LanaiAsmParser.cpp
39.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
//===-- LanaiAsmParser.cpp - Parse Lanai assembly to MCInst instructions --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LanaiAluCode.h"
#include "LanaiCondCode.h"
#include "LanaiInstrInfo.h"
#include "MCTargetDesc/LanaiMCExpr.h"
#include "TargetInfo/LanaiTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
using namespace llvm;
// Auto-generated by TableGen
static unsigned MatchRegisterName(StringRef Name);
namespace {
struct LanaiOperand;
class LanaiAsmParser : public MCTargetAsmParser {
// Parse operands
std::unique_ptr<LanaiOperand> parseRegister();
std::unique_ptr<LanaiOperand> parseImmediate();
std::unique_ptr<LanaiOperand> parseIdentifier();
unsigned parseAluOperator(bool PreOp, bool PostOp);
// Split the mnemonic stripping conditional code and quantifiers
StringRef splitMnemonic(StringRef Name, SMLoc NameLoc,
OperandVector *Operands);
bool parsePrePost(StringRef Type, int *OffsetValue);
bool ParseDirective(AsmToken DirectiveID) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseRegister(unsigned &RegNum, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "LanaiGenAsmMatcher.inc"
OperandMatchResultTy parseOperand(OperandVector *Operands,
StringRef Mnemonic);
OperandMatchResultTy parseMemoryOperand(OperandVector &Operands);
public:
LanaiAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII), Parser(Parser),
Lexer(Parser.getLexer()), SubtargetInfo(STI) {
setAvailableFeatures(
ComputeAvailableFeatures(SubtargetInfo.getFeatureBits()));
}
private:
MCAsmParser &Parser;
MCAsmLexer &Lexer;
const MCSubtargetInfo &SubtargetInfo;
};
// LanaiOperand - Instances of this class represented a parsed machine
// instruction
struct LanaiOperand : public MCParsedAsmOperand {
enum KindTy {
TOKEN,
REGISTER,
IMMEDIATE,
MEMORY_IMM,
MEMORY_REG_IMM,
MEMORY_REG_REG,
} Kind;
SMLoc StartLoc, EndLoc;
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Value;
};
struct MemOp {
unsigned BaseReg;
unsigned OffsetReg;
unsigned AluOp;
const MCExpr *Offset;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
explicit LanaiOperand(KindTy Kind) : MCParsedAsmOperand(), Kind(Kind) {}
public:
// The functions below are used by the autogenerated ASM matcher and hence to
// be of the form expected.
// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
unsigned getReg() const override {
assert(isReg() && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(isImm() && "Invalid type access!");
return Imm.Value;
}
StringRef getToken() const {
assert(isToken() && "Invalid type access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getMemBaseReg() const {
assert(isMem() && "Invalid type access!");
return Mem.BaseReg;
}
unsigned getMemOffsetReg() const {
assert(isMem() && "Invalid type access!");
return Mem.OffsetReg;
}
const MCExpr *getMemOffset() const {
assert(isMem() && "Invalid type access!");
return Mem.Offset;
}
unsigned getMemOp() const {
assert(isMem() && "Invalid type access!");
return Mem.AluOp;
}
// Functions for testing operand type
bool isReg() const override { return Kind == REGISTER; }
bool isImm() const override { return Kind == IMMEDIATE; }
bool isMem() const override {
return isMemImm() || isMemRegImm() || isMemRegReg();
}
bool isMemImm() const { return Kind == MEMORY_IMM; }
bool isMemRegImm() const { return Kind == MEMORY_REG_IMM; }
bool isMemRegReg() const { return Kind == MEMORY_REG_REG; }
bool isMemSpls() const { return isMemRegImm() || isMemRegReg(); }
bool isToken() const override { return Kind == TOKEN; }
bool isBrImm() {
if (!isImm())
return false;
// Constant case
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm.Value);
if (!MCE)
return true;
int64_t Value = MCE->getValue();
// Check if value fits in 25 bits with 2 least significant bits 0.
