRI<8>(LowRegInst))
    return false;

  return true;
}

static bool isEvenReg(unsigned Reg) {
  assert(Register::isPhysicalRegister(Reg));
  if (Hexagon::IntRegsRegClass.contains(Reg))
    return (Reg - Hexagon::R0) % 2 == 0;
  if (Hexagon::HvxVRRegClass.contains(Reg))
    return (Reg - Hexagon::V0) % 2 == 0;
  llvm_unreachable("Invalid register");
}

static void removeKillInfo(MachineInstr &MI, unsigned RegNotKilled) {
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    MachineOperand &Op = MI.getOperand(I);
    if (!Op.isReg() || Op.getReg() != RegNotKilled || !Op.isKill())
      continue;
    Op.setIsKill(false);
  }
}

/// Returns true if it is unsafe to move a copy instruction from \p UseReg to
/// \p DestReg over the instruction \p MI.
static bool isUnsafeToMoveAcross(MachineInstr &MI, unsigned UseReg,
                                 unsigned DestReg,
                                 const TargetRegisterInfo *TRI) {
  return (UseReg && (MI.modifiesRegister(UseReg, TRI))) ||
         MI.modifiesRegister(DestReg, TRI) || MI.readsRegister(DestReg, TRI) ||
         MI.hasUnmodeledSideEffects() || MI.isInlineAsm() ||
         MI.isMetaInstruction();
}

static Register UseReg(const MachineOperand& MO) {
  return MO.isReg() ? MO.getReg() : Register();
}

/// isSafeToMoveTogether - Returns true if it is safe to move I1 next to I2 such
/// that the two instructions can be paired in a combine.
bool HexagonCopyToCombine::isSafeToMoveTogether(MachineInstr &I1,
                                                MachineInstr &I2,
                                                unsigned I1DestReg,
                                                unsigned I2DestReg,
                                                bool &DoInsertAtI1) {
  Register I2UseReg = UseReg(I2.getOperand(1));

  // It is not safe to move I1 and I2 into one combine if I2 has a true
  // dependence on I1.
  if (I2UseReg && I1.modifiesRegister(I2UseReg, TRI))
    return false;

  bool isSafe = true;

  // First try to move I2 towards I1.
  {
    // A reverse_iterator instantiated like below starts before I2, and I1
    // respectively.
    // Look at instructions I in between I2 and (excluding) I1.
    MachineBasicBlock::reverse_iterator I(I2),
      End = --(MachineBasicBlock::reverse_iterator(I1));
    // At 03 we got better results (dhrystone!) by being more conservative.
    if (!ShouldCombineAggressively)
      End = MachineBasicBlock::reverse_iterator(I1);
    // If I2 kills its operand and we move I2 over an instruction that also
    // uses I2's use reg we need to modify that (first) instruction to now kill
    // this reg.
    unsigned KilledOperand = 0;
    if (I2.killsRegister(I2UseReg))
      KilledOperand = I2UseReg;
    MachineInstr *KillingInstr = nullptr;

    for (; I != End; ++I) {
      // If the intervening instruction I:
      //   * modifies I2's use reg
      //   * modifies I2's def reg
      //   * reads I2's def reg
      //   * or has unmodelled side effects
      // we can't move I2 across it.
      if (I->isDebugInstr())
        continue;

      if (isUnsafeToMoveAcross(*I, I2UseReg, I2DestReg, TRI)) {
        isSafe = false;
        break;
      }

      // Update first use of the killed operand.
      if (!KillingInstr && KilledOperand &&
          I->readsRegister(KilledOperand, TRI))
        KillingInstr = &*I;
    }
    if (isSafe) {
      // Update the intermediate instruction to with the kill flag.
      if (KillingInstr) {
        bool Added = KillingInstr->addRegisterKilled(KilledOperand, TRI, true);
        (void)Added; // suppress compiler warning
        assert(Added && "Must successfully update kill flag");
        removeKillInfo(I2, KilledOperand);
      }
      DoInsertAtI1 = true;
      return true;
    }
  }

