HexagonISelLoweringHVX.cpp 63.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HexagonISelLowering.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/Support/CommandLine.h"

using namespace llvm;

static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };


void
HexagonTargetLowering::initializeHVXLowering() {
  if (Subtarget.useHVX64BOps()) {
    addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
    addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
    addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
    // These "short" boolean vector types should be legal because
    // they will appear as results of vector compares. If they were
    // not legal, type legalization would try to make them legal
    // and that would require using operations that do not use or
    // produce such types. That, in turn, would imply using custom
    // nodes, which would be unoptimizable by the DAG combiner.
    // The idea is to rely on target-independent operations as much
    // as possible.
    addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
  } else if (Subtarget.useHVX128BOps()) {
    addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
    addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
    addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
    addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
    addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
    addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
  }

  // Set up operation actions.

  bool Use64b = Subtarget.useHVX64BOps();
  ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
  ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
  MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
  MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;

  auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
    setOperationAction(Opc, FromTy, Promote);
    AddPromotedToType(Opc, FromTy, ToTy);
  };

  setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
  setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);

  for (MVT T : LegalV) {
    setIndexedLoadAction(ISD::POST_INC,  T, Legal);
    setIndexedStoreAction(ISD::POST_INC, T, Legal);

    setOperationAction(ISD::AND,            T, Legal);
    setOperationAction(ISD::OR,             T, Legal);
    setOperationAction(ISD::XOR,            T, Legal);
    setOperationAction(ISD::ADD,            T, Legal);
    setOperationAction(ISD::SUB,            T, Legal);
    setOperationAction(ISD::CTPOP,          T, Legal);
    setOperationAction(ISD::CTLZ,           T, Legal);
    if (T != ByteV) {
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
      setOperationAction(ISD::BSWAP,                    T, Legal);
    }

    setOperationAction(ISD::CTTZ,               T, Custom);
    setOperationAction(ISD::LOAD,               T, Custom);
    setOperationAction(ISD::MUL,                T, Custom);
    setOperationAction(ISD::MULHS,              T, Custom);
    setOperationAction(ISD::MULHU,              T, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
    // Make concat-vectors custom to handle concats of more than 2 vectors.
    setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
    setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
    setOperationAction(ISD::ANY_EXTEND,         T, Custom);
    setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
    setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
    if (T != ByteV) {
      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
      // HVX only has shifts of words and halfwords.
      setOperationAction(ISD::SRA,                     T, Custom);
      setOperationAction(ISD::SHL,                     T, Custom);
      setOperationAction(ISD::SRL,                     T, Custom);

      // Promote all shuffles to operate on vectors of bytes.
      setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
    }

    setCondCodeAction(ISD::SETNE,  T, Expand);
    setCondCodeAction(ISD::SETLE,  T, Expand);
    setCondCodeAction(ISD::SETGE,  T, Expand);
    setCondCodeAction(ISD::SETLT,  T, Expand);
    setCondCodeAction(ISD::SETULE, T, Expand);
    setCondCodeAction(ISD::SETUGE, T, Expand);
    setCondCodeAction(ISD::SETULT, T, Expand);
  }

  for (MVT T : LegalW) {
    // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
    // independent) handling of it would convert it to a load, which is
    // not always the optimal choice.
    setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
    // Make concat-vectors custom to handle concats of more than 2 vectors.
    setOperationAction(ISD::CONCAT_VECTORS, T, Custom);

    // Custom-lower these operations for pairs. Expand them into a concat
    // of the corresponding operations on individual vectors.
    setOperationAction(ISD::ANY_EXTEND,               T, Custom);
    setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
    setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
    setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
    setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
    setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
    setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);

    setOperationAction(ISD::LOAD,     T, Custom);
    setOperationAction(ISD::STORE,    T, Custom);
    setOperationAction(ISD::CTLZ,     T, Custom);
    setOperationAction(ISD::CTTZ,     T, Custom);
    setOperationAction(ISD::CTPOP,    T, Custom);

    setOperationAction(ISD::ADD,      T, Legal);
    setOperationAction(ISD::SUB,      T, Legal);
    setOperationAction(ISD::MUL,      T, Custom);
    setOperationAction(ISD::MULHS,    T, Custom);
    setOperationAction(ISD::MULHU,    T, Custom);
    setOperationAction(ISD::AND,      T, Custom);
    setOperationAction(ISD::OR,       T, Custom);
    setOperationAction(ISD::XOR,      T, Custom);
    setOperationAction(ISD::SETCC,    T, Custom);
    setOperationAction(ISD::VSELECT,  T, Custom);
    if (T != ByteW) {
      setOperationAction(ISD::SRA,      T, Custom);
      setOperationAction(ISD::SHL,      T, Custom);
      setOperationAction(ISD::SRL,      T, Custom);

      // Promote all shuffles to operate on vectors of bytes.
      setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
    }
  }

  // Boolean vectors.

