LanaiInstrInfo.cpp 27.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
//===-- LanaiInstrInfo.cpp - Lanai Instruction Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Lanai implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "LanaiInstrInfo.h"
#include "LanaiAluCode.h"
#include "LanaiCondCode.h"
#include "MCTargetDesc/LanaiBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "LanaiGenInstrInfo.inc"

LanaiInstrInfo::LanaiInstrInfo()
    : LanaiGenInstrInfo(Lanai::ADJCALLSTACKDOWN, Lanai::ADJCALLSTACKUP),
      RegisterInfo() {}

void LanaiInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator Position,
                                 const DebugLoc &DL,
                                 MCRegister DestinationRegister,
                                 MCRegister SourceRegister,
                                 bool KillSource) const {
  if (!Lanai::GPRRegClass.contains(DestinationRegister, SourceRegister)) {
    llvm_unreachable("Impossible reg-to-reg copy");
  }

  BuildMI(MBB, Position, DL, get(Lanai::OR_I_LO), DestinationRegister)
      .addReg(SourceRegister, getKillRegState(KillSource))
      .addImm(0);
}

void LanaiInstrInfo::storeRegToStackSlot(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
    unsigned SourceRegister, bool IsKill, int FrameIndex,
    const TargetRegisterClass *RegisterClass,
    const TargetRegisterInfo * /*RegisterInfo*/) const {
  DebugLoc DL;
  if (Position != MBB.end()) {
    DL = Position->getDebugLoc();
  }

  if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
    llvm_unreachable("Can't store this register to stack slot");
  }
  BuildMI(MBB, Position, DL, get(Lanai::SW_RI))
      .addReg(SourceRegister, getKillRegState(IsKill))
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addImm(LPAC::ADD);
}

void LanaiInstrInfo::loadRegFromStackSlot(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
    unsigned DestinationRegister, int FrameIndex,
    const TargetRegisterClass *RegisterClass,
    const TargetRegisterInfo * /*RegisterInfo*/) const {
  DebugLoc DL;
  if (Position != MBB.end()) {
    DL = Position->getDebugLoc();
  }

  if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
    llvm_unreachable("Can't load this register from stack slot");
  }
  BuildMI(MBB, Position, DL, get(Lanai::LDW_RI), DestinationRegister)
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addImm(LPAC::ADD);
}

bool LanaiInstrInfo::areMemAccessesTriviallyDisjoint(
    const MachineInstr &MIa, const MachineInstr &MIb) const {
  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");

  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
    return false;

  // Retrieve the base register, offset from the base register and width. Width
  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
  // base registers are identical, and the offset of a lower memory access +
  // the width doesn't overlap the offset of a higher memory access,
  // then the memory accesses are different.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
  int64_t OffsetA = 0, OffsetB = 0;
  unsigned int WidthA = 0, WidthB = 0;
  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
      int LowOffset = std::min(OffsetA, OffsetB);
      int HighOffset = std::max(OffsetA, OffsetB);
      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
      if (LowOffset + LowWidth <= HighOffset)
        return true;
    }
  }
  return false;
}

bool LanaiInstrInfo::expandPostRAPseudo(MachineInstr & /*MI*/) const {
  return false;
}

static LPCC::CondCode getOppositeCondition(LPCC::CondCode CC) {
  switch (CC) {
  case LPCC::ICC_T: //  true
    return LPCC::ICC_F;
  case LPCC::ICC_F: //  false
    return LPCC::ICC_T;
  case LPCC::ICC_HI: //  high
    return LPCC::ICC_LS;
  case LPCC::ICC_LS: //  low or same
    return LPCC::ICC_HI;
  case LPCC::ICC_CC: //  carry cleared
    return LPCC::ICC_CS;
  case LPCC::ICC_CS: //  carry set
    return LPCC::ICC_CC;
  case LPCC::ICC_NE: //  not equal
    return LPCC::ICC_EQ;
  case LPCC::ICC_EQ: //  equal
    return LPCC::ICC_NE;
  case LPCC::ICC_VC: //  oVerflow cleared
    return LPCC::ICC_VS;
  case LPCC::ICC_VS: //  oVerflow set
    return LPCC::ICC_VC;
  case LPCC::ICC_PL: //  plus (note: 0 is "minus" too here)
    return LPCC::ICC_MI;
  case LPCC::ICC_MI: //  minus
    return LPCC::ICC_PL;
  case LPCC::ICC_GE: //  greater than or equal
    return LPCC::ICC_LT;
  case LPCC::ICC_LT: //  less than
    return LPCC::ICC_GE;
  case LPCC::ICC_GT: //  greater than
    return LPCC::ICC_LE;
  case LPCC::ICC_LE: //  less than or equal
    return LPCC::ICC_GT;
  default:
    llvm_unreachable("Invalid condtional code");
  }
}

std::pair<unsigned, unsigned>
LanaiInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  return std::make_pair(TF, 0u);
}

