HexagonMachineScheduler.cpp 34.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#include "HexagonMachineScheduler.h"
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iomanip>
#include <limits>
#include <memory>
#include <sstream>

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure",
    cl::Hidden, cl::ZeroOrMore, cl::init(false));

static cl::opt<bool> UseNewerCandidate("use-newer-candidate",
    cl::Hidden, cl::ZeroOrMore, cl::init(true));

static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level",
    cl::Hidden, cl::ZeroOrMore, cl::init(1));

// Check if the scheduler should penalize instructions that are available to
// early due to a zero-latency dependence.
static cl::opt<bool> CheckEarlyAvail("check-early-avail", cl::Hidden,
    cl::ZeroOrMore, cl::init(true));

// This value is used to determine if a register class is a high pressure set.
// We compute the maximum number of registers needed and divided by the total
// available. Then, we compare the result to this value.
static cl::opt<float> RPThreshold("hexagon-reg-pressure", cl::Hidden,
    cl::init(0.75f), cl::desc("High register pressure threhold."));

/// Return true if there is a dependence between SUd and SUu.
static bool hasDependence(const SUnit *SUd, const SUnit *SUu,
                          const HexagonInstrInfo &QII) {
  if (SUd->Succs.size() == 0)
    return false;

  // Enable .cur formation.
  if (QII.mayBeCurLoad(*SUd->getInstr()))
    return false;

  if (QII.canExecuteInBundle(*SUd->getInstr(), *SUu->getInstr()))
    return false;

  for (const auto &S : SUd->Succs) {
    // Since we do not add pseudos to packets, might as well
    // ignore order dependencies.
    if (S.isCtrl())
      continue;

    if (S.getSUnit() == SUu && S.getLatency() > 0)
      return true;
  }
  return false;
}

/// Check if scheduling of this SU is possible
/// in the current packet.
/// It is _not_ precise (statefull), it is more like
/// another heuristic. Many corner cases are figured
/// empirically.
bool VLIWResourceModel::isResourceAvailable(SUnit *SU, bool IsTop) {
  if (!SU || !SU->getInstr())
    return false;

  // First see if the pipeline could receive this instruction
  // in the current cycle.
  switch (SU->getInstr()->getOpcode()) {
  default:
    if (!ResourcesModel->canReserveResources(*SU->getInstr()))
      return false;
    break;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR:
    break;
  }

  MachineBasicBlock *MBB = SU->getInstr()->getParent();
  auto &QST = MBB->getParent()->getSubtarget<HexagonSubtarget>();
  const auto &QII = *QST.getInstrInfo();

  // Now see if there are no other dependencies to instructions already
  // in the packet.
  if (IsTop) {
    for (unsigned i = 0, e = Packet.size(); i != e; ++i)
      if (hasDependence(Packet[i], SU, QII))
        return false;
  } else {
    for (unsigned i = 0, e = Packet.size(); i != e; ++i)
      if (hasDependence(SU, Packet[i], QII))
        return false;
  }
  return true;
}

/// Keep track of available resources.
bool VLIWResourceModel::reserveResources(SUnit *SU, bool IsTop) {
  bool startNewCycle = false;
  // Artificially reset state.
  if (!SU) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    return false;
  }
  // If this SU does not fit in the packet or the packet is now full
  // start a new one.
  if (!isResourceAvailable(SU, IsTop) ||
      Packet.size() >= SchedModel->getIssueWidth()) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    startNewCycle = true;
  }

  switch (SU->getInstr()->getOpcode()) {
  default:
    ResourcesModel->reserveResources(*SU->getInstr());
    break;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::CFI_INSTRUCTION:
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR:
    break;
  }
  Packet.push_back(SU);