  for (MVT T : LegalW) {
    // Boolean types for vector pairs will overlap with the boolean
    // types for single vectors, e.g.
    //   v64i8  -> v64i1 (single)
    //   v64i16 -> v64i1 (pair)
    // Set these actions first, and allow the single actions to overwrite
    // any duplicates.
    MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
    setOperationAction(ISD::SETCC,              BoolW, Custom);
    setOperationAction(ISD::AND,                BoolW, Custom);
    setOperationAction(ISD::OR,                 BoolW, Custom);
    setOperationAction(ISD::XOR,                BoolW, Custom);
  }

  for (MVT T : LegalV) {
    MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
    setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
    setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
    setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
    setOperationAction(ISD::AND,                BoolV, Legal);
    setOperationAction(ISD::OR,                 BoolV, Legal);
    setOperationAction(ISD::XOR,                BoolV, Legal);
  }

  if (Use64b)
    for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
  else
    for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);

  setTargetDAGCombine(ISD::VSELECT);
}

SDValue
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
                              const SDLoc &dl, SelectionDAG &DAG) const {
  SmallVector<SDValue,4> IntOps;
  IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
  for (const SDValue &Op : Ops)
    IntOps.push_back(Op);
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
}

MVT
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
  assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());

  MVT ElemTy = Tys.first.getVectorElementType();
  return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
                                  Tys.second.getVectorNumElements());
}

HexagonTargetLowering::TypePair
HexagonTargetLowering::typeSplit(MVT VecTy) const {
  assert(VecTy.isVector());
  unsigned NumElem = VecTy.getVectorNumElements();
  assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
  MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
  return { HalfTy, HalfTy };
}

MVT
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
  MVT ElemTy = VecTy.getVectorElementType();
  MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
  return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}

MVT
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
  MVT ElemTy = VecTy.getVectorElementType();
  MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
  return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}

SDValue
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
                                  SelectionDAG &DAG) const {
  if (ty(Vec).getVectorElementType() == ElemTy)
    return Vec;
  MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
  return DAG.getBitcast(CastTy, Vec);
}

SDValue
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
                              SelectionDAG &DAG) const {
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
                     Ops.second, Ops.first);
}

HexagonTargetLowering::VectorPair
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
                               SelectionDAG &DAG) const {
  TypePair Tys = typeSplit(ty(Vec));
  if (Vec.getOpcode() == HexagonISD::QCAT)
    return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
  return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
}

bool
HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
  return Subtarget.isHVXVectorType(Ty) &&
         Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
}

bool
HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
  return Subtarget.isHVXVectorType(Ty) &&
         Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
}

SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
                                          SelectionDAG &DAG) const {
  if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
    ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);

  unsigned ElemWidth = ElemTy.getSizeInBits();
  if (ElemWidth == 8)
    return ElemIdx;

  unsigned L = Log2_32(ElemWidth/8);
  const SDLoc &dl(ElemIdx);
  return DAG.getNode(ISD::SHL, dl, MVT::i32,
                     {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
}

SDValue
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
                                        SelectionDAG &DAG) const {
  unsigned ElemWidth = ElemTy.getSizeInBits();
  assert(ElemWidth >= 8 && ElemWidth <= 32);
  if (ElemWidth == 32)
    return Idx;

  if (ty(Idx) != MVT::i32)
    Idx = DAG.getBitcast(MVT::i32, Idx);
  const SDLoc &dl(Idx);
  SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
  SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
  return SubIdx;
}

SDValue
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
                                      SDValue Op1, ArrayRef<int> Mask,
                                      SelectionDAG &DAG) const {
  MVT OpTy = ty(Op0);
  assert(OpTy == ty(Op1));

  MVT ElemTy = OpTy.getVectorElementType();
  if (ElemTy == MVT::i8)
    return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
  assert(ElemTy.getSizeInBits() >= 8);

  MVT ResTy = tyVector(OpTy, MVT::i8);
  unsigned ElemSize = ElemTy.getSizeInBits() / 8;

  SmallVector<int,128> ByteMask;
  for (int M : Mask) {
    if (M < 0) {
      for (unsigned I = 0; I != ElemSize; ++I)
        ByteMask.push_back(-1);
    } else {
      int NewM = M*ElemSize;
      for (unsigned I = 0; I != ElemSize; ++I)
        ByteMask.push_back(NewM+I);
    }
  }
  assert(ResTy.getVectorNumElements() == ByteMask.size());
  return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
                              opCastElem(Op1, MVT::i8, DAG), ByteMask);
}

SDValue
HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
                                         const SDLoc &dl, MVT VecTy,
                                         SelectionDAG &DAG) const {
  unsigned VecLen = Values.size();
  MachineFunction &MF = DAG.getMachineFunction();
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();
  unsigned HwLen = Subtarget.getVectorLength();

  unsigned ElemSize = ElemWidth / 8;
  assert(ElemSize*VecLen == HwLen);
  SmallVector<SDValue,32> Words;

  if (VecTy.getVectorElementType() != MVT::i32) {
    assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
    unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
    MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
    for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
      SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
      Words.push_back(DAG.getBitcast(MVT::i32, W));
    }
  } else {
    Words.assign(Values.begin(), Values.end());
  }

  unsigned NumWords = Words.size();
  bool IsSplat = true, IsUndef = true;
  SDValue SplatV;
  for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
    if (isUndef(Words[i]))
      continue;
    IsUndef = false;
    if (!SplatV.getNode())
      SplatV = Words[i];
    else if (SplatV != Words[i])
      IsSplat = false;
  }
  if (IsUndef)
    return DAG.getUNDEF(VecTy);
  if (IsSplat) {
    assert(SplatV.getNode());
    auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
    if (IdxN && IdxN->isNullValue())
      return getZero(dl, VecTy, DAG);
    return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
  }

