LanaiInstrInfo.cpp
27.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
//===-- LanaiInstrInfo.cpp - Lanai Instruction Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Lanai implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "LanaiInstrInfo.h"
#include "LanaiAluCode.h"
#include "LanaiCondCode.h"
#include "MCTargetDesc/LanaiBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "LanaiGenInstrInfo.inc"
LanaiInstrInfo::LanaiInstrInfo()
: LanaiGenInstrInfo(Lanai::ADJCALLSTACKDOWN, Lanai::ADJCALLSTACKUP),
RegisterInfo() {}
void LanaiInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Position,
const DebugLoc &DL,
MCRegister DestinationRegister,
MCRegister SourceRegister,
bool KillSource) const {
if (!Lanai::GPRRegClass.contains(DestinationRegister, SourceRegister)) {
llvm_unreachable("Impossible reg-to-reg copy");
}
BuildMI(MBB, Position, DL, get(Lanai::OR_I_LO), DestinationRegister)
.addReg(SourceRegister, getKillRegState(KillSource))
.addImm(0);
}
void LanaiInstrInfo::storeRegToStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
unsigned SourceRegister, bool IsKill, int FrameIndex,
const TargetRegisterClass *RegisterClass,
const TargetRegisterInfo * /*RegisterInfo*/) const {
DebugLoc DL;
if (Position != MBB.end()) {
DL = Position->getDebugLoc();
}
if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
llvm_unreachable("Can't store this register to stack slot");
}
BuildMI(MBB, Position, DL, get(Lanai::SW_RI))
.addReg(SourceRegister, getKillRegState(IsKill))
.addFrameIndex(FrameIndex)
.addImm(0)
.addImm(LPAC::ADD);
}
void LanaiInstrInfo::loadRegFromStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
unsigned DestinationRegister, int FrameIndex,
const TargetRegisterClass *RegisterClass,
const TargetRegisterInfo * /*RegisterInfo*/) const {
DebugLoc DL;
if (Position != MBB.end()) {
DL = Position->getDebugLoc();
}
if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
llvm_unreachable("Can't load this register from stack slot");
}
BuildMI(MBB, Position, DL, get(Lanai::LDW_RI), DestinationRegister)
.addFrameIndex(FrameIndex)
.addImm(0)
.addImm(LPAC::ADD);
}
bool LanaiInstrInfo::areMemAccessesTriviallyDisjoint(
const MachineInstr &MIa, const MachineInstr &MIb) const {
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
return false;
// Retrieve the base register, offset from the base register and width. Width
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
// base registers are identical, and the offset of a lower memory access +
// the width doesn't overlap the offset of a higher memory access,
// then the memory accesses are different.
const TargetRegisterInfo *TRI = &getRegisterInfo();
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
int64_t OffsetA = 0, OffsetB = 0;
unsigned int WidthA = 0, WidthB = 0;
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
int LowOffset = std::min(OffsetA, OffsetB);
int HighOffset = std::max(OffsetA, OffsetB);
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
if (LowOffset + LowWidth <= HighOffset)
return true;
}
}
return false;
}
bool LanaiInstrInfo::expandPostRAPseudo(MachineInstr & /*MI*/) const {
return false;
}
static LPCC::CondCode getOppositeCondition(LPCC::CondCode CC) {
switch (CC) {
case LPCC::ICC_T: // true
return LPCC::ICC_F;
case LPCC::ICC_F: // false
return LPCC::ICC_T;
case LPCC::ICC_HI: // high
return LPCC::ICC_LS;
case LPCC::ICC_LS: // low or same
return LPCC::ICC_HI;
case LPCC::ICC_CC: // carry cleared
return LPCC::ICC_CS;
case LPCC::ICC_CS: // carry set
return LPCC::ICC_CC;
case LPCC::ICC_NE: // not equal
return LPCC::ICC_EQ;
case LPCC::ICC_EQ: // equal
return LPCC::ICC_NE;
case LPCC::ICC_VC: // oVerflow cleared
return LPCC::ICC_VS;
case LPCC::ICC_VS: // oVerflow set
return LPCC::ICC_VC;
case LPCC::ICC_PL: // plus (note: 0 is "minus" too here)
return LPCC::ICC_MI;
case LPCC::ICC_MI: // minus
return LPCC::ICC_PL;
case LPCC::ICC_GE: // greater than or equal
return LPCC::ICC_LT;
case LPCC::ICC_LT: // less than
return LPCC::ICC_GE;
case LPCC::ICC_GT: // greater than
return LPCC::ICC_LE;
case LPCC::ICC_LE: // less than or equal
return LPCC::ICC_GT;
default:
llvm_unreachable("Invalid condtional code");
}
}
std::pair<unsigned, unsigned>
LanaiInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF, 0u);
}
ArrayRef<std::pair<unsigned, const char *>>
LanaiInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace LanaiII;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_ABS_HI, "lanai-hi"},
{MO_ABS_LO, "lanai-lo"},
{MO_NO_FLAG, "lanai-nf"}};
return makeArrayRef(TargetFlags);
}
bool LanaiInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
unsigned &SrcReg2, int &CmpMask,
int &CmpValue) const {
switch (MI.getOpcode()) {
default:
break;
case Lanai::SFSUB_F_RI_LO:
case Lanai::SFSUB_F_RI_HI:
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI.getOperand(1).getImm();
return true;
case Lanai::SFSUB_F_RR:
SrcReg = MI.getOperand(0).getReg();
SrcReg2 = MI.getOperand(1).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
}
return false;
}
// isRedundantFlagInstr - check whether the first instruction, whose only
// purpose is to update flags, can be made redundant.
