HexagonMCInstrInfo.cpp
31.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonMCExpr.h"
#include "MCTargetDesc/HexagonMCShuffler.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <limits>
using namespace llvm;
bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
return Register != Hexagon::NoRegister;
}
Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
MCInst const &Inst)
: MCII(MCII), BundleCurrent(Inst.begin() +
HexagonMCInstrInfo::bundleInstructionsOffset),
BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
MCInst const &Inst, std::nullptr_t)
: MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
if (DuplexCurrent != DuplexEnd) {
++DuplexCurrent;
if (DuplexCurrent == DuplexEnd) {
DuplexCurrent = BundleEnd;
DuplexEnd = BundleEnd;
++BundleCurrent;
}
return *this;
}
++BundleCurrent;
if (BundleCurrent != BundleEnd) {
MCInst const &Inst = *BundleCurrent->getInst();
if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
DuplexCurrent = Inst.begin();
DuplexEnd = Inst.end();
}
}
return *this;
}
MCInst const &Hexagon::PacketIterator::operator*() const {
if (DuplexCurrent != DuplexEnd)
return *DuplexCurrent->getInst();
return *BundleCurrent->getInst();
}
bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
}
void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
MCContext &Context) {
MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
}
void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isBundle(MCB));
MCOperand const &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// Create the extender.
MCInst *XMCI =
new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
XMCI->setLoc(MCI.getLoc());
MCB.addOperand(MCOperand::createInst(XMCI));
}
iterator_range<Hexagon::PacketIterator>
HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(isBundle(MCI));
return make_range(Hexagon::PacketIterator(MCII, MCI),
Hexagon::PacketIterator(MCII, MCI, nullptr));
}
iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
assert(isBundle(MCI));
return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
}
size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
if (HexagonMCInstrInfo::isBundle(MCI))
return (MCI.size() - bundleInstructionsOffset);
else
return (1);
}
bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Check) {
// Check the bundle for errors.
bool CheckOk = Check ? Check->check(false) : true;
if (!CheckOk)
return false;
// Examine the packet and convert pairs of instructions to compound
// instructions when possible.
if (!HexagonDisableCompound)
HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
HexagonMCShuffle(Context, false, MCII, STI, MCB);
// Examine the packet and convert pairs of instructions to duplex
// instructions when possible.
MCInst InstBundlePreDuplex = MCInst(MCB);
if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
SmallVector<DuplexCandidate, 8> possibleDuplexes;
possibleDuplexes =
HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
}
// Examines packet and pad the packet, if needed, when an
// end-loop is in the bundle.
HexagonMCInstrInfo::padEndloop(MCB, Context);
// If compounding and duplexing didn't reduce the size below
// 4 or less we have a packet that is too big.
if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
return false;
// Check the bundle for errors.
CheckOk = Check ? Check->check(true) : true;
if (!CheckOk)
return false;
HexagonMCShuffle(Context, true, MCII, STI, MCB);
return true;
}
MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
MCInst const &Inst,
MCOperand const &MO) {
assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
HexagonMCInstrInfo::isExtended(MCII, Inst));
MCInst XMI;
XMI.setOpcode(Hexagon::A4_ext);
if (MO.isImm())
XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
else if (MO.isExpr())
XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
else
llvm_unreachable("invalid extendable operand");
return XMI;
}
MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
MCInst const &inst0,
MCInst const &inst1) {
assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
MCInst *duplexInst = new (Context) MCInst;
duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
duplexInst->addOperand(MCOperand::createInst(SubInst0));
duplexInst->addOperand(MCOperand::createInst(SubInst1));
return duplexInst;
}
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
size_t Index) {
assert(Index <= bundleSize(MCB));
if (Index == 0)
return nullptr;
MCInst const *Inst =
MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
if (isImmext(*Inst))
return Inst;
return nullptr;
}
void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
if (isConstExtended(MCII, MCI))
addConstExtender(Context, MCII, MCB, MCI);
}
unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
}
unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
HexagonII::AddrModeMask);
}
MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.get(MCI.getOpcode());
}
unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
using namespace Hexagon;
switch (Reg) {
default:
llvm_unreachable("unknown duplex register");
// Rs Rss
case R0:
case D0:
return 0;
case R1:
case D1:
return 1;
case R2:
case D2:
return 2;
case R3:
case D3:
return 3;
case R4:
case D8:
return 4;
case R5:
case D9:
return 5;
case R6:
case D10:
return 6;
case R7:
case D11:
return 7;
case R16:
return 8;
case R17:
return 9;
case R18:
return 10;
case R19:
return 11;
case R20:
return 12;
case R21:
return 13;
case R22:
return 14;
case R23:
return 15;
}
}
MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
const auto &HExpr = cast<HexagonMCExpr>(Expr);
assert(HExpr.getExpr());
return *HExpr.getExpr();
}
unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCOperand const &
HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
MCOperand const &MO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
(MO.isImm() || MO.isExpr()));
return (MO);
}
unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
}
unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
}
/// Return the maximum value of an extendable operand.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
}
/// Return the minimum value of an extendable operand.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
return 0;
}
StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.getName(MCI.getOpcode());
}
unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
}
MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
// VTMP doesn't actually exist in the encodings for these 184
// 3 instructions so go ahead and create it here.