return isShiftedUInt<23, 2>(static_cast<int32_t>(Value));
}
bool isBrTarget() { return isBrImm() || isToken(); }
bool isCallTarget() { return isImm() || isToken(); }
bool isHiImm16() {
if (!isImm())
return false;
// Constant case
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
int64_t Value = ConstExpr->getValue();
return Value != 0 && isShiftedUInt<16, 16>(Value);
}
// Symbolic reference expression
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;
// Binary expression
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
if (const LanaiMCExpr *SymbolRefExpr =
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;
return false;
}
bool isHiImm16And() {
if (!isImm())
return false;
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
if (ConstExpr) {
int64_t Value = ConstExpr->getValue();
// Check if in the form 0xXYZWffff
return (Value != 0) && ((Value & ~0xffff0000) == 0xffff);
}
return false;
}
bool isLoImm16() {
if (!isImm())
return false;
// Constant case
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
int64_t Value = ConstExpr->getValue();
// Check if value fits in 16 bits
return isUInt<16>(static_cast<int32_t>(Value));
}
// Symbolic reference expression
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
// Binary expression
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
if (const LanaiMCExpr *SymbolRefExpr =
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
return false;
}
bool isLoImm16Signed() {
if (!isImm())
return false;
// Constant case
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
int64_t Value = ConstExpr->getValue();
// Check if value fits in 16 bits or value of the form 0xffffxyzw
return isInt<16>(static_cast<int32_t>(Value));
}
// Symbolic reference expression
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
// Binary expression
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
if (const LanaiMCExpr *SymbolRefExpr =
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;
return false;
}
bool isLoImm16And() {
if (!isImm())
return false;
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
if (ConstExpr) {
int64_t Value = ConstExpr->getValue();
// Check if in the form 0xffffXYZW
return ((Value & ~0xffff) == 0xffff0000);
}
return false;
}
bool isImmShift() {
if (!isImm())
return false;
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
if (!ConstExpr)
return false;
int64_t Value = ConstExpr->getValue();
return (Value >= -31) && (Value <= 31);
}
bool isLoImm21() {
if (!isImm())
return false;
// Constant case
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
int64_t Value = ConstExpr->getValue();
return isUInt<21>(Value);
}
// Symbolic reference expression
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
if (const MCSymbolRefExpr *SymbolRefExpr =
dyn_cast<MCSymbolRefExpr>(Imm.Value)) {
return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
}
// Binary expression
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value)) {
if (const LanaiMCExpr *SymbolRefExpr =
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
if (const MCSymbolRefExpr *SymbolRefExpr =
dyn_cast<MCSymbolRefExpr>(BinaryExpr->getLHS()))
return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
}
return false;
}
bool isImm10() {
if (!isImm())
return false;
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
if (!ConstExpr)
return false;
int64_t Value = ConstExpr->getValue();
return isInt<10>(Value);
}
bool isCondCode() {
if (!isImm())
return false;
const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
if (!ConstExpr)
return false;
uint64_t Value = ConstExpr->getValue();
// The condition codes are between 0 (ICC_T) and 15 (ICC_LE). If the
// unsigned value of the immediate is less than LPCC::UNKNOWN (16) then
// value corresponds to a valid condition code.
return Value < LPCC::UNKNOWN;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates where possible. Null MCExpr = 0
if (Expr == nullptr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(
MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addBrTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addCallTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getMemOffset();
addExpr(Inst, Expr);
}
void addMemRegImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
const MCExpr *Expr = getMemOffset();
addExpr(Inst, Expr);
Inst.addOperand(MCOperand::createImm(getMemOp()));
}
void addMemRegRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
assert(getMemOffsetReg() != 0 && "Invalid offset");
Inst.addOperand(MCOperand::createReg(getMemOffsetReg()));
Inst.addOperand(MCOperand::createImm(getMemOp()));
}
void addMemSplsOperands(MCInst &Inst, unsigned N) const {
if (isMemRegImm())
addMemRegImmOperands(Inst, N);
if (isMemRegReg())
addMemRegRegOperands(Inst, N);
}
void addImmShiftOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm10Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addLoImm16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
Inst.addOperand(
MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
assert(SymbolRefExpr &&
SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
LanaiMCExpr::VK_Lanai_ABS_LO);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else
assert(false && "Operand type not supported.");
}
void addLoImm16AndOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0xffff));
else
assert(false && "Operand type not supported.");
}
void addHiImm16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
assert(SymbolRefExpr &&
SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
LanaiMCExpr::VK_Lanai_ABS_HI);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else
assert(false && "Operand type not supported.");
}
void addHiImm16AndOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
else
assert(false && "Operand type not supported.");
}
void addLoImm21Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0x1fffff));
else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
assert(SymbolRefExpr &&
SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else if (isa<MCSymbolRefExpr>(getImm())) {
#ifndef NDEBUG
const MCSymbolRefExpr *SymbolRefExpr =
dyn_cast<MCSymbolRefExpr>(getImm());
assert(SymbolRefExpr &&
SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
LanaiMCExpr::VK_Lanai_None);
#endif
Inst.addOperand(MCOperand::createExpr(getImm()));
} else
assert(false && "Operand type not supported.");
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case IMMEDIATE:
OS << "Imm: " << getImm() << "\n";
break;
case TOKEN:
OS << "Token: " << getToken() << "\n";
break;
case REGISTER:
OS << "Reg: %r" << getReg() << "\n";
break;
case MEMORY_IMM:
OS << "MemImm: " << *getMemOffset() << "\n";
break;
case MEMORY_REG_IMM:
OS << "MemRegImm: " << getMemBaseReg() << "+" << *getMemOffset() << "\n";
break;
case MEMORY_REG_REG:
assert(getMemOffset() == nullptr);
OS << "MemRegReg: " << getMemBaseReg() << "+"
<< "%r" << getMemOffsetReg() << "\n";
break;
}
}
static std::unique_ptr<LanaiOperand> CreateToken(StringRef Str, SMLoc Start) {
auto Op = std::make_unique<LanaiOperand>(TOKEN);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = Start;
Op->EndLoc = Start;
return Op;
}
static std::unique_ptr<LanaiOperand> createReg(unsigned RegNum, SMLoc Start,
SMLoc End) {
auto Op = std::make_unique<LanaiOperand>(REGISTER);
Op->Reg.RegNum = RegNum;
Op->StartLoc = Start;
Op->EndLoc = End;
return Op;
}
static std::unique_ptr<LanaiOperand> createImm(const MCExpr *Value,
SMLoc Start, SMLoc End) {
auto Op = std::make_unique<LanaiOperand>(IMMEDIATE);
Op->Imm.Value = Value;
Op->StartLoc = Start;
Op->EndLoc = End;
return Op;
}
static std::unique_ptr<LanaiOperand>
MorphToMemImm(std::unique_ptr<LanaiOperand> Op) {
const MCExpr *Imm = Op->getImm();
Op->Kind = MEMORY_IMM;
Op->Mem.BaseReg = 0;
Op->Mem.AluOp = LPAC::ADD;
Op->Mem.OffsetReg = 0;
Op->Mem.Offset = Imm;
return Op;
}
static std::unique_ptr<LanaiOperand>
MorphToMemRegReg(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
unsigned AluOp) {
unsigned OffsetReg = Op->getReg();
Op->Kind = MEMORY_REG_REG;
Op->Mem.BaseReg = BaseReg;
Op->Mem.AluOp = AluOp;
Op->Mem.OffsetReg = OffsetReg;
Op->Mem.Offset = nullptr;
return Op;
}
static std::unique_ptr<LanaiOperand>
MorphToMemRegImm(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
unsigned AluOp) {
const MCExpr *Imm = Op->getImm();
Op->Kind = MEMORY_REG_IMM;
Op->Mem.BaseReg = BaseReg;
Op->Mem.AluOp = AluOp;
Op->Mem.OffsetReg = 0;
Op->Mem.Offset = Imm;
return Op;
}
};
} // end anonymous namespace
bool LanaiAsmParser::ParseDirective(AsmToken /*DirectiveId*/) { return true; }
bool LanaiAsmParser::MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SMLoc ErrorLoc;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
case Match_Success:
Out.EmitInstruction(Inst, SubtargetInfo);
Opcode = Inst.getOpcode();
return false;
case Match_MissingFeature:
return Error(IdLoc, "Instruction use requires option to be enabled");
case Match_MnemonicFail:
return Error(IdLoc, "Unrecognized instruction mnemonic");
case Match_InvalidOperand: {
ErrorLoc = IdLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IdLoc, "Too few operands for instruction");
ErrorLoc = ((LanaiOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IdLoc;
}
return Error(ErrorLoc, "Invalid operand for instruction");
}
default:
break;
}
llvm_unreachable("Unknown match type detected!");
}
// Both '%rN' and 'rN' are parsed as valid registers. This was done to remain
// backwards compatible with GCC and the different ways inline assembly is
// handled.
// TODO: see if there isn't a better way to do this.