  // Delay recognizing constant vectors until here, so that we can generate
  // a vsplat.
  SmallVector<ConstantInt*, 128> Consts(VecLen);
  bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
  if (AllConst) {
    ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
                            (Constant**)Consts.end());
    Constant *CV = ConstantVector::get(Tmp);
    unsigned Align = HwLen;
    SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
    return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
                       MachinePointerInfo::getConstantPool(MF), Align);
  }

  // A special case is a situation where the vector is built entirely from
  // elements extracted from another vector. This could be done via a shuffle
  // more efficiently, but typically, the size of the source vector will not
  // match the size of the vector being built (which precludes the use of a
  // shuffle directly).
  // This only handles a single source vector, and the vector being built
  // should be of a sub-vector type of the source vector type.
  auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
                                             SmallVectorImpl<int> &SrcIdx) {
    SDValue Vec;
    for (SDValue V : Values) {
      if (isUndef(V)) {
        SrcIdx.push_back(-1);
        continue;
      }
      if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
        return false;
      // All extracts should come from the same vector.
      SDValue T = V.getOperand(0);
      if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
        return false;
      Vec = T;
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
      if (C == nullptr)
        return false;
      int I = C->getSExtValue();
      assert(I >= 0 && "Negative element index");
      SrcIdx.push_back(I);
    }
    SrcVec = Vec;
    return true;
  };

  SmallVector<int,128> ExtIdx;
  SDValue ExtVec;
  if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
    MVT ExtTy = ty(ExtVec);
    unsigned ExtLen = ExtTy.getVectorNumElements();
    if (ExtLen == VecLen || ExtLen == 2*VecLen) {
      // Construct a new shuffle mask that will produce a vector with the same
      // number of elements as the input vector, and such that the vector we
      // want will be the initial subvector of it.
      SmallVector<int,128> Mask;
      BitVector Used(ExtLen);

      for (int M : ExtIdx) {
        Mask.push_back(M);
        if (M >= 0)
          Used.set(M);
      }
      // Fill the rest of the mask with the unused elements of ExtVec in hopes
      // that it will result in a permutation of ExtVec's elements. It's still
      // fine if it doesn't (e.g. if undefs are present, or elements are
      // repeated), but permutations can always be done efficiently via vdelta
      // and vrdelta.
      for (unsigned I = 0; I != ExtLen; ++I) {
        if (Mask.size() == ExtLen)
          break;
        if (!Used.test(I))
          Mask.push_back(I);
      }

      SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
                                       DAG.getUNDEF(ExtTy), Mask);
      if (ExtLen == VecLen)
        return S;
      return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
    }
  }

  // Construct two halves in parallel, then or them together.
  assert(4*Words.size() == Subtarget.getVectorLength());
  SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
  SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
  SDValue S = DAG.getConstant(4, dl, MVT::i32);
  for (unsigned i = 0; i != NumWords/2; ++i) {
    SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
                            {HalfV0, Words[i]});
    SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
                            {HalfV1, Words[i+NumWords/2]});
    HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
    HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
  }

  HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
                       {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
  SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
  return DstV;
}

SDValue
HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
      unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
  MVT PredTy = ty(PredV);
  unsigned HwLen = Subtarget.getVectorLength();
  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);

  if (Subtarget.isHVXVectorType(PredTy, true)) {
    // Move the vector predicate SubV to a vector register, and scale it
    // down to match the representation (bytes per type element) that VecV
    // uses. The scaling down will pick every 2nd or 4th (every Scale-th
    // in general) element and put them at the front of the resulting
    // vector. This subvector will then be inserted into the Q2V of VecV.
    // To avoid having an operation that generates an illegal type (short
    // vector), generate a full size vector.
    //
    SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
    SmallVector<int,128> Mask(HwLen);
    // Scale = BitBytes(PredV) / Given BitBytes.
    unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
    unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;

    for (unsigned i = 0; i != HwLen; ++i) {
      unsigned Num = i % Scale;
      unsigned Off = i / Scale;
      Mask[BlockLen*Num + Off] = i;
    }
    SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
    if (!ZeroFill)
      return S;
    // Fill the bytes beyond BlockLen with 0s.
    MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
    SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
                         {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
    SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
    return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
  }

  // Make sure that this is a valid scalar predicate.
  assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);

  unsigned Bytes = 8 / PredTy.getVectorNumElements();
  SmallVector<SDValue,4> Words[2];
  unsigned IdxW = 0;

  auto Lo32 = [&DAG, &dl] (SDValue P) {
    return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
  };
  auto Hi32 = [&DAG, &dl] (SDValue P) {
    return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
  };

  SDValue W0 = isUndef(PredV)
                  ? DAG.getUNDEF(MVT::i64)
                  : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
  Words[IdxW].push_back(Hi32(W0));
  Words[IdxW].push_back(Lo32(W0));

  while (Bytes < BitBytes) {
    IdxW ^= 1;
    Words[IdxW].clear();

    if (Bytes < 4) {
      for (const SDValue &W : Words[IdxW ^ 1]) {
        SDValue T = expandPredicate(W, dl, DAG);
        Words[IdxW].push_back(Hi32(T));
        Words[IdxW].push_back(Lo32(T));
      }
    } else {
      for (const SDValue &W : Words[IdxW ^ 1]) {
        Words[IdxW].push_back(W);
        Words[IdxW].push_back(W);
      }
    }
    Bytes *= 2;
  }

  assert(Bytes == BitBytes);

  SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
  SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
  for (const SDValue &W : Words[IdxW]) {
    Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
    Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
  }

  return Vec;
}

SDValue
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
                                          const SDLoc &dl, MVT VecTy,
                                          SelectionDAG &DAG) const {
  // Construct a vector V of bytes, such that a comparison V >u 0 would
  // produce the required vector predicate.
  unsigned VecLen = Values.size();
  unsigned HwLen = Subtarget.getVectorLength();
  assert(VecLen <= HwLen || VecLen == 8*HwLen);
  SmallVector<SDValue,128> Bytes;
  bool AllT = true, AllF = true;

  auto IsTrue = [] (SDValue V) {
    if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
      return !N->isNullValue();
    return false;
  };
  auto IsFalse = [] (SDValue V) {
    if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
      return N->isNullValue();
    return false;
  };

  if (VecLen <= HwLen) {
    // In the hardware, each bit of a vector predicate corresponds to a byte
    // of a vector register. Calculate how many bytes does a bit of VecTy
    // correspond to.
    assert(HwLen % VecLen == 0);
    unsigned BitBytes = HwLen / VecLen;
    for (SDValue V : Values) {
      AllT &= IsTrue(V);
      AllF &= IsFalse(V);

      SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
                                 : DAG.getUNDEF(MVT::i8);
      for (unsigned B = 0; B != BitBytes; ++B)
        Bytes.push_back(Ext);
    }
  } else {
    // There are as many i1 values, as there are bits in a vector register.
    // Divide the values into groups of 8 and check that each group consists
    // of the same value (ignoring undefs).
    for (unsigned I = 0; I != VecLen; I += 8) {
      unsigned B = 0;
      // Find the first non-undef value in this group.
      for (; B != 8; ++B) {
        if (!Values[I+B].isUndef())
          break;
      }
      SDValue F = Values[I+B];
      AllT &= IsTrue(F);
      AllF &= IsFalse(F);

      SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
                            : DAG.getUNDEF(MVT::i8);
      Bytes.push_back(Ext);
      // Verify that the rest of values in the group are the same as the
      // first.
      for (; B != 8; ++B)
        assert(Values[I+B].isUndef() || Values[I+B] == F);
    }
  }

  if (AllT)
    return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
  if (AllF)
    return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);

  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
}

SDValue
HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
  MVT ElemTy = ty(VecV).getVectorElementType();

  unsigned ElemWidth = ElemTy.getSizeInBits();
  assert(ElemWidth >= 8 && ElemWidth <= 32);
  (void)ElemWidth;

  SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
  SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
                               {VecV, ByteIdx});
  if (ElemTy == MVT::i32)
    return ExWord;

  // Have an extracted word, need to extract the smaller element out of it.
  // 1. Extract the bits of (the original) IdxV that correspond to the index
  //    of the desired element in the 32-bit word.
  SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
  // 2. Extract the element from the word.
  SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
  return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
}

SDValue
HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
  // Implement other return types if necessary.
  assert(ResTy == MVT::i1);

  unsigned HwLen = Subtarget.getVectorLength();
  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);

  unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
  SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
  IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);

  SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
  SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
  return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
}

SDValue
HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
      SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
  MVT ElemTy = ty(VecV).getVectorElementType();

  unsigned ElemWidth = ElemTy.getSizeInBits();
  assert(ElemWidth >= 8 && ElemWidth <= 32);
  (void)ElemWidth;

  auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
                                     SDValue ByteIdxV) {
    MVT VecTy = ty(VecV);
    unsigned HwLen = Subtarget.getVectorLength();
    SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
                                {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
    SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
    SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
    SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
                               {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
    SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
    return TorV;
  };

  SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
  if (ElemTy == MVT::i32)
    return InsertWord(VecV, ValV, ByteIdx);

  // If this is not inserting a 32-bit word, convert it into such a thing.
  // 1. Extract the existing word from the target vector.
  SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
                                {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
  SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
                                     dl, MVT::i32, DAG);

  // 2. Treating the extracted word as a 32-bit vector, insert the given
  //    value into it.
  SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
  MVT SubVecTy = tyVector(ty(Ext), ElemTy);
  SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
                             ValV, SubIdx, dl, ElemTy, DAG);

  // 3. Insert the 32-bit word back into the original vector.
  return InsertWord(VecV, Ins, ByteIdx);
}

SDValue
HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
      SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
  unsigned HwLen = Subtarget.getVectorLength();
  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);

  unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
  SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
  IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
  ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);

  SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
  return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
}

SDValue
HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  unsigned HwLen = Subtarget.getVectorLength();
  unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();

  // If the source vector is a vector pair, get the single vector containing
  // the subvector of interest. The subvector will never overlap two single
  // vectors.
  if (isHvxPairTy(VecTy)) {
    unsigned SubIdx;
    if (Idx * ElemWidth >= 8*HwLen) {
      SubIdx = Hexagon::vsub_hi;
      Idx -= VecTy.getVectorNumElements() / 2;
    } else {
      SubIdx = Hexagon::vsub_lo;
    }
    VecTy = typeSplit(VecTy).first;
    VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
    if (VecTy == ResTy)
      return VecV;
  }

  // The only meaningful subvectors of a single HVX vector are those that
  // fit in a scalar register.
  assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);

  MVT WordTy = tyVector(VecTy, MVT::i32);
  SDValue WordVec = DAG.getBitcast(WordTy, VecV);
  unsigned WordIdx = (Idx*ElemWidth) / 32;

  SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
  SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
  if (ResTy.getSizeInBits() == 32)
    return DAG.getBitcast(ResTy, W0);

  SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
  SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
  SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
  return DAG.getBitcast(ResTy, WW);
}

SDValue
HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
      const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  unsigned HwLen = Subtarget.getVectorLength();
  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
  // IdxV is required to be a constant.
  unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();

  unsigned ResLen = ResTy.getVectorNumElements();
  unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
  unsigned Offset = Idx * BitBytes;
  SDValue Undef = DAG.getUNDEF(ByteTy);
  SmallVector<int,128> Mask;

  if (Subtarget.isHVXVectorType(ResTy, true)) {
    // Converting between two vector predicates. Since the result is shorter
    // than the source, it will correspond to a vector predicate with the
    // relevant bits replicated. The replication count is the ratio of the
    // source and target vector lengths.
    unsigned Rep = VecTy.getVectorNumElements() / ResLen;
    assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
    for (unsigned i = 0; i != HwLen/Rep; ++i) {
      for (unsigned j = 0; j != Rep; ++j)
        Mask.push_back(i + Offset);
    }
    SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
    return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
  }

  // Converting between a vector predicate and a scalar predicate. In the
  // vector predicate, a group of BitBytes bits will correspond to a single
  // i1 element of the source vector type. Those bits will all have the same
  // value. The same will be true for ByteVec, where each byte corresponds
  // to a bit in the vector predicate.
  // The algorithm is to traverse the ByteVec, going over the i1 values from
  // the source vector, and generate the corresponding representation in an
  // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
  // elements so that the interesting 8 bytes will be in the low end of the
  // vector.
  unsigned Rep = 8 / ResLen;
  // Make sure the output fill the entire vector register, so repeat the
  // 8-byte groups as many times as necessary.
  for (unsigned r = 0; r != HwLen/ResLen; ++r) {
    // This will generate the indexes of the 8 interesting bytes.
    for (unsigned i = 0; i != ResLen; ++i) {
      for (unsigned j = 0; j != Rep; ++j)
        Mask.push_back(Offset + i*BitBytes);
    }
  }

  SDValue Zero = getZero(dl, MVT::i32, DAG);
  SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
  // Combine the two low words from ShuffV into a v8i8, and byte-compare
  // them against 0.
  SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
  SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
                           {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
  SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
  return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
                  {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
}

SDValue
HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
      SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  MVT SubTy = ty(SubV);
  unsigned HwLen = Subtarget.getVectorLength();
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();

  bool IsPair = isHvxPairTy(VecTy);
  MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
  // The two single vectors that VecV consists of, if it's a pair.
  SDValue V0, V1;
  SDValue SingleV = VecV;
  SDValue PickHi;

  if (IsPair) {
    V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
    V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);

    SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
                                    dl, MVT::i32);
    PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
    if (isHvxSingleTy(SubTy)) {
      if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
        unsigned Idx = CN->getZExtValue();
        assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
        unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
        return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
      }
      // If IdxV is not a constant, generate the two variants: with the
      // SubV as the high and as the low subregister, and select the right
      // pair based on the IdxV.
      SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
      SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
      return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
    }
    // The subvector being inserted must be entirely contained in one of
    // the vectors V0 or V1. Set SingleV to the correct one, and update
    // IdxV to be the index relative to the beginning of that vector.
    SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
    IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
    SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
  }

  // The only meaningful subvectors of a single HVX vector are those that
  // fit in a scalar register.
  assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
  // Convert IdxV to be index in bytes.
  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
  if (!IdxN || !IdxN->isNullValue()) {
    IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                       DAG.getConstant(ElemWidth/8, dl, MVT::i32));
    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
  }
  // When inserting a single word, the rotation back to the original position
  // would be by HwLen-Idx, but if two words are inserted, it will need to be
  // by (HwLen-4)-Idx.
  unsigned RolBase = HwLen;
  if (VecTy.getSizeInBits() == 32) {
    SDValue V = DAG.getBitcast(MVT::i32, SubV);
    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
  } else {
    SDValue V = DAG.getBitcast(MVT::i64, SubV);
    SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
    SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
                          DAG.getConstant(4, dl, MVT::i32));
    SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
    RolBase = HwLen-4;
  }
  // If the vector wasn't ror'ed, don't ror it back.
  if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
    SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
                               DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
    SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
  }

  if (IsPair) {
    SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
    SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
    return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
  }
  return SingleV;
}

SDValue
HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
      SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  MVT SubTy = ty(SubV);
  assert(Subtarget.isHVXVectorType(VecTy, true));
  // VecV is an HVX vector predicate. SubV may be either an HVX vector
  // predicate as well, or it can be a scalar predicate.

  unsigned VecLen = VecTy.getVectorNumElements();
  unsigned HwLen = Subtarget.getVectorLength();
  assert(HwLen % VecLen == 0 && "Unexpected vector type");

  unsigned Scale = VecLen / SubTy.getVectorNumElements();
  unsigned BitBytes = HwLen / VecLen;
  unsigned BlockLen = HwLen / Scale;

  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
  SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
  SDValue ByteIdx;

  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
  if (!IdxN || !IdxN->isNullValue()) {
    ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                          DAG.getConstant(BitBytes, dl, MVT::i32));
    ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
  }

  // ByteVec is the target vector VecV rotated in such a way that the
  // subvector should be inserted at index 0. Generate a predicate mask
  // and use vmux to do the insertion.
  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
  SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
                       {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
  ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
  // Rotate ByteVec back, and convert to a vector predicate.
  if (!IdxN || !IdxN->isNullValue()) {
    SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
    SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
    ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
  }
  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
}