ArrayRef<std::pair<unsigned, const char *>>
LanaiInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace LanaiII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_ABS_HI, "lanai-hi"},
      {MO_ABS_LO, "lanai-lo"},
      {MO_NO_FLAG, "lanai-nf"}};
  return makeArrayRef(TargetFlags);
}

bool LanaiInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                                    unsigned &SrcReg2, int &CmpMask,
                                    int &CmpValue) const {
  switch (MI.getOpcode()) {
  default:
    break;
  case Lanai::SFSUB_F_RI_LO:
  case Lanai::SFSUB_F_RI_HI:
    SrcReg = MI.getOperand(0).getReg();
    SrcReg2 = 0;
    CmpMask = ~0;
    CmpValue = MI.getOperand(1).getImm();
    return true;
  case Lanai::SFSUB_F_RR:
    SrcReg = MI.getOperand(0).getReg();
    SrcReg2 = MI.getOperand(1).getReg();
    CmpMask = ~0;
    CmpValue = 0;
    return true;
  }

  return false;
}

// isRedundantFlagInstr - check whether the first instruction, whose only
// purpose is to update flags, can be made redundant.
// * SFSUB_F_RR can be made redundant by SUB_RI if the operands are the same.
// * SFSUB_F_RI can be made redundant by SUB_I if the operands are the same.
inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
                                        unsigned SrcReg2, int ImmValue,
                                        MachineInstr *OI) {
  if (CmpI->getOpcode() == Lanai::SFSUB_F_RR &&
      OI->getOpcode() == Lanai::SUB_R &&
      ((OI->getOperand(1).getReg() == SrcReg &&
        OI->getOperand(2).getReg() == SrcReg2) ||
       (OI->getOperand(1).getReg() == SrcReg2 &&
        OI->getOperand(2).getReg() == SrcReg)))
    return true;

  if (((CmpI->getOpcode() == Lanai::SFSUB_F_RI_LO &&
        OI->getOpcode() == Lanai::SUB_I_LO) ||
       (CmpI->getOpcode() == Lanai::SFSUB_F_RI_HI &&
        OI->getOpcode() == Lanai::SUB_I_HI)) &&
      OI->getOperand(1).getReg() == SrcReg &&
      OI->getOperand(2).getImm() == ImmValue)
    return true;
  return false;
}

inline static unsigned flagSettingOpcodeVariant(unsigned OldOpcode) {
  switch (OldOpcode) {
  case Lanai::ADD_I_HI:
    return Lanai::ADD_F_I_HI;
  case Lanai::ADD_I_LO:
    return Lanai::ADD_F_I_LO;
  case Lanai::ADD_R:
    return Lanai::ADD_F_R;
  case Lanai::ADDC_I_HI:
    return Lanai::ADDC_F_I_HI;
  case Lanai::ADDC_I_LO:
    return Lanai::ADDC_F_I_LO;
  case Lanai::ADDC_R:
    return Lanai::ADDC_F_R;
  case Lanai::AND_I_HI:
    return Lanai::AND_F_I_HI;
  case Lanai::AND_I_LO:
    return Lanai::AND_F_I_LO;
  case Lanai::AND_R:
    return Lanai::AND_F_R;
  case Lanai::OR_I_HI:
    return Lanai::OR_F_I_HI;
  case Lanai::OR_I_LO:
    return Lanai::OR_F_I_LO;
  case Lanai::OR_R:
    return Lanai::OR_F_R;
  case Lanai::SL_I:
    return Lanai::SL_F_I;
  case Lanai::SRL_R:
    return Lanai::SRL_F_R;
  case Lanai::SA_I:
    return Lanai::SA_F_I;
  case Lanai::SRA_R:
    return Lanai::SRA_F_R;
  case Lanai::SUB_I_HI:
    return Lanai::SUB_F_I_HI;
  case Lanai::SUB_I_LO:
    return Lanai::SUB_F_I_LO;
  case Lanai::SUB_R:
    return Lanai::SUB_F_R;
  case Lanai::SUBB_I_HI:
    return Lanai::SUBB_F_I_HI;
  case Lanai::SUBB_I_LO:
    return Lanai::SUBB_F_I_LO;
  case Lanai::SUBB_R:
    return Lanai::SUBB_F_R;
  case Lanai::XOR_I_HI:
    return Lanai::XOR_F_I_HI;
  case Lanai::XOR_I_LO:
    return Lanai::XOR_F_I_LO;
  case Lanai::XOR_R:
    return Lanai::XOR_F_R;
  default:
    return Lanai::NOP;
  }
}