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseRegister() {
SMLoc Start = Parser.getTok().getLoc();
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
unsigned RegNum;
// Eat the '%'.
if (Lexer.getKind() == AsmToken::Percent)
Parser.Lex();
if (Lexer.getKind() == AsmToken::Identifier) {
RegNum = MatchRegisterName(Lexer.getTok().getIdentifier());
if (RegNum == 0)
return nullptr;
Parser.Lex(); // Eat identifier token
return LanaiOperand::createReg(RegNum, Start, End);
}
return nullptr;
}
bool LanaiAsmParser::ParseRegister(unsigned &RegNum, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
std::unique_ptr<LanaiOperand> Op = parseRegister();
if (Op != nullptr)
RegNum = Op->getReg();
return (Op == nullptr);
}
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseIdentifier() {
SMLoc Start = Parser.getTok().getLoc();
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *Res, *RHS = nullptr;
LanaiMCExpr::VariantKind Kind = LanaiMCExpr::VK_Lanai_None;
if (Lexer.getKind() != AsmToken::Identifier)
return nullptr;
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return nullptr;
// Check if identifier has a modifier
if (Identifier.equals_lower("hi"))
Kind = LanaiMCExpr::VK_Lanai_ABS_HI;
else if (Identifier.equals_lower("lo"))
Kind = LanaiMCExpr::VK_Lanai_ABS_LO;
// If the identifier corresponds to a variant then extract the real
// identifier.
if (Kind != LanaiMCExpr::VK_Lanai_None) {
if (Lexer.getKind() != AsmToken::LParen) {
Error(Lexer.getLoc(), "Expected '('");
return nullptr;
}
Lexer.Lex(); // lex '('
// Parse identifier
if (Parser.parseIdentifier(Identifier))
return nullptr;
}
// If addition parse the RHS.
if (Lexer.getKind() == AsmToken::Plus && Parser.parseExpression(RHS))
return nullptr;
// For variants parse the final ')'
if (Kind != LanaiMCExpr::VK_Lanai_None) {
if (Lexer.getKind() != AsmToken::RParen) {
Error(Lexer.getLoc(), "Expected ')'");
return nullptr;
}
Lexer.Lex(); // lex ')'
}
End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
Res = LanaiMCExpr::create(Kind, Expr, getContext());
// Nest if this was an addition
if (RHS)
Res = MCBinaryExpr::createAdd(Res, RHS, getContext());
return LanaiOperand::createImm(Res, Start, End);
}
std::unique_ptr<LanaiOperand> LanaiAsmParser::parseImmediate() {
SMLoc Start = Parser.getTok().getLoc();
SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *ExprVal;
switch (Lexer.getKind()) {
case AsmToken::Identifier:
return parseIdentifier();
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
case AsmToken::Dot:
if (!Parser.parseExpression(ExprVal))
return LanaiOperand::createImm(ExprVal, Start, End);
LLVM_FALLTHROUGH;
default:
return nullptr;
}
}
static unsigned AluWithPrePost(unsigned AluCode, bool PreOp, bool PostOp) {
if (PreOp)
return LPAC::makePreOp(AluCode);
if (PostOp)
return LPAC::makePostOp(AluCode);
return AluCode;
}
unsigned LanaiAsmParser::parseAluOperator(bool PreOp, bool PostOp) {
StringRef IdString;
Parser.parseIdentifier(IdString);
unsigned AluCode = LPAC::stringToLanaiAluCode(IdString);
if (AluCode == LPAC::UNKNOWN) {
Error(Parser.getTok().getLoc(), "Can't parse ALU operator");
return 0;
}
return AluCode;
}
static int SizeForSuffix(StringRef T) {
return StringSwitch<int>(T).EndsWith(".h", 2).EndsWith(".b", 1).Default(4);
}
bool LanaiAsmParser::parsePrePost(StringRef Type, int *OffsetValue) {
bool PreOrPost = false;
if (Lexer.getKind() == Lexer.peekTok(true).getKind()) {
PreOrPost = true;
if (Lexer.is(AsmToken::Minus))
*OffsetValue = -SizeForSuffix(Type);
else if (Lexer.is(AsmToken::Plus))
*OffsetValue = SizeForSuffix(Type);
else
return false;
// Eat the '-' '-' or '+' '+'
Parser.Lex();
Parser.Lex();
} else if (Lexer.is(AsmToken::Star)) {
Parser.Lex(); // Eat the '*'
PreOrPost = true;
}
return PreOrPost;
}
bool shouldBeSls(const LanaiOperand &Op) {
// The instruction should be encoded as an SLS if the constant is word
// aligned and will fit in 21 bits
if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Op.getImm())) {
int64_t Value = ConstExpr->getValue();
return (Value % 4 == 0) && (Value >= 0) && (Value <= 0x1fffff);
}
// The instruction should be encoded as an SLS if the operand is a symbolic
// reference with no variant.