SDValue
HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
      MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
  // Sign- and any-extending of a vector predicate to a vector register is
  // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
  // a vector of 1s (where the 1s are of type matching the vector type).
  assert(Subtarget.isHVXVectorType(ResTy));
  if (!ZeroExt)
    return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);

  assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
  SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
                             DAG.getConstant(1, dl, MVT::i32));
  SDValue False = getZero(dl, ResTy, DAG);
  return DAG.getSelect(dl, ResTy, VecV, True, False);
}

SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
      const {
  const SDLoc &dl(Op);
  MVT VecTy = ty(Op);

  unsigned Size = Op.getNumOperands();
  SmallVector<SDValue,128> Ops;
  for (unsigned i = 0; i != Size; ++i)
    Ops.push_back(Op.getOperand(i));

  if (VecTy.getVectorElementType() == MVT::i1)
    return buildHvxVectorPred(Ops, dl, VecTy, DAG);

  if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
    ArrayRef<SDValue> A(Ops);
    MVT SingleTy = typeSplit(VecTy).first;
    SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
    SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
  }

  return buildHvxVectorReg(Ops, dl, VecTy, DAG);
}

SDValue
HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
      const {
  // Vector concatenation of two integer (non-bool) vectors does not need
  // special lowering. Custom-lower concats of bool vectors and expand
  // concats of more than 2 vectors.
  MVT VecTy = ty(Op);
  const SDLoc &dl(Op);
  unsigned NumOp = Op.getNumOperands();
  if (VecTy.getVectorElementType() != MVT::i1) {
    if (NumOp == 2)
      return Op;
    // Expand the other cases into a build-vector.
    SmallVector<SDValue,8> Elems;
    for (SDValue V : Op.getNode()->ops())
      DAG.ExtractVectorElements(V, Elems);
    // A vector of i16 will be broken up into a build_vector of i16's.
    // This is a problem, since at the time of operation legalization,
    // all operations are expected to be type-legalized, and i16 is not
    // a legal type. If any of the extracted elements is not of a valid
    // type, sign-extend it to a valid one.
    for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
      SDValue V = Elems[i];
      MVT Ty = ty(V);
      if (!isTypeLegal(Ty)) {
        EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
        if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
          Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
                                 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
                                             V.getOperand(0), V.getOperand(1)),
                                 DAG.getValueType(Ty));
          continue;
        }
        // A few less complicated cases.
        if (V.getOpcode() == ISD::Constant)
          Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
        else if (V.isUndef())
          Elems[i] = DAG.getUNDEF(NTy);
        else
          llvm_unreachable("Unexpected vector element");
      }
    }
    return DAG.getBuildVector(VecTy, dl, Elems);
  }

  assert(VecTy.getVectorElementType() == MVT::i1);
  unsigned HwLen = Subtarget.getVectorLength();
  assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);

  SDValue Op0 = Op.getOperand(0);

  // If the operands are HVX types (i.e. not scalar predicates), then
  // defer the concatenation, and create QCAT instead.
  if (Subtarget.isHVXVectorType(ty(Op0), true)) {
    if (NumOp == 2)
      return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));

    ArrayRef<SDUse> U(Op.getNode()->ops());
    SmallVector<SDValue,4> SV(U.begin(), U.end());
    ArrayRef<SDValue> Ops(SV);

    MVT HalfTy = typeSplit(VecTy).first;
    SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
                             Ops.take_front(NumOp/2));
    SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
                             Ops.take_back(NumOp/2));
    return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
  }

  // Count how many bytes (in a vector register) each bit in VecTy
  // corresponds to.
  unsigned BitBytes = HwLen / VecTy.getVectorNumElements();

  SmallVector<SDValue,8> Prefixes;
  for (SDValue V : Op.getNode()->op_values()) {
    SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
    Prefixes.push_back(P);
  }

  unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
  MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
  SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
  SDValue Res = getZero(dl, ByteTy, DAG);
  for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
    Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
    Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
  }
  return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
}

SDValue
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
      const {
  // Change the type of the extracted element to i32.
  SDValue VecV = Op.getOperand(0);
  MVT ElemTy = ty(VecV).getVectorElementType();
  const SDLoc &dl(Op);
  SDValue IdxV = Op.getOperand(1);
  if (ElemTy == MVT::i1)
    return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);

  return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
      const {
  const SDLoc &dl(Op);
  SDValue VecV = Op.getOperand(0);
  SDValue ValV = Op.getOperand(1);
  SDValue IdxV = Op.getOperand(2);
  MVT ElemTy = ty(VecV).getVectorElementType();
  if (ElemTy == MVT::i1)
    return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);

  return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
}

SDValue
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
      const {
  SDValue SrcV = Op.getOperand(0);
  MVT SrcTy = ty(SrcV);
  MVT DstTy = ty(Op);
  SDValue IdxV = Op.getOperand(1);
  unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
  assert(Idx % DstTy.getVectorNumElements() == 0);
  (void)Idx;
  const SDLoc &dl(Op);

