HexagonShuffler.cpp 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the shuffling of insns inside a bundle according to the
// packet formation rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hexagon-shuffle"

#include "MCTargetDesc/HexagonShuffler.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

// Insn shuffling priority.
class HexagonBid {
  // The priority is directly proportional to how restricted the insn is based
  // on its flexibility to run on the available slots.  So, the fewer slots it
  // may run on, the higher its priority.
  enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15.
  unsigned Bid = 0;

public:
  HexagonBid() = default;
  HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; }

  // Check if the insn priority is overflowed.
  bool isSold() const { return (Bid >= MAX); }

  HexagonBid &operator+=(const HexagonBid &B) {
    Bid += B.Bid;
    return *this;
  }
};

// Slot shuffling allocation.
class HexagonUnitAuction {
  HexagonBid Scores[HEXAGON_PACKET_SIZE];
  // Mask indicating which slot is unavailable.
  unsigned isSold : HEXAGON_PACKET_SIZE;

public:
  HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {}

  // Allocate slots.
  bool bid(unsigned B) {
    // Exclude already auctioned slots from the bid.
    unsigned b = B & ~isSold;
    if (b) {
      for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i)
        if (b & (1 << i)) {
          // Request candidate slots.
          Scores[i] += HexagonBid(b);
          isSold |= Scores[i].isSold() << i;
        }
      return true;
    } else
      // Error if the desired slots are already full.
      return false;
  }
};

} // end anonymous namespace

unsigned HexagonResource::setWeight(unsigned s) {
  const unsigned SlotWeight = 8;
  const unsigned MaskWeight = SlotWeight - 1;
  unsigned Units = getUnits();
  unsigned Key = ((1u << s) & Units) != 0;

  // Calculate relative weight of the insn for the given slot, weighing it the
  // heavier the more restrictive the insn is and the lowest the slots that the
  // insn may be executed in.
  if (Key == 0 || Units == 0 || (SlotWeight * s >= 32))
    return Weight = 0;

  unsigned Ctpop = countPopulation(Units);
  unsigned Cttz = countTrailingZeros(Units);
  Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz);
  return Weight;
}

void HexagonCVIResource::SetupTUL(TypeUnitsAndLanes *TUL, StringRef CPU) {
  (*TUL)[HexagonII::TypeCVI_VA] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VA_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_VX] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VX_LATE] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VX_DV] = UnitsAndLanes(CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_VP] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_VP_VS] = UnitsAndLanes(CVI_XLANE, 2);
  (*TUL)[HexagonII::TypeCVI_VS] = UnitsAndLanes(CVI_SHIFT, 1);
  (*TUL)[HexagonII::TypeCVI_VS_VX] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT, 1);
  (*TUL)[HexagonII::TypeCVI_VINLANESAT] =
      (CPU == "hexagonv60")
          ? UnitsAndLanes(CVI_SHIFT, 1)
          : UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_LD] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_TMP_LD] = UnitsAndLanes(CVI_NONE, 0);
  (*TUL)[HexagonII::TypeCVI_VM_VP_LDU] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_VM_ST] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_NEW_ST] = UnitsAndLanes(CVI_NONE, 0);
  (*TUL)[HexagonII::TypeCVI_VM_STU] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_HIST] = UnitsAndLanes(CVI_XLANE, 4);
  (*TUL)[HexagonII::TypeCVI_GATHER] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_SCATTER] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_SCATTER_DV] =
      UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_SCATTER_NEW_ST] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_4SLOT_MPY] = UnitsAndLanes(CVI_XLANE, 4);
  (*TUL)[HexagonII::TypeCVI_ZW] = UnitsAndLanes(CVI_ZW, 1);
}