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    LLVM_DEBUG(dbgs() << "\t[" << i << "] SU(");
    LLVM_DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    LLVM_DEBUG(Packet[i]->getInstr()->dump());
  }
#endif

  return startNewCycle;
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
void VLIWMachineScheduler::schedule() {
  LLVM_DEBUG(dbgs() << "********** MI Converging Scheduling VLIW "
                    << printMBBReference(*BB) << " " << BB->getName()
                    << " in_func " << BB->getParent()->getName()
                    << " at loop depth " << MLI->getLoopDepth(BB) << " \n");

  buildDAGWithRegPressure();

  Topo.InitDAGTopologicalSorting();

  // Postprocess the DAG to add platform-specific artificial dependencies.
  postprocessDAG();

  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  findRootsAndBiasEdges(TopRoots, BotRoots);

  // Initialize the strategy before modifying the DAG.
  SchedImpl->initialize(this);

  LLVM_DEBUG(unsigned maxH = 0;
             for (unsigned su = 0, e = SUnits.size(); su != e;
                  ++su) if (SUnits[su].getHeight() > maxH) maxH =
                 SUnits[su].getHeight();
             dbgs() << "Max Height " << maxH << "\n";);
  LLVM_DEBUG(unsigned maxD = 0;
             for (unsigned su = 0, e = SUnits.size(); su != e;
                  ++su) if (SUnits[su].getDepth() > maxD) maxD =
                 SUnits[su].getDepth();
             dbgs() << "Max Depth " << maxD << "\n";);
  LLVM_DEBUG(dump());

  initQueues(TopRoots, BotRoots);

  bool IsTopNode = false;
  while (true) {
    LLVM_DEBUG(
        dbgs() << "** VLIWMachineScheduler::schedule picking next node\n");
    SUnit *SU = SchedImpl->pickNode(IsTopNode);
    if (!SU) break;

    if (!checkSchedLimit())
      break;

    scheduleMI(SU, IsTopNode);

    // Notify the scheduling strategy after updating the DAG.
    SchedImpl->schedNode(SU, IsTopNode);

    updateQueues(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();

  LLVM_DEBUG({
    dbgs() << "*** Final schedule for "
           << printMBBReference(*begin()->getParent()) << " ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}

void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
  DAG = static_cast<VLIWMachineScheduler*>(dag);
  SchedModel = DAG->getSchedModel();

  Top.init(DAG, SchedModel);
  Bot.init(DAG, SchedModel);

  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
  // are disabled, then these HazardRecs will be disabled.
  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
  const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  delete Top.HazardRec;
  delete Bot.HazardRec;
  Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
  Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);

  delete Top.ResourceModel;
  delete Bot.ResourceModel;
  Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
  Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());

  const std::vector<unsigned> &MaxPressure =
    DAG->getRegPressure().MaxSetPressure;
  HighPressureSets.assign(MaxPressure.size(), 0);
  for (unsigned i = 0, e = MaxPressure.size(); i < e; ++i) {
    unsigned Limit = DAG->getRegClassInfo()->getRegPressureSetLimit(i);
    HighPressureSets[i] =
      ((float) MaxPressure[i] > ((float) Limit * RPThreshold));
  }

  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
}

void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  for (const SDep &PI : SU->Preds) {
    unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle;
    unsigned MinLatency = PI.getLatency();
#ifndef NDEBUG
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
#endif
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
  }
  Top.releaseNode(SU, SU->TopReadyCycle);
}

void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  assert(SU->getInstr() && "Scheduled SUnit must have instr");

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    unsigned MinLatency = I->getLatency();
#ifndef NDEBUG
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
#endif
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
  }
  Bot.releaseNode(SU, SU->BotReadyCycle);
}

/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled())
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;

  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
  if (IssueCount + uops > SchedModel->getIssueWidth())
    return true;

  return false;
}

void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
                                                     unsigned ReadyCycle) {
  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  if (ReadyCycle > CurrCycle || checkHazard(SU))

    Pending.push(SU);
  else
    Available.push(SU);
}

/// Move the boundary of scheduled code by one cycle.
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
  unsigned Width = SchedModel->getIssueWidth();
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;

  assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
         "MinReadyCycle uninitialized");
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  } else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;

  LLVM_DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle "
                    << CurrCycle << '\n');
}