  // Try to move I1 towards I2.
  {
    // Look at instructions I in between I1 and (excluding) I2.
    MachineBasicBlock::iterator I(I1), End(I2);
    // At O3 we got better results (dhrystone) by being more conservative here.
    if (!ShouldCombineAggressively)
      End = std::next(MachineBasicBlock::iterator(I2));
    Register I1UseReg = UseReg(I1.getOperand(1));
    // Track killed operands. If we move across an instruction that kills our
    // operand, we need to update the kill information on the moved I1. It kills
    // the operand now.
    MachineInstr *KillingInstr = nullptr;
    unsigned KilledOperand = 0;

    while(++I != End) {
      MachineInstr &MI = *I;
      // If the intervening instruction MI:
      //   * modifies I1's use reg
      //   * modifies I1's def reg
      //   * reads I1's def reg
      //   * or has unmodelled side effects
      //   We introduce this special case because llvm has no api to remove a
      //   kill flag for a register (a removeRegisterKilled() analogous to
      //   addRegisterKilled) that handles aliased register correctly.
      //   * or has a killed aliased register use of I1's use reg
      //           %d4 = A2_tfrpi 16
      //           %r6 = A2_tfr %r9
      //           %r8 = KILL %r8, implicit killed %d4
      //      If we want to move R6 = across the KILL instruction we would have
      //      to remove the implicit killed %d4 operand. For now, we are
      //      conservative and disallow the move.
      // we can't move I1 across it.
      if (MI.isDebugInstr()) {
        if (MI.readsRegister(I1DestReg, TRI)) // Move this instruction after I2.
          DbgMItoMove.push_back(&MI);
        continue;
      }

      if (isUnsafeToMoveAcross(MI, I1UseReg, I1DestReg, TRI) ||
          // Check for an aliased register kill. Bail out if we see one.
          (!MI.killsRegister(I1UseReg) && MI.killsRegister(I1UseReg, TRI)))
        return false;

      // Check for an exact kill (registers match).
      if (I1UseReg && MI.killsRegister(I1UseReg)) {
        assert(!KillingInstr && "Should only see one killing instruction");
        KilledOperand = I1UseReg;
        KillingInstr = &MI;
      }
    }
    if (KillingInstr) {
      removeKillInfo(*KillingInstr, KilledOperand);
      // Update I1 to set the kill flag. This flag will later be picked up by
      // the new COMBINE instruction.
      bool Added = I1.addRegisterKilled(KilledOperand, TRI);
      (void)Added; // suppress compiler warning
      assert(Added && "Must successfully update kill flag");
    }
    DoInsertAtI1 = false;
  }

  return true;
}

/// findPotentialNewifiableTFRs - Finds tranfers that feed stores that could be
/// newified. (A use of a 64 bit register define can not be newified)
void
HexagonCopyToCombine::findPotentialNewifiableTFRs(MachineBasicBlock &BB) {
  DenseMap<unsigned, MachineInstr *> LastDef;
  for (MachineInstr &MI : BB) {
    if (MI.isDebugInstr())
      continue;

    // Mark TFRs that feed a potential new value store as such.
    if (TII->mayBeNewStore(MI)) {
      // Look for uses of TFR instructions.
      for (unsigned OpdIdx = 0, OpdE = MI.getNumOperands(); OpdIdx != OpdE;
           ++OpdIdx) {
        MachineOperand &Op = MI.getOperand(OpdIdx);

        // Skip over anything except register uses.
        if (!Op.isReg() || !Op.isUse() || !Op.getReg())
          continue;

        // Look for the defining instruction.
        Register Reg = Op.getReg();
        MachineInstr *DefInst = LastDef[Reg];
        if (!DefInst)
          continue;
        if (!isCombinableInstType(*DefInst, TII, ShouldCombineAggressively))
          continue;

        // Only close newifiable stores should influence the decision.
        // Ignore the debug instructions in between.
        MachineBasicBlock::iterator It(DefInst);
        unsigned NumInstsToDef = 0;
        while (&*It != &MI) {
          if (!It->isDebugInstr())
            ++NumInstsToDef;
          ++It;
        }

        if (NumInstsToDef > MaxNumOfInstsBetweenNewValueStoreAndTFR)
          continue;