static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
return (MCO);
} else {
unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
}
/// Return the new value or the newly produced value.
unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
}
MCOperand const &
HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
/// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
/// Return the slots this instruction can execute out of
unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
}
/// Return the slots this instruction consumes in addition to
/// the slot(s) it can execute out of
unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
unsigned Slots = 0;
// FirstStage are slots that this instruction can execute in.
// FirstStage+1 are slots that are also consumed by this instruction.
// For example: vmemu can only execute in slot 0 but also consumes slot 1.
for (unsigned Stage = II[SchedClass].FirstStage + 1;
Stage < II[SchedClass].LastStage; ++Stage) {
unsigned Units = (Stage + HexagonStages)->getUnits();
if (Units > HexagonGetLastSlot())
break;
// fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
Slots |= Units;
}
// if 0 is returned, then no additional slots are consumed by this inst.
return Slots;
}
bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
return true;
}
return false;
}
bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
return extenderForIndex(MCB, Index) != nullptr;
}
bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
if (isImmext(*I.getInst()))
return true;
}
return false;
}
/// Return whether the insn produces a value.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
/// Return whether the insn produces a second value.
bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
}
MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
assert(isBundle(MCB));
assert(Index < HEXAGON_PACKET_SIZE);
return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
}
/// Return where the instruction is an accumulator.
bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
}
bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
auto Result = Hexagon::BUNDLE == MCI.getOpcode();
assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
return Result;
}
bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::isExtended(MCII, MCI))
return true;
if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
return false;
MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
if (isa<HexagonMCExpr>(MO.getExpr()) &&
HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
return true;
// Branch insns are handled as necessary by relaxation.
if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
return false;
// Otherwise loop instructions and other CR insts are handled by relaxation
else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
(MCI.getOpcode() != Hexagon::C4_addipc))
return false;
assert(!MO.isImm());
if (isa<HexagonMCExpr>(MO.getExpr()) &&
HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
return false;
int64_t Value;
if (!MO.getExpr()->evaluateAsAbsolute(Value))
return true;
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
return (MinValue > Value || Value > MaxValue);
}
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
!HexagonMCInstrInfo::isPrefix(MCII, MCI);
}
bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
}
bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
}
bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
}
bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (getType(MCII, MCI) == HexagonII::TypeCJ);
}
bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
}
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
}
bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
}
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
}
bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t V = getType(MCII, MCI);
return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
}
bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
return MCI.getOpcode() == Hexagon::A4_ext;
}
bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & innerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
}
bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
}
/// Return whether the insn expects newly produced value.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
/// Return whether the operand is extendable.
bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
MCInst const &MCI, unsigned short O) {
return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
}
bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & outerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
}
bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
}
/// Return whether the insn is newly predicated.
bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}
bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
}
/// Return whether the insn can be packaged only with A and X-type insns.
bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
}
/// Return whether the insn can be packaged only with an A-type insn in slot #1.
bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::RestrictSlot1AOKPos) &
HexagonII::RestrictSlot1AOKMask);
}
bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::RestrictNoSlot1StorePos) &
HexagonII::RestrictNoSlot1StoreMask);
}
/// Return whether the insn is solo, i.e., cannot be in a packet.
bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memReorderDisabledMask) != 0;
}
bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
switch (MCI.getOpcode()) {
default:
return false;
case Hexagon::SA1_addi:
case Hexagon::SA1_addrx:
case Hexagon::SA1_addsp:
case Hexagon::SA1_and1:
case Hexagon::SA1_clrf:
case Hexagon::SA1_clrfnew:
case Hexagon::SA1_clrt:
case Hexagon::SA1_clrtnew:
case Hexagon::SA1_cmpeqi:
case Hexagon::SA1_combine0i:
case Hexagon::SA1_combine1i:
case Hexagon::SA1_combine2i:
case Hexagon::SA1_combine3i:
case Hexagon::SA1_combinerz:
case Hexagon::SA1_combinezr:
case Hexagon::SA1_dec:
case Hexagon::SA1_inc:
case Hexagon::SA1_seti:
case Hexagon::SA1_setin1:
case Hexagon::SA1_sxtb:
case Hexagon::SA1_sxth:
case Hexagon::SA1_tfr:
case Hexagon::SA1_zxtb:
case Hexagon::SA1_zxth:
case Hexagon::SL1_loadri_io:
case Hexagon::SL1_loadrub_io:
case Hexagon::SL2_deallocframe:
case Hexagon::SL2_jumpr31:
case Hexagon::SL2_jumpr31_f:
case Hexagon::SL2_jumpr31_fnew:
case Hexagon::SL2_jumpr31_t:
case Hexagon::SL2_jumpr31_tnew:
case Hexagon::SL2_loadrb_io:
case Hexagon::SL2_loadrd_sp:
case Hexagon::SL2_loadrh_io:
case Hexagon::SL2_loadri_sp:
case Hexagon::SL2_loadruh_io:
case Hexagon::SL2_return:
case Hexagon::SL2_return_f:
case Hexagon::SL2_return_fnew:
case Hexagon::SL2_return_t:
case Hexagon::SL2_return_tnew:
case Hexagon::SS1_storeb_io:
case Hexagon::SS1_storew_io:
case Hexagon::SS2_allocframe:
case Hexagon::SS2_storebi0:
case Hexagon::SS2_storebi1:
case Hexagon::SS2_stored_sp:
case Hexagon::SS2_storeh_io:
case Hexagon::SS2_storew_sp:
case Hexagon::SS2_storewi0:
case Hexagon::SS2_storewi1:
return true;
}
}
bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
(getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
return true;
return false;
}
int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
<< 8;
if (MCI.size() <= Index)
return Sentinal;
MCOperand const &MCO = MCI.getOperand(Index);
if (!MCO.isExpr())
return Sentinal;
int64_t Value;
if (!MCO.getExpr()->evaluateAsAbsolute(Value))
return Sentinal;
return Value;
}
void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
HExpr.setMustExtend(Val);
}
bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
return HExpr.mustExtend();
}
void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
HExpr.setMustNotExtend(Val);
}
bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
return HExpr.mustNotExtend();
}
void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
HexagonMCExpr &HExpr =
const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
HExpr.setS27_2_reloc(Val);
}
bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
if (!HExpr)
return false;
return HExpr->s27_2_reloc();
}
void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
MCInst Nop;
Nop.setOpcode(Hexagon::A2_nop);
assert(isBundle(MCB));
while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
((HexagonMCInstrInfo::isOuterLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
}
HexagonMCInstrInfo::PredicateInfo
HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
if (!isPredicated(MCII, MCI))
return {0, 0, false};
MCInstrDesc const &Desc = getDesc(MCII, MCI);
for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
return {0, 0, false};
}
bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
}
/// return true if instruction has hasTmpDst attribute.
bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
}
void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
DuplexCandidate Candidate) {
assert(Candidate.packetIndexI < MCB.size());
assert(Candidate.packetIndexJ < MCB.size());
assert(isBundle(MCB));
MCInst *Duplex =
deriveDuplex(Context, Candidate.iClass,
*MCB.getOperand(Candidate.packetIndexJ).getInst(),
*MCB.getOperand(Candidate.packetIndexI).getInst());
assert(Duplex != nullptr);
MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
MCB.erase(MCB.begin() + Candidate.packetIndexJ);
}
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | innerLoopMask);
}
void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memReorderDisabledMask);
assert(isMemReorderDisabled(MCI));
}
void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | outerLoopMask);
}
unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
unsigned Producer,
unsigned Producer2) {
// If we're a single vector consumer of a double producer, set subreg bit
// based on if we're accessing the lower or upper register component
if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
return (Consumer - Hexagon::V0) & 0x1;
if (Producer2 != Hexagon::NoRegister)
return Consumer == Producer;
return 0;
}