if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Op.getImm()))
return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
// The instruction should be encoded as an SLS if the operand is a binary
// expression with the left-hand side being a symbolic reference with no
// variant.
if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Op.getImm())) {
const LanaiMCExpr *LHSSymbolRefExpr =
dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS());
return (LHSSymbolRefExpr &&
LHSSymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
}
return false;
}
// Matches memory operand. Returns true if error encountered.
OperandMatchResultTy
LanaiAsmParser::parseMemoryOperand(OperandVector &Operands) {
// Try to match a memory operand.
// The memory operands are of the form:
// (1) Register|Immediate|'' '[' '*'? Register '*'? ']' or
// ^
// (2) '[' '*'? Register '*'? AluOperator Register ']'
// ^
// (3) '[' '--'|'++' Register '--'|'++' ']'
//
// (4) '[' Immediate ']' (for SLS)
// Store the type for use in parsing pre/post increment/decrement operators
StringRef Type;
if (Operands[0]->isToken())
Type = static_cast<LanaiOperand *>(Operands[0].get())->getToken();
// Use 0 if no offset given
int OffsetValue = 0;
unsigned BaseReg = 0;
unsigned AluOp = LPAC::ADD;
bool PostOp = false, PreOp = false;
// Try to parse the offset
std::unique_ptr<LanaiOperand> Op = parseRegister();
if (!Op)
Op = parseImmediate();
// Only continue if next token is '['
if (Lexer.isNot(AsmToken::LBrac)) {
if (!Op)
return MatchOperand_NoMatch;
// The start of this custom parsing overlaps with register/immediate so
// consider this as a successful match of an operand of that type as the
// token stream can't be rewound to allow them to match separately.
Operands.push_back(std::move(Op));
return MatchOperand_Success;
}
Parser.Lex(); // Eat the '['.
std::unique_ptr<LanaiOperand> Offset = nullptr;
if (Op)
Offset.swap(Op);
// Determine if a pre operation
PreOp = parsePrePost(Type, &OffsetValue);
Op = parseRegister();
if (!Op) {
if (!Offset) {
if ((Op = parseImmediate()) && Lexer.is(AsmToken::RBrac)) {
Parser.Lex(); // Eat the ']'
// Memory address operations aligned to word boundary are encoded as
// SLS, the rest as RM.
if (shouldBeSls(*Op)) {
Operands.push_back(LanaiOperand::MorphToMemImm(std::move(Op)));
} else {
if (!Op->isLoImm16Signed()) {
Error(Parser.getTok().getLoc(),
"Memory address is not word "
"aligned and larger than class RM can handle");
return MatchOperand_ParseFail;
}
Operands.push_back(LanaiOperand::MorphToMemRegImm(
Lanai::R0, std::move(Op), LPAC::ADD));
}
return MatchOperand_Success;
}
}
Error(Parser.getTok().getLoc(),
"Unknown operand, expected register or immediate");
return MatchOperand_ParseFail;
}
BaseReg = Op->getReg();
// Determine if a post operation
if (!PreOp)
PostOp = parsePrePost(Type, &OffsetValue);
// If ] match form (1) else match form (2)
if (Lexer.is(AsmToken::RBrac)) {
Parser.Lex(); // Eat the ']'.
if (!Offset) {
SMLoc Start = Parser.getTok().getLoc();
SMLoc End =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCConstantExpr *OffsetConstExpr =
MCConstantExpr::create(OffsetValue, getContext());
Offset = LanaiOperand::createImm(OffsetConstExpr, Start, End);
}
} else {
if (Offset || OffsetValue != 0) {
Error(Parser.getTok().getLoc(), "Expected ']'");
return MatchOperand_ParseFail;
}
// Parse operator
AluOp = parseAluOperator(PreOp, PostOp);
// Second form requires offset register
Offset = parseRegister();
if (!BaseReg || Lexer.isNot(AsmToken::RBrac)) {
Error(Parser.getTok().getLoc(), "Expected ']'");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the ']'.