bool LanaiInstrInfo::optimizeCompareInstr(
    MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int /*CmpMask*/,
    int CmpValue, const MachineRegisterInfo *MRI) const {
  // Get the unique definition of SrcReg.
  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
  if (!MI)
    return false;

  // Get ready to iterate backward from CmpInstr.
  MachineBasicBlock::iterator I = CmpInstr, E = MI,
                              B = CmpInstr.getParent()->begin();

  // Early exit if CmpInstr is at the beginning of the BB.
  if (I == B)
    return false;

  // There are two possible candidates which can be changed to set SR:
  // One is MI, the other is a SUB instruction.
  // * For SFSUB_F_RR(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
  // * For SFSUB_F_RI(r1, CmpValue), we are looking for SUB(r1, CmpValue).
  MachineInstr *Sub = nullptr;
  if (SrcReg2 != 0)
    // MI is not a candidate to transform into a flag setting instruction.
    MI = nullptr;
  else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
    // Conservatively refuse to convert an instruction which isn't in the same
    // BB as the comparison. Don't return if SFSUB_F_RI and CmpValue != 0 as Sub
    // may still be a candidate.
    if (CmpInstr.getOpcode() == Lanai::SFSUB_F_RI_LO)
      MI = nullptr;
    else
      return false;
  }

  // Check that SR isn't set between the comparison instruction and the
  // instruction we want to change while searching for Sub.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  for (--I; I != E; --I) {
    const MachineInstr &Instr = *I;

    if (Instr.modifiesRegister(Lanai::SR, TRI) ||
        Instr.readsRegister(Lanai::SR, TRI))
      // This instruction modifies or uses SR after the one we want to change.
      // We can't do this transformation.
      return false;

    // Check whether CmpInstr can be made redundant by the current instruction.
    if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
      Sub = &*I;
      break;
    }

    // Don't search outside the containing basic block.
    if (I == B)
      return false;
  }

  // Return false if no candidates exist.
  if (!MI && !Sub)
    return false;

  // The single candidate is called MI.
  if (!MI)
    MI = Sub;

  if (flagSettingOpcodeVariant(MI->getOpcode()) != Lanai::NOP) {
    bool isSafe = false;

    SmallVector<std::pair<MachineOperand *, LPCC::CondCode>, 4>
        OperandsToUpdate;
    I = CmpInstr;
    E = CmpInstr.getParent()->end();
    while (!isSafe && ++I != E) {
      const MachineInstr &Instr = *I;
      for (unsigned IO = 0, EO = Instr.getNumOperands(); !isSafe && IO != EO;
           ++IO) {
        const MachineOperand &MO = Instr.getOperand(IO);
        if (MO.isRegMask() && MO.clobbersPhysReg(Lanai::SR)) {
          isSafe = true;
          break;
        }
        if (!MO.isReg() || MO.getReg() != Lanai::SR)
          continue;
        if (MO.isDef()) {
          isSafe = true;
          break;
        }
        // Condition code is after the operand before SR.
        LPCC::CondCode CC;
        CC = (LPCC::CondCode)Instr.getOperand(IO - 1).getImm();

        if (Sub) {
          LPCC::CondCode NewCC = getOppositeCondition(CC);
          if (NewCC == LPCC::ICC_T)
            return false;
          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on
          // CMP needs to be updated to be based on SUB.  Push the condition
          // code operands to OperandsToUpdate.  If it is safe to remove
          // CmpInstr, the condition code of these operands will be modified.
          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
              Sub->getOperand(2).getReg() == SrcReg) {
            OperandsToUpdate.push_back(
                std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
          }
        } else {
          // No Sub, so this is x = <op> y, z; cmp x, 0.
          switch (CC) {
          case LPCC::ICC_EQ: // Z
          case LPCC::ICC_NE: // Z
          case LPCC::ICC_MI: // N
          case LPCC::ICC_PL: // N
          case LPCC::ICC_F:  // none
          case LPCC::ICC_T:  // none
            // SR can be used multiple times, we should continue.
            break;
          case LPCC::ICC_CS: // C
          case LPCC::ICC_CC: // C
          case LPCC::ICC_VS: // V
          case LPCC::ICC_VC: // V
          case LPCC::ICC_HI: // C Z
          case LPCC::ICC_LS: // C Z
          case LPCC::ICC_GE: // N V
          case LPCC::ICC_LT: // N V
          case LPCC::ICC_GT: // Z N V
          case LPCC::ICC_LE: // Z N V
            // The instruction uses the V bit or C bit which is not safe.
            return false;
          case LPCC::UNKNOWN:
            return false;
          }
        }
      }
    }