/// Move the boundary of scheduled code by one SUnit.
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
  bool startNewCycle = false;

  // Update the reservation table.
  if (HazardRec->isEnabled()) {
    if (!isTop() && SU->isCall) {
      // Calls are scheduled with their preceding instructions. For bottom-up
      // scheduling, clear the pipeline state before emitting.
      HazardRec->Reset();
    }
    HazardRec->EmitInstruction(SU);
  }

  // Update DFA model.
  startNewCycle = ResourceModel->reserveResources(SU, isTop());

  // Check the instruction group dispatch limit.
  // TODO: Check if this SU must end a dispatch group.
  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
  if (startNewCycle) {
    LLVM_DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    bumpCycle();
  }
  else
    LLVM_DEBUG(dbgs() << "*** IssueCount " << IssueCount << " at cycle "
                      << CurrCycle << '\n');
}

/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
  // If the available queue is empty, it is safe to reset MinReadyCycle.
  if (Available.empty())
    MinReadyCycle = std::numeric_limits<unsigned>::max();

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    SUnit *SU = *(Pending.begin()+i);
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;

    if (ReadyCycle < MinReadyCycle)
      MinReadyCycle = ReadyCycle;

    if (ReadyCycle > CurrCycle)
      continue;

    if (checkHazard(SU))
      continue;

    Available.push(SU);
    Pending.remove(Pending.begin()+i);
    --i; --e;
  }
  CheckPending = false;
}

/// Remove SU from the ready set for this boundary.
void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
  if (Available.isInQueue(SU))
    Available.remove(Available.find(SU));
  else {
    assert(Pending.isInQueue(SU) && "bad ready count");
    Pending.remove(Pending.find(SU));
  }
}

/// If this queue only has one ready candidate, return it. As a side effect,
/// advance the cycle until at least one node is ready. If multiple instructions
/// are ready, return NULL.
SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
  if (CheckPending)
    releasePending();

  auto AdvanceCycle = [this]() {
    if (Available.empty())
      return true;
    if (Available.size() == 1 && Pending.size() > 0)
      return !ResourceModel->isResourceAvailable(*Available.begin(), isTop()) ||
        getWeakLeft(*Available.begin(), isTop()) != 0;
    return false;
  };
  for (unsigned i = 0; AdvanceCycle(); ++i) {
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
           "permanent hazard"); (void)i;
    ResourceModel->reserveResources(nullptr, isTop());
    bumpCycle();
    releasePending();
  }
  if (Available.size() == 1)
    return *Available.begin();
  return nullptr;
}

#ifndef NDEBUG
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
      const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) {
  dbgs() << Label << " " << Q.getName() << " ";
  if (P.isValid())
    dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
           << P.getUnitInc() << " ";
  else
    dbgs() << "     ";
  dbgs() << "cost(" << Cost << ")\t";
  DAG->dumpNode(*SU);
}

// Very detailed queue dump, to be used with higher verbosity levels.
void ConvergingVLIWScheduler::readyQueueVerboseDump(
      const RegPressureTracker &RPTracker, SchedCandidate &Candidate,
      ReadyQueue &Q) {
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);

  dbgs() << ">>> " << Q.getName() << "\n";
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    RegPressureDelta RPDelta;
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
                                    DAG->getRegionCriticalPSets(),
                                    DAG->getRegPressure().MaxSetPressure);
    std::stringstream dbgstr;
    dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")";
    dbgs() << dbgstr.str();
    SchedulingCost(Q, *I, Candidate, RPDelta, true);
    dbgs() << "\t";
    (*I)->getInstr()->dump();
  }
  dbgs() << "\n";
}
#endif