}
// First form has addition as operator. Add pre- or post-op indicator as
// needed.
AluOp = AluWithPrePost(AluOp, PreOp, PostOp);
// Ensure immediate offset is not too large
if (Offset->isImm() && !Offset->isLoImm16Signed()) {
Error(Parser.getTok().getLoc(),
"Memory address is not word "
"aligned and larger than class RM can handle");
return MatchOperand_ParseFail;
}
Operands.push_back(
Offset->isImm()
? LanaiOperand::MorphToMemRegImm(BaseReg, std::move(Offset), AluOp)
: LanaiOperand::MorphToMemRegReg(BaseReg, std::move(Offset), AluOp));
return MatchOperand_Success;
}
// Looks at a token type and creates the relevant operand from this
// information, adding to operands.
// If operand was parsed, returns false, else true.
OperandMatchResultTy
LanaiAsmParser::parseOperand(OperandVector *Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy Result = MatchOperandParserImpl(*Operands, Mnemonic);
if (Result == MatchOperand_Success)
return Result;
if (Result == MatchOperand_ParseFail) {
Parser.eatToEndOfStatement();
return Result;
}
// Attempt to parse token as register
std::unique_ptr<LanaiOperand> Op = parseRegister();
// Attempt to parse token as immediate
if (!Op)
Op = parseImmediate();
// If the token could not be parsed then fail
if (!Op) {
Error(Parser.getTok().getLoc(), "Unknown operand");
Parser.eatToEndOfStatement();
return MatchOperand_ParseFail;
}
// Push back parsed operand into list of operands
Operands->push_back(std::move(Op));
return MatchOperand_Success;
}
// Split the mnemonic into ASM operand, conditional code and instruction
// qualifier (half-word, byte).
StringRef LanaiAsmParser::splitMnemonic(StringRef Name, SMLoc NameLoc,
OperandVector *Operands) {
size_t Next = Name.find('.');
StringRef Mnemonic = Name;
bool IsBRR = false;
if (Name.endswith(".r")) {
Mnemonic = Name.substr(0, Name.size() - 2);
IsBRR = true;
}
// Match b?? and s?? (BR, BRR, and SCC instruction classes).
if (Mnemonic[0] == 'b' ||
(Mnemonic[0] == 's' && !Mnemonic.startswith("sel") &&
!Mnemonic.startswith("st"))) {
// Parse instructions with a conditional code. For example, 'bne' is
// converted into two operands 'b' and 'ne'.
LPCC::CondCode CondCode =
LPCC::suffixToLanaiCondCode(Mnemonic.substr(1, Next));
if (CondCode != LPCC::UNKNOWN) {
Mnemonic = Mnemonic.slice(0, 1);
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
Operands->push_back(LanaiOperand::createImm(
MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
if (IsBRR) {
Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
}
return Mnemonic;
}
}
// Parse other instructions with condition codes (RR instructions).
// We ignore .f here and assume they are flag-setting operations, not
// conditional codes (except for select instructions where flag-setting
// variants are not yet implemented).
if (Mnemonic.startswith("sel") ||
(!Mnemonic.endswith(".f") && !Mnemonic.startswith("st"))) {
LPCC::CondCode CondCode = LPCC::suffixToLanaiCondCode(Mnemonic);
if (CondCode != LPCC::UNKNOWN) {
size_t Next = Mnemonic.rfind('.', Name.size());
// 'sel' doesn't use a predicate operand whose printer adds the period,
// but instead has the period as part of the identifier (i.e., 'sel.' is
// expected by the generated matcher). If the mnemonic starts with 'sel'
// then include the period as part of the mnemonic, else don't include it
// as part of the mnemonic.
if (Mnemonic.startswith("sel")) {
Mnemonic = Mnemonic.substr(0, Next + 1);
} else {
Mnemonic = Mnemonic.substr(0, Next);
}
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
Operands->push_back(LanaiOperand::createImm(
MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
return Mnemonic;
}
}
Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
if (IsBRR) {
Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
}
return Mnemonic;
}
static bool IsMemoryAssignmentError(const OperandVector &Operands) {
// Detects if a memory operation has an erroneous base register modification.
// Memory operations are detected by matching the types of operands.