    // If SR is not killed nor re-defined, we should check whether it is
    // live-out. If it is live-out, do not optimize.
    if (!isSafe) {
      MachineBasicBlock *MBB = CmpInstr.getParent();
      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
                                            SE = MBB->succ_end();
           SI != SE; ++SI)
        if ((*SI)->isLiveIn(Lanai::SR))
          return false;
    }

    // Toggle the optional operand to SR.
    MI->setDesc(get(flagSettingOpcodeVariant(MI->getOpcode())));
    MI->addRegisterDefined(Lanai::SR);
    CmpInstr.eraseFromParent();
    return true;
  }

  return false;
}

bool LanaiInstrInfo::analyzeSelect(const MachineInstr &MI,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   unsigned &TrueOp, unsigned &FalseOp,
                                   bool &Optimizable) const {
  assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction");
  // Select operands:
  // 0: Def.
  // 1: True use.
  // 2: False use.
  // 3: Condition code.
  TrueOp = 1;
  FalseOp = 2;
  Cond.push_back(MI.getOperand(3));
  Optimizable = true;
  return false;
}

// Identify instructions that can be folded into a SELECT instruction, and
// return the defining instruction.
static MachineInstr *canFoldIntoSelect(unsigned Reg,
                                       const MachineRegisterInfo &MRI) {
  if (!Register::isVirtualRegister(Reg))
    return nullptr;
  if (!MRI.hasOneNonDBGUse(Reg))
    return nullptr;
  MachineInstr *MI = MRI.getVRegDef(Reg);
  if (!MI)
    return nullptr;
  // MI is folded into the SELECT by predicating it.
  if (!MI->isPredicable())
    return nullptr;
  // Check if MI has any non-dead defs or physreg uses. This also detects
  // predicated instructions which will be reading SR.
  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    // Reject frame index operands.
    if (MO.isFI() || MO.isCPI() || MO.isJTI())
      return nullptr;
    if (!MO.isReg())
      continue;
    // MI can't have any tied operands, that would conflict with predication.
    if (MO.isTied())
      return nullptr;
    if (Register::isPhysicalRegister(MO.getReg()))
      return nullptr;
    if (MO.isDef() && !MO.isDead())
      return nullptr;
  }
  bool DontMoveAcrossStores = true;
  if (!MI->isSafeToMove(/*AliasAnalysis=*/nullptr, DontMoveAcrossStores))
    return nullptr;
  return MI;
}

MachineInstr *
LanaiInstrInfo::optimizeSelect(MachineInstr &MI,
                               SmallPtrSetImpl<MachineInstr *> &SeenMIs,
                               bool /*PreferFalse*/) const {
  assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction");
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  MachineInstr *DefMI = canFoldIntoSelect(MI.getOperand(1).getReg(), MRI);
  bool Invert = !DefMI;
  if (!DefMI)
    DefMI = canFoldIntoSelect(MI.getOperand(2).getReg(), MRI);
  if (!DefMI)
    return nullptr;

  // Find new register class to use.
  MachineOperand FalseReg = MI.getOperand(Invert ? 1 : 2);
  Register DestReg = MI.getOperand(0).getReg();
  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
  if (!MRI.constrainRegClass(DestReg, PreviousClass))
    return nullptr;

  // Create a new predicated version of DefMI.
  MachineInstrBuilder NewMI =
      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);

  // Copy all the DefMI operands, excluding its (null) predicate.
  const MCInstrDesc &DefDesc = DefMI->getDesc();
  for (unsigned i = 1, e = DefDesc.getNumOperands();
       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
    NewMI.add(DefMI->getOperand(i));

  unsigned CondCode = MI.getOperand(3).getImm();
  if (Invert)
    NewMI.addImm(getOppositeCondition(LPCC::CondCode(CondCode)));
  else
    NewMI.addImm(CondCode);
  NewMI.copyImplicitOps(MI);