/// isSingleUnscheduledPred - If SU2 is the only unscheduled predecessor
/// of SU, return true (we may have duplicates)
static inline bool isSingleUnscheduledPred(SUnit *SU, SUnit *SU2) {
  if (SU->NumPredsLeft == 0)
    return false;

  for (auto &Pred : SU->Preds) {
    // We found an available, but not scheduled, predecessor.
    if (!Pred.getSUnit()->isScheduled && (Pred.getSUnit() != SU2))
      return false;
  }

  return true;
}

/// isSingleUnscheduledSucc - If SU2 is the only unscheduled successor
/// of SU, return true (we may have duplicates)
static inline bool isSingleUnscheduledSucc(SUnit *SU, SUnit *SU2) {
  if (SU->NumSuccsLeft == 0)
    return false;

  for (auto &Succ : SU->Succs) {
    // We found an available, but not scheduled, successor.
    if (!Succ.getSUnit()->isScheduled && (Succ.getSUnit() != SU2))
      return false;
  }
  return true;
}

/// Check if the instruction changes the register pressure of a register in the
/// high pressure set. The function returns a negative value if the pressure
/// decreases and a positive value is the pressure increases. If the instruction
/// doesn't use a high pressure register or doesn't change the register
/// pressure, then return 0.
int ConvergingVLIWScheduler::pressureChange(const SUnit *SU, bool isBotUp) {
  PressureDiff &PD = DAG->getPressureDiff(SU);
  for (auto &P : PD) {
    if (!P.isValid())
      continue;
    // The pressure differences are computed bottom-up, so the comparision for
    // an increase is positive in the bottom direction, but negative in the
    //  top-down direction.
    if (HighPressureSets[P.getPSet()])
      return (isBotUp ? P.getUnitInc() : -P.getUnitInc());
  }
  return 0;
}

// Constants used to denote relative importance of
// heuristic components for cost computation.
static const unsigned PriorityOne = 200;
static const unsigned PriorityTwo = 50;
static const unsigned PriorityThree = 75;
static const unsigned ScaleTwo = 10;

/// Single point to compute overall scheduling cost.
/// TODO: More heuristics will be used soon.
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
                                            SchedCandidate &Candidate,
                                            RegPressureDelta &Delta,
                                            bool verbose) {
  // Initial trivial priority.
  int ResCount = 1;

  // Do not waste time on a node that is already scheduled.
  if (!SU || SU->isScheduled)
    return ResCount;

  LLVM_DEBUG(if (verbose) dbgs()
             << ((Q.getID() == TopQID) ? "(top|" : "(bot|"));
  // Forced priority is high.
  if (SU->isScheduleHigh) {
    ResCount += PriorityOne;
    LLVM_DEBUG(dbgs() << "H|");
  }

  unsigned IsAvailableAmt = 0;
  // Critical path first.
  if (Q.getID() == TopQID) {
    if (Top.isLatencyBound(SU)) {
      LLVM_DEBUG(if (verbose) dbgs() << "LB|");
      ResCount += (SU->getHeight() * ScaleTwo);
    }

    LLVM_DEBUG(if (verbose) {
      std::stringstream dbgstr;
      dbgstr << "h" << std::setw(3) << SU->getHeight() << "|";
      dbgs() << dbgstr.str();
    });

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Top.ResourceModel->isResourceAvailable(SU, true)) {
      IsAvailableAmt = (PriorityTwo + PriorityThree);
      ResCount += IsAvailableAmt;
      LLVM_DEBUG(if (verbose) dbgs() << "A|");
    } else
      LLVM_DEBUG(if (verbose) dbgs() << " |");
  } else {
    if (Bot.isLatencyBound(SU)) {
      LLVM_DEBUG(if (verbose) dbgs() << "LB|");
      ResCount += (SU->getDepth() * ScaleTwo);
    }

    LLVM_DEBUG(if (verbose) {
      std::stringstream dbgstr;
      dbgstr << "d" << std::setw(3) << SU->getDepth() << "|";
      dbgs() << dbgstr.str();
    });