//
// TODO: This test is focussed on one specific instance (ld/st).
// Extend it to handle more cases or be more robust.
bool Modifies = false;
int Offset = 0;
if (Operands.size() < 5)
return false;
else if (Operands[0]->isToken() && Operands[1]->isReg() &&
Operands[2]->isImm() && Operands[3]->isImm() && Operands[4]->isReg())
Offset = 0;
else if (Operands[0]->isToken() && Operands[1]->isToken() &&
Operands[2]->isReg() && Operands[3]->isImm() &&
Operands[4]->isImm() && Operands[5]->isReg())
Offset = 1;
else
return false;
int PossibleAluOpIdx = Offset + 3;
int PossibleBaseIdx = Offset + 1;
int PossibleDestIdx = Offset + 4;
if (LanaiOperand *PossibleAluOp =
static_cast<LanaiOperand *>(Operands[PossibleAluOpIdx].get()))
if (PossibleAluOp->isImm())
if (const MCConstantExpr *ConstExpr =
dyn_cast<MCConstantExpr>(PossibleAluOp->getImm()))
Modifies = LPAC::modifiesOp(ConstExpr->getValue());
return Modifies && Operands[PossibleBaseIdx]->isReg() &&
Operands[PossibleDestIdx]->isReg() &&
Operands[PossibleBaseIdx]->getReg() ==
Operands[PossibleDestIdx]->getReg();
}
static bool IsRegister(const MCParsedAsmOperand &op) {
return static_cast<const LanaiOperand &>(op).isReg();
}
static bool MaybePredicatedInst(const OperandVector &Operands) {
if (Operands.size() < 4 || !IsRegister(*Operands[1]) ||
!IsRegister(*Operands[2]))
return false;
return StringSwitch<bool>(
static_cast<const LanaiOperand &>(*Operands[0]).getToken())
.StartsWith("addc", true)
.StartsWith("add", true)
.StartsWith("and", true)
.StartsWith("sh", true)
.StartsWith("subb", true)
.StartsWith("sub", true)
.StartsWith("or", true)
.StartsWith("xor", true)
.Default(false);
}
bool LanaiAsmParser::ParseInstruction(ParseInstructionInfo & /*Info*/,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// First operand is token for instruction
StringRef Mnemonic = splitMnemonic(Name, NameLoc, &Operands);
// If there are no more operands, then finish
if (Lexer.is(AsmToken::EndOfStatement))
return false;
// Parse first operand
if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
return true;
// If it is a st instruction with one 1 operand then it is a "store true".
// Transform <"st"> to <"s">, <LPCC:ICC_T>
if (Lexer.is(AsmToken::EndOfStatement) && Name == "st" &&
Operands.size() == 2) {
Operands.erase(Operands.begin(), Operands.begin() + 1);
Operands.insert(Operands.begin(), LanaiOperand::CreateToken("s", NameLoc));
Operands.insert(Operands.begin() + 1,
LanaiOperand::createImm(
MCConstantExpr::create(LPCC::ICC_T, getContext()),
NameLoc, NameLoc));
}
// If the instruction is a bt instruction with 1 operand (in assembly) then it
// is an unconditional branch instruction and the first two elements of
// operands need to be merged.
if (Lexer.is(AsmToken::EndOfStatement) && Name.startswith("bt") &&
Operands.size() == 3) {
Operands.erase(Operands.begin(), Operands.begin() + 2);
Operands.insert(Operands.begin(), LanaiOperand::CreateToken("bt", NameLoc));
}
// Parse until end of statement, consuming commas between operands
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.is(AsmToken::Comma)) {
// Consume comma token
Lex();
// Parse next operand
if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
return true;
}
if (IsMemoryAssignmentError(Operands)) {
Error(Parser.getTok().getLoc(),
"the destination register can't equal the base register in an "
"instruction that modifies the base register.");
return true;
}
// Insert always true operand for instruction that may be predicated but
// are not. Currently the autogenerated parser always expects a predicate.
if (MaybePredicatedInst(Operands)) {
Operands.insert(Operands.begin() + 1,
LanaiOperand::createImm(
MCConstantExpr::create(LPCC::ICC_T, getContext()),
NameLoc, NameLoc));
}
return false;
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "LanaiGenAsmMatcher.inc"
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLanaiAsmParser() {
RegisterMCAsmParser<LanaiAsmParser> x(getTheLanaiTarget());
}