  // The output register value when the predicate is false is an implicit
  // register operand tied to the first def.  The tie makes the register
  // allocator ensure the FalseReg is allocated the same register as operand 0.
  FalseReg.setImplicit();
  NewMI.add(FalseReg);
  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);

  // Update SeenMIs set: register newly created MI and erase removed DefMI.
  SeenMIs.insert(NewMI);
  SeenMIs.erase(DefMI);

  // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
  // DefMI would be invalid when transferred inside the loop.  Checking for a
  // loop is expensive, but at least remove kill flags if they are in different
  // BBs.
  if (DefMI->getParent() != MI.getParent())
    NewMI->clearKillInfo();

  // The caller will erase MI, but not DefMI.
  DefMI->eraseFromParent();
  return NewMI;
}

// The analyzeBranch function is used to examine conditional instructions and
// remove unnecessary instructions. This method is used by BranchFolder and
// IfConverter machine function passes to improve the CFG.
// - TrueBlock is set to the destination if condition evaluates true (it is the
//   nullptr if the destination is the fall-through branch);
// - FalseBlock is set to the destination if condition evaluates to false (it
//   is the nullptr if the branch is unconditional);
// - condition is populated with machine operands needed to generate the branch
//   to insert in insertBranch;
// Returns: false if branch could successfully be analyzed.
bool LanaiInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TrueBlock,
                                   MachineBasicBlock *&FalseBlock,
                                   SmallVectorImpl<MachineOperand> &Condition,
                                   bool AllowModify) const {
  // Iterator to current instruction being considered.
  MachineBasicBlock::iterator Instruction = MBB.end();

  // Start from the bottom of the block and work up, examining the
  // terminator instructions.
  while (Instruction != MBB.begin()) {
    --Instruction;

    // Skip over debug instructions.
    if (Instruction->isDebugInstr())
      continue;

    // Working from the bottom, when we see a non-terminator
    // instruction, we're done.
    if (!isUnpredicatedTerminator(*Instruction))
      break;

    // A terminator that isn't a branch can't easily be handled
    // by this analysis.
    if (!Instruction->isBranch())
      return true;

    // Handle unconditional branches.
    if (Instruction->getOpcode() == Lanai::BT) {
      if (!AllowModify) {
        TrueBlock = Instruction->getOperand(0).getMBB();
        continue;
      }

      // If the block has any instructions after a branch, delete them.
      while (std::next(Instruction) != MBB.end()) {
        std::next(Instruction)->eraseFromParent();
      }

      Condition.clear();
      FalseBlock = nullptr;

      // Delete the jump if it's equivalent to a fall-through.
      if (MBB.isLayoutSuccessor(Instruction->getOperand(0).getMBB())) {
        TrueBlock = nullptr;
        Instruction->eraseFromParent();
        Instruction = MBB.end();
        continue;
      }

      // TrueBlock is used to indicate the unconditional destination.
      TrueBlock = Instruction->getOperand(0).getMBB();
      continue;
    }

    // Handle conditional branches
    unsigned Opcode = Instruction->getOpcode();
    if (Opcode != Lanai::BRCC)
      return true; // Unknown opcode.

    // Multiple conditional branches are not handled here so only proceed if
    // there are no conditions enqueued.
    if (Condition.empty()) {
      LPCC::CondCode BranchCond =
          static_cast<LPCC::CondCode>(Instruction->getOperand(1).getImm());

      // TrueBlock is the target of the previously seen unconditional branch.
      FalseBlock = TrueBlock;
      TrueBlock = Instruction->getOperand(0).getMBB();
      Condition.push_back(MachineOperand::CreateImm(BranchCond));
      continue;
    }

    // Multiple conditional branches are not handled.
    return true;
  }

  // Return false indicating branch successfully analyzed.
  return false;
}

// reverseBranchCondition - Reverses the branch condition of the specified
// condition list, returning false on success and true if it cannot be
// reversed.
bool LanaiInstrInfo::reverseBranchCondition(
    SmallVectorImpl<llvm::MachineOperand> &Condition) const {
  assert((Condition.size() == 1) &&
         "Lanai branch conditions should have one component.");

  LPCC::CondCode BranchCond =
      static_cast<LPCC::CondCode>(Condition[0].getImm());
  Condition[0].setImm(getOppositeCondition(BranchCond));
  return false;
}