HexagonCVIResource::HexagonCVIResource(TypeUnitsAndLanes *TUL,
                                       MCInstrInfo const &MCII, unsigned s,
                                       MCInst const *id)
    : HexagonResource(s) {
  unsigned T = HexagonMCInstrInfo::getType(MCII, *id);

  if (TUL->count(T)) {
    // For an HVX insn.
    Valid = true;
    setUnits((*TUL)[T].first);
    setLanes((*TUL)[T].second);
    setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad());
    setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore());
  } else {
    // For core insns.
    Valid = false;
    setUnits(0);
    setLanes(0);
    setLoad(false);
    setStore(false);
  }
}

struct CVIUnits {
  unsigned Units;
  unsigned Lanes;
};
using HVXInstsT = SmallVector<struct CVIUnits, 8>;

static unsigned makeAllBits(unsigned startBit, unsigned Lanes)
{
  for (unsigned i = 1; i < Lanes; ++i)
    startBit = (startBit << 1) | startBit;
  return startBit;
}

static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx,
                          unsigned usedUnits) {
  if (startIdx < hvxInsts.size()) {
    if (!hvxInsts[startIdx].Units)
      return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits);
    for (unsigned b = 0x1; b <= 0x8; b <<= 1) {
      if ((hvxInsts[startIdx].Units & b) == 0)
        continue;
      unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes);
      if ((allBits & usedUnits) == 0) {
        if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits))
          return true;
      }
    }
    return false;
  }
  return true;
}

HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors,
                                 MCInstrInfo const &MCII,
                                 MCSubtargetInfo const &STI)
    : Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) {
  reset();
  HexagonCVIResource::SetupTUL(&TUL, STI.getCPU());
}

void HexagonShuffler::reset() {
  Packet.clear();
  BundleFlags = 0;
}

void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender,
                             unsigned S) {
  HexagonInstr PI(&TUL, MCII, &ID, Extender, S);

  Packet.push_back(PI);
}

static struct {
  unsigned first;
  unsigned second;
} jumpSlots[] = {{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}};
#define MAX_JUMP_SLOTS (sizeof(jumpSlots) / sizeof(jumpSlots[0]))

void HexagonShuffler::restrictSlot1AOK() {
  bool HasRestrictSlot1AOK = false;
  SMLoc RestrictLoc;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &Inst = ISJ->getDesc();
    if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, Inst)) {
      HasRestrictSlot1AOK = true;
      RestrictLoc = Inst.getLoc();
    }
  }
  if (HasRestrictSlot1AOK)
    for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
      MCInst const &Inst = ISJ->getDesc();
      unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst);
      if (Type != HexagonII::TypeALU32_2op &&
          Type != HexagonII::TypeALU32_3op &&
          Type != HexagonII::TypeALU32_ADDI) {
        unsigned Units = ISJ->Core.getUnits();
        if (Units & 2U) {
          AppliedRestrictions.push_back(std::make_pair(
              Inst.getLoc(),
              "Instruction was restricted from being in slot 1"));
          AppliedRestrictions.push_back(
              std::make_pair(RestrictLoc, "Instruction can only be combine "
                                          "with an ALU instruction in slot 1"));
          ISJ->Core.setUnits(Units & ~2U);
        }
      }
    }
}

void HexagonShuffler::restrictNoSlot1Store() {
  bool HasRestrictNoSlot1Store = false;
  SMLoc RestrictLoc;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &Inst = ISJ->getDesc();
    if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, Inst)) {
      HasRestrictNoSlot1Store = true;
      RestrictLoc = Inst.getLoc();
    }
  }
  if (HasRestrictNoSlot1Store) {
    bool AppliedRestriction = false;
    for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
      MCInst const &Inst = ISJ->getDesc();
      if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) {
        unsigned Units = ISJ->Core.getUnits();
        if (Units & 2U) {
          AppliedRestriction = true;
          AppliedRestrictions.push_back(std::make_pair(
              Inst.getLoc(),
              "Instruction was restricted from being in slot 1"));
          ISJ->Core.setUnits(Units & ~2U);
        }
      }
    }
    if (AppliedRestriction)
      AppliedRestrictions.push_back(std::make_pair(
          RestrictLoc, "Instruction does not allow a store in slot 1"));
  }
}

void HexagonShuffler::applySlotRestrictions() {
  restrictSlot1AOK();
  restrictNoSlot1Store();
}