        PotentiallyNewifiableTFR.insert(DefInst);
      }
      // Skip to next instruction.
      continue;
    }

    // Put instructions that last defined integer or double registers into the
    // map.
    for (MachineOperand &Op : MI.operands()) {
      if (Op.isReg()) {
        if (!Op.isDef() || !Op.getReg())
          continue;
        Register Reg = Op.getReg();
        if (Hexagon::DoubleRegsRegClass.contains(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
            LastDef[*SubRegs] = &MI;
        } else if (Hexagon::IntRegsRegClass.contains(Reg))
          LastDef[Reg] = &MI;
      } else if (Op.isRegMask()) {
        for (unsigned Reg : Hexagon::IntRegsRegClass)
          if (Op.clobbersPhysReg(Reg))
            LastDef[Reg] = &MI;
      }
    }
  }
}

bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  if (IsCombinesDisabled) return false;

  bool HasChanged = false;

  // Get target info.
  ST = &MF.getSubtarget<HexagonSubtarget>();
  TRI = ST->getRegisterInfo();
  TII = ST->getInstrInfo();

  const Function &F = MF.getFunction();
  bool OptForSize = F.hasFnAttribute(Attribute::OptimizeForSize);

  // Combine aggressively (for code size)
  ShouldCombineAggressively =
    MF.getTarget().getOptLevel() <= CodeGenOpt::Default;

  // Traverse basic blocks.
  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
       ++BI) {
    PotentiallyNewifiableTFR.clear();
    findPotentialNewifiableTFRs(*BI);

    // Traverse instructions in basic block.
    for(MachineBasicBlock::iterator MI = BI->begin(), End = BI->end();
        MI != End;) {
      MachineInstr &I1 = *MI++;

      if (I1.isDebugInstr())
        continue;

      // Don't combine a TFR whose user could be newified (instructions that
      // define double registers can not be newified - Programmer's Ref Manual
      // 5.4.2 New-value stores).
      if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(&I1))
        continue;

      // Ignore instructions that are not combinable.
      if (!isCombinableInstType(I1, TII, ShouldCombineAggressively))
        continue;

      // Find a second instruction that can be merged into a combine
      // instruction. In addition, also find all the debug instructions that
      // need to be moved along with it.
      bool DoInsertAtI1 = false;
      DbgMItoMove.clear();
      MachineInstr *I2 = findPairable(I1, DoInsertAtI1, OptForSize);
      if (I2) {
        HasChanged = true;
        combine(I1, *I2, MI, DoInsertAtI1, OptForSize);
      }
    }
  }

  return HasChanged;
}

/// findPairable - Returns an instruction that can be merged with \p I1 into a
/// COMBINE instruction or 0 if no such instruction can be found. Returns true
/// in \p DoInsertAtI1 if the combine must be inserted at instruction \p I1
/// false if the combine must be inserted at the returned instruction.
MachineInstr *HexagonCopyToCombine::findPairable(MachineInstr &I1,
                                                 bool &DoInsertAtI1,
                                                 bool AllowC64) {
  MachineBasicBlock::iterator I2 = std::next(MachineBasicBlock::iterator(I1));
  while (I2 != I1.getParent()->end() && I2->isDebugInstr())
    ++I2;

  Register I1DestReg = I1.getOperand(0).getReg();

  for (MachineBasicBlock::iterator End = I1.getParent()->end(); I2 != End;
       ++I2) {
    // Bail out early if we see a second definition of I1DestReg.
    if (I2->modifiesRegister(I1DestReg, TRI))
      break;

    // Ignore non-combinable instructions.
    if (!isCombinableInstType(*I2, TII, ShouldCombineAggressively))
      continue;

    // Don't combine a TFR whose user could be newified.
    if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(&*I2))
      continue;

    Register I2DestReg = I2->getOperand(0).getReg();