// Insert the branch with condition specified in condition and given targets
// (TrueBlock and FalseBlock). This function returns the number of machine
// instructions inserted.
unsigned LanaiInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                      MachineBasicBlock *TrueBlock,
                                      MachineBasicBlock *FalseBlock,
                                      ArrayRef<MachineOperand> Condition,
                                      const DebugLoc &DL,
                                      int *BytesAdded) const {
  // Shouldn't be a fall through.
  assert(TrueBlock && "insertBranch must not be told to insert a fallthrough");
  assert(!BytesAdded && "code size not handled");

  // If condition is empty then an unconditional branch is being inserted.
  if (Condition.empty()) {
    assert(!FalseBlock && "Unconditional branch with multiple successors!");
    BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(TrueBlock);
    return 1;
  }

  // Else a conditional branch is inserted.
  assert((Condition.size() == 1) &&
         "Lanai branch conditions should have one component.");
  unsigned ConditionalCode = Condition[0].getImm();
  BuildMI(&MBB, DL, get(Lanai::BRCC)).addMBB(TrueBlock).addImm(ConditionalCode);

  // If no false block, then false behavior is fall through and no branch needs
  // to be inserted.
  if (!FalseBlock)
    return 1;

  BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(FalseBlock);
  return 2;
}

unsigned LanaiInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                      int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  MachineBasicBlock::iterator Instruction = MBB.end();
  unsigned Count = 0;

  while (Instruction != MBB.begin()) {
    --Instruction;
    if (Instruction->isDebugInstr())
      continue;
    if (Instruction->getOpcode() != Lanai::BT &&
        Instruction->getOpcode() != Lanai::BRCC) {
      break;
    }

    // Remove the branch.
    Instruction->eraseFromParent();
    Instruction = MBB.end();
    ++Count;
  }

  return Count;
}

unsigned LanaiInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                             int &FrameIndex) const {
  if (MI.getOpcode() == Lanai::LDW_RI)
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  return 0;
}

unsigned LanaiInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                                   int &FrameIndex) const {
  if (MI.getOpcode() == Lanai::LDW_RI) {
    unsigned Reg;
    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
      return Reg;
    // Check for post-frame index elimination operations
    SmallVector<const MachineMemOperand *, 1> Accesses;
    if (hasLoadFromStackSlot(MI, Accesses)){
      FrameIndex =
          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
              ->getFrameIndex();
      return 1;
    }
  }
  return 0;
}

unsigned LanaiInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                            int &FrameIndex) const {
  if (MI.getOpcode() == Lanai::SW_RI)
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return MI.getOperand(2).getReg();
    }
  return 0;
}

bool LanaiInstrInfo::getMemOperandWithOffsetWidth(
    const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
    unsigned &Width, const TargetRegisterInfo * /*TRI*/) const {
  // Handle only loads/stores with base register followed by immediate offset
  // and with add as ALU op.
  if (LdSt.getNumOperands() != 4)
    return false;
  if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm() ||
      !(LdSt.getOperand(3).isImm() && LdSt.getOperand(3).getImm() == LPAC::ADD))
    return false;

  switch (LdSt.getOpcode()) {
  default:
    return false;
  case Lanai::LDW_RI:
  case Lanai::LDW_RR:
  case Lanai::SW_RR:
  case Lanai::SW_RI:
    Width = 4;
    break;
  case Lanai::LDHs_RI:
  case Lanai::LDHz_RI:
  case Lanai::STH_RI:
    Width = 2;
    break;
  case Lanai::LDBs_RI:
  case Lanai::LDBz_RI:
  case Lanai::STB_RI:
    Width = 1;
    break;
  }

  BaseOp = &LdSt.getOperand(1);
  Offset = LdSt.getOperand(2).getImm();

  if (!BaseOp->isReg())
    return false;

  return true;
}

bool LanaiInstrInfo::getMemOperandWithOffset(const MachineInstr &LdSt,
                                        const MachineOperand *&BaseOp,
                                        int64_t &Offset,
                                        const TargetRegisterInfo *TRI) const {
  switch (LdSt.getOpcode()) {
  default:
    return false;
  case Lanai::LDW_RI:
  case Lanai::LDW_RR:
  case Lanai::SW_RR:
  case Lanai::SW_RI:
  case Lanai::LDHs_RI:
  case Lanai::LDHz_RI:
  case Lanai::STH_RI:
  case Lanai::LDBs_RI:
  case Lanai::LDBz_RI:
    unsigned Width;
    return getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI);
  }
}