RDFDeadCode.cpp
7.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//===--- RDFDeadCode.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RDF-based generic dead code elimination.
#include "RDFDeadCode.h"
#include "RDFGraph.h"
#include "RDFLiveness.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include <queue>
using namespace llvm;
using namespace rdf;
// This drastically improves execution time in "collect" over using
// SetVector as a work queue, and popping the first element from it.
template<typename T> struct DeadCodeElimination::SetQueue {
SetQueue() : Set(), Queue() {}
bool empty() const {
return Queue.empty();
}
T pop_front() {
T V = Queue.front();
Queue.pop();
Set.erase(V);
return V;
}
void push_back(T V) {
if (Set.count(V))
return;
Queue.push(V);
Set.insert(V);
}
private:
DenseSet<T> Set;
std::queue<T> Queue;
};
// Check if the given instruction has observable side-effects, i.e. if
// it should be considered "live". It is safe for this function to be
// overly conservative (i.e. return "true" for all instructions), but it
// is not safe to return "false" for an instruction that should not be
// considered removable.
bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
return true;
if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() ||
MI->isPosition())
return true;
if (MI->isPHI())
return false;
for (auto &Op : MI->operands()) {
if (Op.isReg() && MRI.isReserved(Op.getReg()))
return true;
if (Op.isRegMask()) {
const uint32_t *BM = Op.getRegMask();
for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) {
if (BM[R/32] & (1u << (R%32)))
continue;
if (MRI.isReserved(R))
return true;
}
}
}
return false;
}
void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
SetQueue<NodeId> &WorkQ) {
if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
return;
if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
return;
for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
if (!LiveNodes.count(RA.Id))
WorkQ.push_back(RA.Id);
}
}
void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
SetQueue<NodeId> &WorkQ) {
NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
if (!LiveNodes.count(UA.Id))
WorkQ.push_back(UA.Id);
}
for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
LiveNodes.insert(TA.Id);
}
void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
SetQueue<NodeId> &WorkQ) {
for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
if (!LiveNodes.count(DA.Id))
WorkQ.push_back(DA.Id);
}
}
// Traverse the DFG and collect the set dead RefNodes and the set of
// dead instructions. Return "true" if any of these sets is non-empty,
// "false" otherwise.
bool DeadCodeElimination::collect() {
// This function works by first finding all live nodes. The dead nodes
// are then the complement of the set of live nodes.
//
// Assume that all nodes are dead. Identify instructions which must be
// considered live, i.e. instructions with observable side-effects, such
// as calls and stores. All arguments of such instructions are considered
// live. For each live def, all operands used in the corresponding
// instruction are considered live. For each live use, all its reaching
// defs are considered live.
LiveNodes.clear();
SetQueue<NodeId> WorkQ;
for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
scanInstr(IA, WorkQ);
while (!WorkQ.empty()) {
NodeId N = WorkQ.pop_front();
LiveNodes.insert(N);
auto RA = DFG.addr<RefNode*>(N);
if (DFG.IsDef(RA))
processDef(RA, WorkQ);
else
processUse(RA, WorkQ);
}
if (trace()) {
dbgs() << "Live nodes:\n";
for (NodeId N : LiveNodes) {
auto RA = DFG.addr<RefNode*>(N);
dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
}
}
auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
if (LiveNodes.count(DA.Id))
return false;
return true;
};
for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
if (!LiveNodes.count(RA.Id))
DeadNodes.insert(RA.Id);
if (DFG.IsCode<NodeAttrs::Stmt>(IA))
if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
continue;
if (IsDead(IA)) {
DeadInstrs.insert(IA.Id);
if (trace())
dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
}
}
}
return !DeadNodes.empty();
}
// Erase the nodes given in the Nodes set from DFG. In addition to removing
// them from the DFG, if a node corresponds to a statement, the corresponding
// machine instruction is erased from the function.
bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
if (Nodes.empty())
return false;
// Prepare the actual set of ref nodes to remove: ref nodes from Nodes
// are included directly, for each InstrNode in Nodes, include the set
// of all RefNodes from it.
NodeList DRNs, DINs;
for (auto I : Nodes) {
auto BA = DFG.addr<NodeBase*>(I);
uint16_t Type = BA.Addr->getType();
if (Type == NodeAttrs::Ref) {
DRNs.push_back(DFG.addr<RefNode*>(I));
continue;
}
// If it's a code node, add all ref nodes from it.
uint16_t Kind = BA.Addr->getKind();
if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
DRNs.push_back(N);
DINs.push_back(DFG.addr<InstrNode*>(I));
} else {
llvm_unreachable("Unexpected code node");
return false;
}
}
// Sort the list so that use nodes are removed first. This makes the
// "unlink" functions a bit faster.
auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
return true;
if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
return false;
return A.Id < B.Id;
};
llvm::sort(DRNs, UsesFirst);
if (trace())
dbgs() << "Removing dead ref nodes:\n";
for (NodeAddr<RefNode*> RA : DRNs) {
if (trace())
dbgs() << " " << PrintNode<RefNode*>(RA, DFG) << '\n';
if (DFG.IsUse(RA))
DFG.unlinkUse(RA, true);
else if (DFG.IsDef(RA))
DFG.unlinkDef(RA, true);
}
// Now, remove all dead instruction nodes.
for (NodeAddr<InstrNode*> IA : DINs) {
NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
BA.Addr->removeMember(IA, DFG);
if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
continue;
MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
if (trace())
dbgs() << "erasing: " << *MI;
MI->eraseFromParent();
}
return true;
}