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Bot.ResourceModel->isResourceAvailable(SU, false)) {
      IsAvailableAmt = (PriorityTwo + PriorityThree);
      ResCount += IsAvailableAmt;
      LLVM_DEBUG(if (verbose) dbgs() << "A|");
    } else
      LLVM_DEBUG(if (verbose) dbgs() << " |");
  }

  unsigned NumNodesBlocking = 0;
  if (Q.getID() == TopQID) {
    // How many SUs does it block from scheduling?
    // Look at all of the successors of this node.
    // Count the number of nodes that
    // this node is the sole unscheduled node for.
    if (Top.isLatencyBound(SU))
      for (const SDep &SI : SU->Succs)
        if (isSingleUnscheduledPred(SI.getSUnit(), SU))
          ++NumNodesBlocking;
  } else {
    // How many unscheduled predecessors block this node?
    if (Bot.isLatencyBound(SU))
      for (const SDep &PI : SU->Preds)
        if (isSingleUnscheduledSucc(PI.getSUnit(), SU))
          ++NumNodesBlocking;
  }
  ResCount += (NumNodesBlocking * ScaleTwo);

  LLVM_DEBUG(if (verbose) {
    std::stringstream dbgstr;
    dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|";
    dbgs() << dbgstr.str();
  });

  // Factor in reg pressure as a heuristic.
  if (!IgnoreBBRegPressure) {
    // Decrease priority by the amount that register pressure exceeds the limit.
    ResCount -= (Delta.Excess.getUnitInc()*PriorityOne);
    // Decrease priority if register pressure exceeds the limit.
    ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne);
    // Decrease priority slightly if register pressure would increase over the
    // current maximum.
    ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo);
    // If there are register pressure issues, then we remove the value added for
    // the instruction being available. The rationale is that we really don't
    // want to schedule an instruction that causes a spill.
    if (IsAvailableAmt && pressureChange(SU, Q.getID() != TopQID) > 0 &&
        (Delta.Excess.getUnitInc() || Delta.CriticalMax.getUnitInc() ||
         Delta.CurrentMax.getUnitInc()))
      ResCount -= IsAvailableAmt;
    LLVM_DEBUG(if (verbose) {
      dbgs() << "RP " << Delta.Excess.getUnitInc() << "/"
             << Delta.CriticalMax.getUnitInc() << "/"
             << Delta.CurrentMax.getUnitInc() << ")|";
    });
  }

  // Give a little extra priority to a .cur instruction if there is a resource
  // available for it.
  auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
  auto &QII = *QST.getInstrInfo();
  if (SU->isInstr() && QII.mayBeCurLoad(*SU->getInstr())) {
    if (Q.getID() == TopQID &&
        Top.ResourceModel->isResourceAvailable(SU, true)) {
      ResCount += PriorityTwo;
      LLVM_DEBUG(if (verbose) dbgs() << "C|");
    } else if (Q.getID() == BotQID &&
               Bot.ResourceModel->isResourceAvailable(SU, false)) {
      ResCount += PriorityTwo;
      LLVM_DEBUG(if (verbose) dbgs() << "C|");
    }
  }

  // Give preference to a zero latency instruction if the dependent
  // instruction is in the current packet.
  if (Q.getID() == TopQID && getWeakLeft(SU, true) == 0) {
    for (const SDep &PI : SU->Preds) {
      if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() &&
          PI.getLatency() == 0 &&
          Top.ResourceModel->isInPacket(PI.getSUnit())) {
        ResCount += PriorityThree;
        LLVM_DEBUG(if (verbose) dbgs() << "Z|");
      }
    }
  } else if (Q.getID() == BotQID && getWeakLeft(SU, false) == 0) {
    for (const SDep &SI : SU->Succs) {
      if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() &&
          SI.getLatency() == 0 &&
          Bot.ResourceModel->isInPacket(SI.getSUnit())) {
        ResCount += PriorityThree;
        LLVM_DEBUG(if (verbose) dbgs() << "Z|");
      }
    }
  }