  MVT ElemTy = SrcTy.getVectorElementType();
  if (ElemTy == MVT::i1)
    return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);

  return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
}

SDValue
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
      const {
  // Idx does not need to be a constant.
  SDValue VecV = Op.getOperand(0);
  SDValue ValV = Op.getOperand(1);
  SDValue IdxV = Op.getOperand(2);

  const SDLoc &dl(Op);
  MVT VecTy = ty(VecV);
  MVT ElemTy = VecTy.getVectorElementType();
  if (ElemTy == MVT::i1)
    return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);

  return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
}

SDValue
HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
  // Lower any-extends of boolean vectors to sign-extends, since they
  // translate directly to Q2V. Zero-extending could also be done equally
  // fast, but Q2V is used/recognized in more places.
  // For all other vectors, use zero-extend.
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT ElemTy = ty(InpV).getVectorElementType();
  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
    return LowerHvxSignExt(Op, DAG);
  return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
}

SDValue
HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT ElemTy = ty(InpV).getVectorElementType();
  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
    return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
  return Op;
}

SDValue
HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT ElemTy = ty(InpV).getVectorElementType();
  if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
    return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
  return Op;
}

SDValue
HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
  // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
  // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
  const SDLoc &dl(Op);
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  assert(ResTy == ty(InpV));

  // Calculate the vectors of 1 and bitwidth(x).
  MVT ElemTy = ty(InpV).getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();
  // Using uint64_t because a shift by 32 can happen.
  uint64_t Splat1 = 0, SplatW = 0;
  assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
  for (unsigned i = 0; i != 32/ElemWidth; ++i) {
    Splat1 = (Splat1 << ElemWidth) | 1;
    SplatW = (SplatW << ElemWidth) | ElemWidth;
  }
  SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
                             DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
  SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
                             DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
  SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
                              DAG.getConstant(-1, dl, MVT::i32));
  // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
  // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
  // it separately in custom combine or selection).
  SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
                          {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
                           DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
  return DAG.getNode(ISD::SUB, dl, ResTy,
                     {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
}

SDValue
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  assert(ResTy.isVector() && isHvxSingleTy(ResTy));
  const SDLoc &dl(Op);
  SmallVector<int,256> ShuffMask;

  MVT ElemTy = ResTy.getVectorElementType();
  unsigned VecLen = ResTy.getVectorNumElements();
  SDValue Vs = Op.getOperand(0);
  SDValue Vt = Op.getOperand(1);

  switch (ElemTy.SimpleTy) {
    case MVT::i8: {
      // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
      // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
      // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
      MVT ExtTy = typeExtElem(ResTy, 2);
      unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
                                          : Hexagon::V6_vmpyhv;
      SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);

      // Discard high halves of the resulting values, collect the low halves.
      for (unsigned I = 0; I < VecLen; I += 2) {
        ShuffMask.push_back(I);         // Pick even element.
        ShuffMask.push_back(I+VecLen);  // Pick odd element.
      }
      VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
      SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
      return DAG.getBitcast(ResTy, BS);
    }
    case MVT::i16:
      // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
      // (There is also V6_vmpyhv, which behaves in an analogous way to
      // V6_vmpybv.)
      return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
    case MVT::i32: {
      // Use the following sequence for signed word multiply:
      // T0 = V6_vmpyiowh Vs, Vt
      // T1 = V6_vaslw T0, 16
      // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
      SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
      SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
      SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
      SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
                            {T1, Vs, Vt}, DAG);
      return T2;
    }
    default:
      break;
  }
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  assert(ResTy.isVector());
  const SDLoc &dl(Op);
  SmallVector<int,256> ShuffMask;

  MVT ElemTy = ResTy.getVectorElementType();
  unsigned VecLen = ResTy.getVectorNumElements();
  SDValue Vs = Op.getOperand(0);
  SDValue Vt = Op.getOperand(1);
  bool IsSigned = Op.getOpcode() == ISD::MULHS;

  if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
    // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
    // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
    // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
    // For i16, use V6_vmpyhv, which behaves in an analogous way to
    // V6_vmpybv: results Lo and Hi are products of even/odd elements
    // respectively.
    MVT ExtTy = typeExtElem(ResTy, 2);
    unsigned MpyOpc = ElemTy == MVT::i8
        ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
        : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
    SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);

    // Discard low halves of the resulting values, collect the high halves.
    for (unsigned I = 0; I < VecLen; I += 2) {
      ShuffMask.push_back(I+1);         // Pick even element.
      ShuffMask.push_back(I+VecLen+1);  // Pick odd element.
    }
    VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
    SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
    return DAG.getBitcast(ResTy, BS);
  }

  assert(ElemTy == MVT::i32);
  SDValue S16 = DAG.getConstant(16, dl, MVT::i32);

  if (IsSigned) {
    // mulhs(Vs,Vt) =
    //   = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
    //   = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
    //      + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
    //   = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
    //      + Lo(Vs) *us Vt] >> 32
    // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
    // anything, so it cannot produce any carry over to higher bits),
    // so everything in [] can be shifted by 16 without loss of precision.
    //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
    //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
    // Denote Hi(Vs) = Vs':
    //   = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
    //   = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
    SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
    // Get Vs':
    SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
    SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
                          {T0, S0, Vt}, DAG);
    // Shift by 16:
    SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
    // Get Vs'*Hi(Vt):
    SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
    // Add:
    SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
    return T3;
  }

  // Unsigned mulhw. (Would expansion using signed mulhw be better?)

  auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
    return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
  };
  auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
    return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
  };