/// Check that the packet is legal and enforce relative insn order.
bool HexagonShuffler::check() {
  // Descriptive slot masks.
  const unsigned slotSingleLoad = 0x1, slotSingleStore = 0x1,
                 slotThree = 0x8, // slotFirstJump = 0x8,
                 slotFirstLoadStore = 0x2, slotLastLoadStore = 0x1;
  // Highest slots for branches and stores used to keep their original order.
  // unsigned slotJump = slotFirstJump;
  unsigned slotLoadStore = slotFirstLoadStore;
  // Number of memory operations, loads, solo loads, stores, solo stores, single
  // stores.
  unsigned memory = 0, loads = 0, load0 = 0, stores = 0, store0 = 0, store1 = 0;
  unsigned NonZCVIloads = 0, AllCVIloads = 0, CVIstores = 0;
  // Number of duplex insns
  unsigned duplex = 0;
  unsigned pSlot3Cnt = 0;
  unsigned memops = 0;
  iterator slot3ISJ = end();
  std::vector<iterator> foundBranches;
  unsigned reservedSlots = 0;

  // Collect information from the insns in the packet.
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &ID = ISJ->getDesc();

    if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) {
      ++pSlot3Cnt;
      slot3ISJ = ISJ;
    }
    reservedSlots |= HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID);

    switch (HexagonMCInstrInfo::getType(MCII, ID)) {
    case HexagonII::TypeS_2op:
    case HexagonII::TypeS_3op:
    case HexagonII::TypeALU64:
      break;
    case HexagonII::TypeJ:
      foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeCVI_VM_VP_LDU:
    case HexagonII::TypeCVI_VM_LD:
    case HexagonII::TypeCVI_VM_TMP_LD:
    case HexagonII::TypeCVI_GATHER:
    case HexagonII::TypeCVI_GATHER_RST:
      ++NonZCVIloads;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeCVI_ZW:
      ++AllCVIloads;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeLD:
      ++loads;
      ++memory;
      if (ISJ->Core.getUnits() == slotSingleLoad ||
          HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU)
        ++load0;
      if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn())
        foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeCVI_VM_STU:
    case HexagonII::TypeCVI_VM_ST:
    case HexagonII::TypeCVI_VM_NEW_ST:
    case HexagonII::TypeCVI_SCATTER:
    case HexagonII::TypeCVI_SCATTER_DV:
    case HexagonII::TypeCVI_SCATTER_RST:
    case HexagonII::TypeCVI_SCATTER_NEW_RST:
    case HexagonII::TypeCVI_SCATTER_NEW_ST:
      ++CVIstores;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeST:
      ++stores;
      ++memory;
      if (ISJ->Core.getUnits() == slotSingleStore ||
          HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU)
        ++store0;
      break;
    case HexagonII::TypeV4LDST:
      ++loads;
      ++stores;
      ++store1;
      ++memops;
      ++memory;
      break;
    case HexagonII::TypeNCJ:
      ++memory; // NV insns are memory-like.
      foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeV2LDST:
      if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
        ++loads;
        ++memory;
        if (ISJ->Core.getUnits() == slotSingleLoad ||
            HexagonMCInstrInfo::getType(MCII, ID) ==
                HexagonII::TypeCVI_VM_VP_LDU)
          ++load0;
      } else {
        assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore());
        ++memory;
        ++stores;
      }
      break;
    case HexagonII::TypeCR:
    // Legacy conditional branch predicated on a register.
    case HexagonII::TypeCJ:
      if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch())
        foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeDUPLEX: {
      ++duplex;
      MCInst const &Inst0 = *ID.getOperand(0).getInst();
      MCInst const &Inst1 = *ID.getOperand(1).getInst();
      if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn())
        foundBranches.push_back(ISJ);
      break;
    }
    }
  }
  applySlotRestrictions();

  // Check if the packet is legal.
  const unsigned ZCVIloads = AllCVIloads - NonZCVIloads;
  const bool ValidHVXMem =
      NonZCVIloads <= 1 && ZCVIloads <= 1 && CVIstores <= 1;
  if ((load0 > 1 || store0 > 1 || !ValidHVXMem) ||
      (duplex > 1 || (duplex && memory))) {
    reportError(llvm::Twine("invalid instruction packet"));
    return false;
  }