    // Check that registers are adjacent and that the first destination register
    // is even.
    bool IsI1LowReg = (I2DestReg - I1DestReg) == 1;
    bool IsI2LowReg = (I1DestReg - I2DestReg) == 1;
    unsigned FirstRegIndex = IsI1LowReg ? I1DestReg : I2DestReg;
    if ((!IsI1LowReg && !IsI2LowReg) || !isEvenReg(FirstRegIndex))
      continue;

    // Check that the two instructions are combinable.
    // The order matters because in a A2_tfrsi we might can encode a int8 as
    // the hi reg operand but only a uint6 as the low reg operand.
    if ((IsI2LowReg && !areCombinableOperations(TRI, I1, *I2, AllowC64)) ||
        (IsI1LowReg && !areCombinableOperations(TRI, *I2, I1, AllowC64)))
      break;

    if (isSafeToMoveTogether(I1, *I2, I1DestReg, I2DestReg, DoInsertAtI1))
      return &*I2;

    // Not safe. Stop searching.
    break;
  }
  return nullptr;
}

void HexagonCopyToCombine::combine(MachineInstr &I1, MachineInstr &I2,
                                   MachineBasicBlock::iterator &MI,
                                   bool DoInsertAtI1, bool OptForSize) {
  // We are going to delete I2. If MI points to I2 advance it to the next
  // instruction.
  if (MI == I2.getIterator())
    ++MI;

  // Figure out whether I1 or I2 goes into the lowreg part.
  Register I1DestReg = I1.getOperand(0).getReg();
  Register I2DestReg = I2.getOperand(0).getReg();
  bool IsI1Loreg = (I2DestReg - I1DestReg) == 1;
  unsigned LoRegDef = IsI1Loreg ? I1DestReg : I2DestReg;
  unsigned SubLo;

  const TargetRegisterClass *SuperRC = nullptr;
  if (Hexagon::IntRegsRegClass.contains(LoRegDef)) {
    SuperRC = &Hexagon::DoubleRegsRegClass;
    SubLo = Hexagon::isub_lo;
  } else if (Hexagon::HvxVRRegClass.contains(LoRegDef)) {
    assert(ST->useHVXOps());
    SuperRC = &Hexagon::HvxWRRegClass;
    SubLo = Hexagon::vsub_lo;
  } else
    llvm_unreachable("Unexpected register class");

  // Get the double word register.
  unsigned DoubleRegDest = TRI->getMatchingSuperReg(LoRegDef, SubLo, SuperRC);
  assert(DoubleRegDest != 0 && "Expect a valid register");

  // Setup source operands.
  MachineOperand &LoOperand = IsI1Loreg ? I1.getOperand(1) : I2.getOperand(1);
  MachineOperand &HiOperand = IsI1Loreg ? I2.getOperand(1) : I1.getOperand(1);

  // Figure out which source is a register and which a constant.
  bool IsHiReg = HiOperand.isReg();
  bool IsLoReg = LoOperand.isReg();

  // There is a combine of two constant extended values into CONST64.
  bool IsC64 = OptForSize && LoOperand.isImm() && HiOperand.isImm() &&
               isGreaterThanNBitTFRI<16>(I1) && isGreaterThanNBitTFRI<16>(I2);

  MachineBasicBlock::iterator InsertPt(DoInsertAtI1 ? I1 : I2);
  // Emit combine.
  if (IsHiReg && IsLoReg)
    emitCombineRR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
  else if (IsHiReg)
    emitCombineRI(InsertPt, DoubleRegDest, HiOperand, LoOperand);
  else if (IsLoReg)
    emitCombineIR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
  else if (IsC64 && !IsConst64Disabled)
    emitConst64(InsertPt, DoubleRegDest, HiOperand, LoOperand);
  else
    emitCombineII(InsertPt, DoubleRegDest, HiOperand, LoOperand);