  // If the instruction has a non-zero latency dependence with an instruction in
  // the current packet, then it should not be scheduled yet. The case occurs
  // when the dependent instruction is scheduled in a new packet, so the
  // scheduler updates the current cycle and pending instructions become
  // available.
  if (CheckEarlyAvail) {
    if (Q.getID() == TopQID) {
      for (const auto &PI : SU->Preds) {
        if (PI.getLatency() > 0 &&
            Top.ResourceModel->isInPacket(PI.getSUnit())) {
          ResCount -= PriorityOne;
          LLVM_DEBUG(if (verbose) dbgs() << "D|");
        }
      }
    } else {
      for (const auto &SI : SU->Succs) {
        if (SI.getLatency() > 0 &&
            Bot.ResourceModel->isInPacket(SI.getSUnit())) {
          ResCount -= PriorityOne;
          LLVM_DEBUG(if (verbose) dbgs() << "D|");
        }
      }
    }
  }

  LLVM_DEBUG(if (verbose) {
    std::stringstream dbgstr;
    dbgstr << "Total " << std::setw(4) << ResCount << ")";
    dbgs() << dbgstr.str();
  });

  return ResCount;
}

/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
pickNodeFromQueue(VLIWSchedBoundary &Zone, const RegPressureTracker &RPTracker,
                  SchedCandidate &Candidate) {
  ReadyQueue &Q = Zone.Available;
  LLVM_DEBUG(if (SchedDebugVerboseLevel > 1)
                 readyQueueVerboseDump(RPTracker, Candidate, Q);
             else Q.dump(););

  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  // BestSU remains NULL if no top candidates beat the best existing candidate.
  CandResult FoundCandidate = NoCand;
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    RegPressureDelta RPDelta;
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
                                    DAG->getRegionCriticalPSets(),
                                    DAG->getRegPressure().MaxSetPressure);

    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);

    // Initialize the candidate if needed.
    if (!Candidate.SU) {
      LLVM_DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = NodeOrder;
      continue;
    }

    // Choose node order for negative cost candidates. There is no good
    // candidate in this case.
    if (CurrentCost < 0 && Candidate.SCost < 0) {
      if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
          || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
        LLVM_DEBUG(traceCandidate("NCAND", Q, *I, CurrentCost));
        Candidate.SU = *I;
        Candidate.RPDelta = RPDelta;
        Candidate.SCost = CurrentCost;
        FoundCandidate = NodeOrder;
      }
      continue;
    }

    // Best cost.
    if (CurrentCost > Candidate.SCost) {
      LLVM_DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = BestCost;
      continue;
    }

    // Choose an instruction that does not depend on an artificial edge.
    unsigned CurrWeak = getWeakLeft(*I, (Q.getID() == TopQID));
    unsigned CandWeak = getWeakLeft(Candidate.SU, (Q.getID() == TopQID));
    if (CurrWeak != CandWeak) {
      if (CurrWeak < CandWeak) {
        LLVM_DEBUG(traceCandidate("WCAND", Q, *I, CurrentCost));
        Candidate.SU = *I;
        Candidate.RPDelta = RPDelta;
        Candidate.SCost = CurrentCost;
        FoundCandidate = Weak;
      }
      continue;
    }

    if (CurrentCost == Candidate.SCost && Zone.isLatencyBound(*I)) {
      unsigned CurrSize, CandSize;
      if (Q.getID() == TopQID) {
        CurrSize = (*I)->Succs.size();
        CandSize = Candidate.SU->Succs.size();
      } else {
        CurrSize = (*I)->Preds.size();
        CandSize = Candidate.SU->Preds.size();
      }
      if (CurrSize > CandSize) {
        LLVM_DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost));
        Candidate.SU = *I;
        Candidate.RPDelta = RPDelta;
        Candidate.SCost = CurrentCost;
        FoundCandidate = BestCost;
      }
      // Keep the old candidate if it's a better candidate. That is, don't use
      // the subsequent tie breaker.
      if (CurrSize != CandSize)
        continue;
    }