  // Modify packet accordingly.
  // TODO: need to reserve slots #0 and #1 for duplex insns.
  bool bOnlySlot3 = false;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &ID = ISJ->getDesc();

    if (!ISJ->Core.getUnits()) {
      // Error if insn may not be executed in any slot.
      return false;
    }

    // A single load must use slot #0.
    if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
      if (loads == 1 && loads == memory && memops == 0)
        // Pin the load to slot #0.
        switch (ID.getOpcode()) {
        case Hexagon::V6_vgathermw:
        case Hexagon::V6_vgathermh:
        case Hexagon::V6_vgathermhw:
        case Hexagon::V6_vgathermwq:
        case Hexagon::V6_vgathermhq:
        case Hexagon::V6_vgathermhwq:
          // Slot1 only loads
          break;
        default:
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad);
          break;
        }
      else if (loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf
        // Loads must keep the original order ONLY if
        // isMemReorderDisabled() == true
        if (slotLoadStore < slotLastLoadStore) {
          // Error if no more slots available for loads.
          reportError(
              llvm::Twine("invalid instruction packet: too many loads"));
          return false;
        }
        // Pin the load to the highest slot available to it.
        ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
        // Update the next highest slot available to loads.
        slotLoadStore >>= 1;
      }
    }

    // A single store must use slot #0.
    if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) {
      if (!store0) {
        if (stores == 1 && (loads == 0 || !isMemReorderDisabled()))
          // Pin the store to slot #0 only if isMemReorderDisabled() == false
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore);
        else if (stores >= 1) {
          if (slotLoadStore < slotLastLoadStore) {
            // Error if no more slots available for stores.
            reportError(Twine("invalid instruction packet: too many stores"));
            return false;
          }
          // Pin the store to the highest slot available to it.
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
          // Update the next highest slot available to stores.
          slotLoadStore >>= 1;
        }
      }
      if (store1 && stores > 1) {
        // Error if a single store with another store.
        reportError(Twine("invalid instruction packet: too many stores"));
        return false;
      }
    }

    // flag if an instruction requires to be in slot 3
    if (ISJ->Core.getUnits() == slotThree)
      bOnlySlot3 = true;

    if (!ISJ->Core.getUnits()) {
      // Error if insn may not be executed in any slot.
      reportError(Twine("invalid instruction packet: out of slots"));
      return false;
    }
  }

  // preserve branch order
  bool validateSlots = true;
  if (foundBranches.size() > 1) {
    if (foundBranches.size() > 2) {
      reportError(Twine("too many branches in packet"));
      return false;
    }

    // try all possible choices
    for (unsigned int i = 0; i < MAX_JUMP_SLOTS; ++i) {
      // validate first jump with this slot rule
      if (!(jumpSlots[i].first & foundBranches[0]->Core.getUnits()))
        continue;

      // validate second jump with this slot rule
      if (!(jumpSlots[i].second & foundBranches[1]->Core.getUnits()))
        continue;

      // both valid for this configuration, set new slot rules
      PacketSave = Packet;
      foundBranches[0]->Core.setUnits(jumpSlots[i].first);
      foundBranches[1]->Core.setUnits(jumpSlots[i].second);

      HexagonUnitAuction AuctionCore(reservedSlots);
      std::stable_sort(begin(), end(), HexagonInstr::lessCore);

      // see if things ok with that instruction being pinned to slot "slotJump"
      bool bFail = false;
      for (iterator I = begin(); I != end() && !bFail; ++I)
        if (!AuctionCore.bid(I->Core.getUnits()))
          bFail = true;

      // if yes, great, if not then restore original slot mask
      if (!bFail) {
        validateSlots = false; // all good, no need to re-do auction
        break;
      } else
        // restore original values
        Packet = PacketSave;
    }
    if (validateSlots) {
      reportError(Twine("invalid instruction packet: out of slots"));
      return false;
    }
  }

  if (foundBranches.size() <= 1 && bOnlySlot3 == false && pSlot3Cnt == 1 &&
      slot3ISJ != end()) {
    validateSlots = true;
    // save off slot mask of instruction marked with A_PREFER_SLOT3
    // and then pin it to slot #3
    unsigned saveUnits = slot3ISJ->Core.getUnits();
    slot3ISJ->Core.setUnits(saveUnits & slotThree);