  // Move debug instructions along with I1 if it's being
  // moved towards I2.
  if (!DoInsertAtI1 && DbgMItoMove.size() != 0) {
    // Insert debug instructions at the new location before I2.
    MachineBasicBlock *BB = InsertPt->getParent();
    for (auto NewMI : DbgMItoMove) {
      // If iterator MI is pointing to DEBUG_VAL, make sure
      // MI now points to next relevant instruction.
      if (NewMI == MI)
        ++MI;
      BB->splice(InsertPt, BB, NewMI);
    }
  }

  I1.eraseFromParent();
  I2.eraseFromParent();
}

void HexagonCopyToCombine::emitConst64(MachineBasicBlock::iterator &InsertPt,
                                       unsigned DoubleDestReg,
                                       MachineOperand &HiOperand,
                                       MachineOperand &LoOperand) {
  LLVM_DEBUG(dbgs() << "Found a CONST64\n");

  DebugLoc DL = InsertPt->getDebugLoc();
  MachineBasicBlock *BB = InsertPt->getParent();
  assert(LoOperand.isImm() && HiOperand.isImm() &&
         "Both operands must be immediate");

  int64_t V = HiOperand.getImm();
  V = (V << 32) | (0x0ffffffffLL & LoOperand.getImm());
  BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::CONST64), DoubleDestReg)
    .addImm(V);
}

void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
                                         unsigned DoubleDestReg,
                                         MachineOperand &HiOperand,
                                         MachineOperand &LoOperand) {
  DebugLoc DL = InsertPt->getDebugLoc();
  MachineBasicBlock *BB = InsertPt->getParent();

  // Handle globals.
  if (HiOperand.isGlobal()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
      .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
                        HiOperand.getTargetFlags())
      .addImm(LoOperand.getImm());
    return;
  }
  if (LoOperand.isGlobal()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
                        LoOperand.getTargetFlags());
    return;
  }

  // Handle block addresses.
  if (HiOperand.isBlockAddress()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
      .addBlockAddress(HiOperand.getBlockAddress(), HiOperand.getOffset(),
                       HiOperand.getTargetFlags())
      .addImm(LoOperand.getImm());
    return;
  }
  if (LoOperand.isBlockAddress()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addBlockAddress(LoOperand.getBlockAddress(), LoOperand.getOffset(),
                       LoOperand.getTargetFlags());
    return;
  }

  // Handle jump tables.
  if (HiOperand.isJTI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
      .addJumpTableIndex(HiOperand.getIndex(), HiOperand.getTargetFlags())
      .addImm(LoOperand.getImm());
    return;
  }
  if (LoOperand.isJTI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addJumpTableIndex(LoOperand.getIndex(), LoOperand.getTargetFlags());
    return;
  }

  // Handle constant pools.
  if (HiOperand.isCPI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
      .addConstantPoolIndex(HiOperand.getIndex(), HiOperand.getOffset(),
                            HiOperand.getTargetFlags())
      .addImm(LoOperand.getImm());
    return;
  }
  if (LoOperand.isCPI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addConstantPoolIndex(LoOperand.getIndex(), LoOperand.getOffset(),
                            LoOperand.getTargetFlags());
    return;
  }

  // First preference should be given to Hexagon::A2_combineii instruction
  // as it can include U6 (in Hexagon::A4_combineii) as well.
  // In this instruction, HiOperand is const extended, if required.
  if (isInt<8>(LoOperand.getImm())) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addImm(LoOperand.getImm());
      return;
  }

  // In this instruction, LoOperand is const extended, if required.
  if (isInt<8>(HiOperand.getImm())) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
      .addImm(HiOperand.getImm())
      .addImm(LoOperand.getImm());
    return;
  }

  // Insert new combine instruction.
  //  DoubleRegDest = combine #HiImm, #LoImm
  BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
    .addImm(HiOperand.getImm())
    .addImm(LoOperand.getImm());
}

void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
                                         unsigned DoubleDestReg,
                                         MachineOperand &HiOperand,
                                         MachineOperand &LoOperand) {
  Register LoReg = LoOperand.getReg();
  unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());

  DebugLoc DL = InsertPt->getDebugLoc();
  MachineBasicBlock *BB = InsertPt->getParent();