  MVT PairTy = typeJoin({ResTy, ResTy});
  SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
                       {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
  // Multiply-unsigned halfwords:
  //   LoVec = Vs.uh[2i] * Vt.uh[2i],
  //   HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
  SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
  // The low halves in the LoVec of the pair can be discarded. They are
  // not added to anything (in the full-precision product), so they cannot
  // produce a carry into the higher bits.
  SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
  // Swap low and high halves in Vt, and do the halfword multiplication
  // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
  SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
  SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
  // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
  // These products are words, but cannot be added directly because the
  // sums could overflow. Add these products, by halfwords, where each sum
  // of a pair of halfwords gives a word.
  SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
                        {LoVec(T2), HiVec(T2)}, DAG);
  // Add the high halfwords from the products of the low halfwords.
  SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
  SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
  SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
  SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
  return T7;
}

SDValue
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
  // Sign- and zero-extends are legal.
  assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
  return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
                     Op.getOperand(0));
}

SDValue
HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
  if (SDValue S = getVectorShiftByInt(Op, DAG))
    return S;
  return Op;
}

SDValue
HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
  assert(!Op.isMachineOpcode());
  SmallVector<SDValue,2> OpsL, OpsH;
  const SDLoc &dl(Op);

  auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
    MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
    SDValue TV = DAG.getValueType(Ty);
    return std::make_pair(TV, TV);
  };

  for (SDValue A : Op.getNode()->ops()) {
    VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
                    ? opSplit(A, dl, DAG)
                    : std::make_pair(A, A);
    // Special case for type operand.
    if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
      if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
        P = SplitVTNode(N);
    }
    OpsL.push_back(P.first);
    OpsH.push_back(P.second);
  }

  MVT ResTy = ty(Op);
  MVT HalfTy = typeSplit(ResTy).first;
  SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
  SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
  SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
  return S;
}

SDValue
HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
  LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
  assert(BN->isUnindexed());
  MVT MemTy = BN->getMemoryVT().getSimpleVT();
  if (!isHvxPairTy(MemTy))
    return Op;

  const SDLoc &dl(Op);
  unsigned HwLen = Subtarget.getVectorLength();
  MVT SingleTy = typeSplit(MemTy).first;
  SDValue Chain = BN->getChain();
  SDValue Base0 = BN->getBasePtr();
  SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);

  MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
  if (MachineMemOperand *MMO = BN->getMemOperand()) {
    MachineFunction &MF = DAG.getMachineFunction();
    MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
    MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
  }

  unsigned MemOpc = BN->getOpcode();
  SDValue NewOp;

  if (MemOpc == ISD::LOAD) {
    SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
    SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
    NewOp = DAG.getMergeValues(
              { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
                DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                            Load0.getValue(1), Load1.getValue(1)) }, dl);
  } else {
    assert(MemOpc == ISD::STORE);
    VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
    SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
    SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
    NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
  }

  return NewOp;
}

SDValue
HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
  unsigned Opc = Op.getOpcode();
  bool IsPairOp = isHvxPairTy(ty(Op)) ||
                  llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
                    return isHvxPairTy(ty(V));
                  });

  if (IsPairOp) {
    switch (Opc) {
      default:
        break;
      case ISD::LOAD:
      case ISD::STORE:
        return SplitHvxMemOp(Op, DAG);
      case ISD::CTPOP:
      case ISD::CTLZ:
      case ISD::CTTZ:
      case ISD::MUL:
      case ISD::MULHS:
      case ISD::MULHU:
      case ISD::AND:
      case ISD::OR:
      case ISD::XOR:
      case ISD::SRA:
      case ISD::SHL:
      case ISD::SRL:
      case ISD::SETCC:
      case ISD::VSELECT:
      case ISD::SIGN_EXTEND:
      case ISD::ZERO_EXTEND:
      case ISD::SIGN_EXTEND_INREG:
        return SplitHvxPairOp(Op, DAG);
    }
  }

  switch (Opc) {
    default:
      break;
    case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
    case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
    case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
    case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
    case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
    case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);

    case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
    case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
    case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
    case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
    case ISD::SRA:
    case ISD::SHL:
    case ISD::SRL:                     return LowerHvxShift(Op, DAG);
    case ISD::MUL:                     return LowerHvxMul(Op, DAG);
    case ISD::MULHS:
    case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
    case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
    case ISD::SETCC:
    case ISD::INTRINSIC_VOID:          return Op;
    // Unaligned loads will be handled by the default lowering.
    case ISD::LOAD:                    return SDValue();
  }
#ifndef NDEBUG
  Op.dumpr(&DAG);
#endif
  llvm_unreachable("Unhandled HVX operation");
}

SDValue
HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
      const {
  const SDLoc &dl(N);
  SDValue Op(N, 0);

  unsigned Opc = Op.getOpcode();
  if (Opc == ISD::VSELECT) {
    // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
    SDValue Cond = Op.getOperand(0);
    if (Cond->getOpcode() == ISD::XOR) {
      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
      if (C1->getOpcode() == HexagonISD::QTRUE) {
        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
                                       Op.getOperand(2), Op.getOperand(1));
        return VSel;
      }
    }
  }
  return SDValue();
}

bool
HexagonTargetLowering::isHvxOperation(SDValue Op) const {
  // If the type of the result, or any operand type are HVX vector types,
  // this is an HVX operation.
  return Subtarget.isHVXVectorType(ty(Op), true) ||
         llvm::any_of(Op.getNode()->ops(),
                      [this] (SDValue V) {
                        return Subtarget.isHVXVectorType(ty(V), true);
                      });
}