    HexagonUnitAuction AuctionCore(reservedSlots);
    std::stable_sort(begin(), end(), HexagonInstr::lessCore);

    // see if things ok with that instruction being pinned to slot #3
    bool bFail = false;
    for (iterator I = begin(); I != end() && !bFail; ++I)
      if (!AuctionCore.bid(I->Core.getUnits()))
        bFail = true;

    // if yes, great, if not then restore original slot mask
    if (!bFail)
      validateSlots = false; // all good, no need to re-do auction
    else
      for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
        MCInst const &ID = ISJ->getDesc();
        if (HexagonMCInstrInfo::prefersSlot3(MCII, ID))
          ISJ->Core.setUnits(saveUnits);
      }
  }

  // Check if any slot, core or CVI, is over-subscribed.
  // Verify the core slot subscriptions.
  if (validateSlots) {
    HexagonUnitAuction AuctionCore(reservedSlots);

    std::stable_sort(begin(), end(), HexagonInstr::lessCore);

    for (iterator I = begin(); I != end(); ++I)
      if (!AuctionCore.bid(I->Core.getUnits())) {
        reportError(Twine("invalid instruction packet: slot error"));
        return false;
      }
  }
  // Verify the CVI slot subscriptions.
  std::stable_sort(begin(), end(), HexagonInstr::lessCVI);
  // create vector of hvx instructions to check
  HVXInstsT hvxInsts;
  hvxInsts.clear();
  for (iterator I = begin(); I != end(); ++I) {
    struct CVIUnits inst;
    inst.Units = I->CVI.getUnits();
    inst.Lanes = I->CVI.getLanes();
    if (inst.Units == 0)
      continue; // not an hvx inst or an hvx inst that doesn't uses any pipes
    hvxInsts.push_back(inst);
  }
  // if there are any hvx instructions in this packet, check pipe usage
  if (hvxInsts.size() > 0) {
    unsigned startIdx, usedUnits;
    startIdx = usedUnits = 0x0;
    if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) {
      // too many pipes used to be valid
      reportError(Twine("invalid instruction packet: slot error"));
      return false;
    }
  }

  return true;
}

bool HexagonShuffler::shuffle() {
  if (size() > HEXAGON_PACKET_SIZE) {
    // Ignore a packet with with more than what a packet can hold
    // or with compound or duplex insns for now.
    reportError(Twine("invalid instruction packet"));
    return false;
  }

  // Check and prepare packet.
  bool Ok = true;
  if (size() > 1 && (Ok = check()))
    // Reorder the handles for each slot.
    for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE;
         ++nSlot) {
      iterator ISJ, ISK;
      unsigned slotSkip, slotWeight;

      // Prioritize the handles considering their restrictions.
      for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0;
           ISK != Packet.end(); ++ISK, ++slotSkip)
        if (slotSkip < nSlot - emptySlots)
          // Note which handle to begin at.
          ++ISJ;
        else
          // Calculate the weight of the slot.
          slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1);

      if (slotWeight)
        // Sort the packet, favoring source order,
        // beginning after the previous slot.
        std::stable_sort(ISJ, Packet.end());
      else
        // Skip unused slot.
        ++emptySlots;
    }

  for (iterator ISJ = begin(); ISJ != end(); ++ISJ)
    LLVM_DEBUG(dbgs().write_hex(ISJ->Core.getUnits()); if (ISJ->CVI.isValid()) {
      dbgs() << '/';
      dbgs().write_hex(ISJ->CVI.getUnits()) << '|';
      dbgs() << ISJ->CVI.getLanes();
    } dbgs() << ':'
             << HexagonMCInstrInfo::getDesc(MCII, ISJ->getDesc()).getOpcode();
               dbgs() << '\n');
  LLVM_DEBUG(dbgs() << '\n');

  return Ok;
}

void HexagonShuffler::reportError(Twine const &Msg) {
  if (ReportErrors) {
    for (auto const &I : AppliedRestrictions) {
      auto SM = Context.getSourceManager();
      if (SM)
        SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second);
    }
    Context.reportError(Loc, Msg);
  }
}