  // Handle globals.
  if (HiOperand.isGlobal()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
      .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
                        HiOperand.getTargetFlags())
      .addReg(LoReg, LoRegKillFlag);
    return;
  }
  // Handle block addresses.
  if (HiOperand.isBlockAddress()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
      .addBlockAddress(HiOperand.getBlockAddress(), HiOperand.getOffset(),
                       HiOperand.getTargetFlags())
      .addReg(LoReg, LoRegKillFlag);
    return;
  }
  // Handle jump tables.
  if (HiOperand.isJTI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
      .addJumpTableIndex(HiOperand.getIndex(), HiOperand.getTargetFlags())
      .addReg(LoReg, LoRegKillFlag);
    return;
  }
  // Handle constant pools.
  if (HiOperand.isCPI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
      .addConstantPoolIndex(HiOperand.getIndex(), HiOperand.getOffset(),
                            HiOperand.getTargetFlags())
      .addReg(LoReg, LoRegKillFlag);
    return;
  }
  // Insert new combine instruction.
  //  DoubleRegDest = combine #HiImm, LoReg
  BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
    .addImm(HiOperand.getImm())
    .addReg(LoReg, LoRegKillFlag);
}

void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
                                         unsigned DoubleDestReg,
                                         MachineOperand &HiOperand,
                                         MachineOperand &LoOperand) {
  unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
  Register HiReg = HiOperand.getReg();

  DebugLoc DL = InsertPt->getDebugLoc();
  MachineBasicBlock *BB = InsertPt->getParent();

  // Handle global.
  if (LoOperand.isGlobal()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
      .addReg(HiReg, HiRegKillFlag)
      .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
                        LoOperand.getTargetFlags());
    return;
  }
  // Handle block addresses.
  if (LoOperand.isBlockAddress()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
      .addReg(HiReg, HiRegKillFlag)
      .addBlockAddress(LoOperand.getBlockAddress(), LoOperand.getOffset(),
                       LoOperand.getTargetFlags());
    return;
  }
  // Handle jump tables.
  if (LoOperand.isJTI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
      .addReg(HiOperand.getReg(), HiRegKillFlag)
      .addJumpTableIndex(LoOperand.getIndex(), LoOperand.getTargetFlags());
    return;
  }
  // Handle constant pools.
  if (LoOperand.isCPI()) {
    BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
      .addReg(HiOperand.getReg(), HiRegKillFlag)
      .addConstantPoolIndex(LoOperand.getIndex(), LoOperand.getOffset(),
                            LoOperand.getTargetFlags());
    return;
  }

  // Insert new combine instruction.
  //  DoubleRegDest = combine HiReg, #LoImm
  BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
    .addReg(HiReg, HiRegKillFlag)
    .addImm(LoOperand.getImm());
}

void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt,
                                         unsigned DoubleDestReg,
                                         MachineOperand &HiOperand,
                                         MachineOperand &LoOperand) {
  unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
  unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
  Register LoReg = LoOperand.getReg();
  Register HiReg = HiOperand.getReg();

  DebugLoc DL = InsertPt->getDebugLoc();
  MachineBasicBlock *BB = InsertPt->getParent();

  // Insert new combine instruction.
  //  DoubleRegDest = combine HiReg, LoReg
  unsigned NewOpc;
  if (Hexagon::DoubleRegsRegClass.contains(DoubleDestReg)) {
    NewOpc = Hexagon::A2_combinew;
  } else if (Hexagon::HvxWRRegClass.contains(DoubleDestReg)) {
    assert(ST->useHVXOps());
    NewOpc = Hexagon::V6_vcombine;
  } else
    llvm_unreachable("Unexpected register");

  BuildMI(*BB, InsertPt, DL, TII->get(NewOpc), DoubleDestReg)
    .addReg(HiReg, HiRegKillFlag)
    .addReg(LoReg, LoRegKillFlag);
}

FunctionPass *llvm::createHexagonCopyToCombine() {
  return new HexagonCopyToCombine();
}