    // Tie breaker.
    // To avoid scheduling indeterminism, we need a tie breaker
    // for the case when cost is identical for two nodes.
    if (UseNewerCandidate && CurrentCost == Candidate.SCost) {
      if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
          || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
        LLVM_DEBUG(traceCandidate("TCAND", Q, *I, CurrentCost));
        Candidate.SU = *I;
        Candidate.RPDelta = RPDelta;
        Candidate.SCost = CurrentCost;
        FoundCandidate = NodeOrder;
        continue;
      }
    }

    // Fall through to original instruction order.
    // Only consider node order if Candidate was chosen from this Q.
    if (FoundCandidate == NoCand)
      continue;
  }
  return FoundCandidate;
}

/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    LLVM_DEBUG(dbgs() << "Picked only Bottom\n");
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    LLVM_DEBUG(dbgs() << "Picked only Top\n");
    IsTopNode = true;
    return SU;
  }
  SchedCandidate BotCand;
  // Prefer bottom scheduling when heuristics are silent.
  CandResult BotResult = pickNodeFromQueue(Bot,
                                           DAG->getBotRPTracker(), BotCand);
  assert(BotResult != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that provides the least increase in
  // Excess pressure, we can immediately schedule from that Q.
  //
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
  // affects picking from either Q. If scheduling in one direction must
  // increase pressure for one of the excess PSets, then schedule in that
  // direction first to provide more freedom in the other direction.
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
    LLVM_DEBUG(dbgs() << "Prefered Bottom Node\n");
    IsTopNode = false;
    return BotCand.SU;
  }
  // Check if the top Q has a better candidate.
  SchedCandidate TopCand;
  CandResult TopResult = pickNodeFromQueue(Top,
                                           DAG->getTopRPTracker(), TopCand);
  assert(TopResult != NoCand && "failed to find the first candidate");

  if (TopResult == SingleExcess || TopResult == SingleCritical) {
    LLVM_DEBUG(dbgs() << "Prefered Top Node\n");
    IsTopNode = true;
    return TopCand.SU;
  }
  // If either Q has a single candidate that minimizes pressure above the
  // original region's pressure pick it.
  if (BotResult == SingleMax) {
    LLVM_DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n");
    IsTopNode = false;
    return BotCand.SU;
  }
  if (TopResult == SingleMax) {
    LLVM_DEBUG(dbgs() << "Prefered Top Node SingleMax\n");
    IsTopNode = true;
    return TopCand.SU;
  }
  if (TopCand.SCost > BotCand.SCost) {
    LLVM_DEBUG(dbgs() << "Prefered Top Node Cost\n");
    IsTopNode = true;
    return TopCand.SU;
  }
  // Otherwise prefer the bottom candidate in node order.
  LLVM_DEBUG(dbgs() << "Prefered Bottom in Node order\n");
  IsTopNode = false;
  return BotCand.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  if (ForceTopDown) {
    SU = Top.pickOnlyChoice();
    if (!SU) {
      SchedCandidate TopCand;
      CandResult TopResult =
        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
      assert(TopResult != NoCand && "failed to find the first candidate");
      (void)TopResult;
      SU = TopCand.SU;
    }
    IsTopNode = true;
  } else if (ForceBottomUp) {
    SU = Bot.pickOnlyChoice();
    if (!SU) {
      SchedCandidate BotCand;
      CandResult BotResult =
        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
      assert(BotResult != NoCand && "failed to find the first candidate");
      (void)BotResult;
      SU = BotCand.SU;
    }
    IsTopNode = false;
  } else {
    SU = pickNodeBidrectional(IsTopNode);
  }
  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  LLVM_DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
                    << " Scheduling instruction in cycle "
                    << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << " ("
                    << reportPackets() << ")\n";
             DAG->dumpNode(*SU));
  return SU;
}

/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
/// to update it's state based on the current cycle before MachineSchedStrategy
/// does.
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  if (IsTopNode) {
    Top.bumpNode(SU);
    SU->TopReadyCycle = Top.CurrCycle;
  } else {
    Bot.bumpNode(SU);
    SU->BotReadyCycle = Bot.CurrCycle;
  }
}