// * SFSUB_F_RR can be made redundant by SUB_RI if the operands are the same.
// * SFSUB_F_RI can be made redundant by SUB_I if the operands are the same.
inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
unsigned SrcReg2, int ImmValue,
MachineInstr *OI) {
if (CmpI->getOpcode() == Lanai::SFSUB_F_RR &&
OI->getOpcode() == Lanai::SUB_R &&
((OI->getOperand(1).getReg() == SrcReg &&
OI->getOperand(2).getReg() == SrcReg2) ||
(OI->getOperand(1).getReg() == SrcReg2 &&
OI->getOperand(2).getReg() == SrcReg)))
return true;
if (((CmpI->getOpcode() == Lanai::SFSUB_F_RI_LO &&
OI->getOpcode() == Lanai::SUB_I_LO) ||
(CmpI->getOpcode() == Lanai::SFSUB_F_RI_HI &&
OI->getOpcode() == Lanai::SUB_I_HI)) &&
OI->getOperand(1).getReg() == SrcReg &&
OI->getOperand(2).getImm() == ImmValue)
return true;
return false;
}
inline static unsigned flagSettingOpcodeVariant(unsigned OldOpcode) {
switch (OldOpcode) {
case Lanai::ADD_I_HI:
return Lanai::ADD_F_I_HI;
case Lanai::ADD_I_LO:
return Lanai::ADD_F_I_LO;
case Lanai::ADD_R:
return Lanai::ADD_F_R;
case Lanai::ADDC_I_HI:
return Lanai::ADDC_F_I_HI;
case Lanai::ADDC_I_LO:
return Lanai::ADDC_F_I_LO;
case Lanai::ADDC_R:
return Lanai::ADDC_F_R;
case Lanai::AND_I_HI:
return Lanai::AND_F_I_HI;
case Lanai::AND_I_LO:
return Lanai::AND_F_I_LO;
case Lanai::AND_R:
return Lanai::AND_F_R;
case Lanai::OR_I_HI:
return Lanai::OR_F_I_HI;
case Lanai::OR_I_LO:
return Lanai::OR_F_I_LO;
case Lanai::OR_R:
return Lanai::OR_F_R;
case Lanai::SL_I:
return Lanai::SL_F_I;
case Lanai::SRL_R:
return Lanai::SRL_F_R;
case Lanai::SA_I:
return Lanai::SA_F_I;
case Lanai::SRA_R:
return Lanai::SRA_F_R;
case Lanai::SUB_I_HI:
return Lanai::SUB_F_I_HI;
case Lanai::SUB_I_LO:
return Lanai::SUB_F_I_LO;
case Lanai::SUB_R:
return Lanai::SUB_F_R;
case Lanai::SUBB_I_HI:
return Lanai::SUBB_F_I_HI;
case Lanai::SUBB_I_LO:
return Lanai::SUBB_F_I_LO;
case Lanai::SUBB_R:
return Lanai::SUBB_F_R;
case Lanai::XOR_I_HI:
return Lanai::XOR_F_I_HI;
case Lanai::XOR_I_LO:
return Lanai::XOR_F_I_LO;
case Lanai::XOR_R:
return Lanai::XOR_F_R;
default:
return Lanai::NOP;
}
}
bool LanaiInstrInfo::optimizeCompareInstr(
MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int /*CmpMask*/,
int CmpValue, const MachineRegisterInfo *MRI) const {
// Get the unique definition of SrcReg.
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
if (!MI)
return false;
// Get ready to iterate backward from CmpInstr.
MachineBasicBlock::iterator I = CmpInstr, E = MI,
B = CmpInstr.getParent()->begin();
// Early exit if CmpInstr is at the beginning of the BB.
if (I == B)
return false;
// There are two possible candidates which can be changed to set SR:
// One is MI, the other is a SUB instruction.
// * For SFSUB_F_RR(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
// * For SFSUB_F_RI(r1, CmpValue), we are looking for SUB(r1, CmpValue).
MachineInstr *Sub = nullptr;
if (SrcReg2 != 0)
// MI is not a candidate to transform into a flag setting instruction.
MI = nullptr;
else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
// Conservatively refuse to convert an instruction which isn't in the same
// BB as the comparison. Don't return if SFSUB_F_RI and CmpValue != 0 as Sub
// may still be a candidate.
if (CmpInstr.getOpcode() == Lanai::SFSUB_F_RI_LO)
MI = nullptr;
else
return false;
}
// Check that SR isn't set between the comparison instruction and the
// instruction we want to change while searching for Sub.
const TargetRegisterInfo *TRI = &getRegisterInfo();
for (--I; I != E; --I) {
const MachineInstr &Instr = *I;
if (Instr.modifiesRegister(Lanai::SR, TRI) ||
Instr.readsRegister(Lanai::SR, TRI))
// This instruction modifies or uses SR after the one we want to change.
// We can't do this transformation.
return false;
// Check whether CmpInstr can be made redundant by the current instruction.
if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
Sub = &*I;
break;
}
// Don't search outside the containing basic block.
if (I == B)
return false;
}
// Return false if no candidates exist.
if (!MI && !Sub)
return false;
// The single candidate is called MI.
if (!MI)
MI = Sub;
if (flagSettingOpcodeVariant(MI->getOpcode()) != Lanai::NOP) {
bool isSafe = false;
SmallVector<std::pair<MachineOperand *, LPCC::CondCode>, 4>
OperandsToUpdate;
I = CmpInstr;
E = CmpInstr.getParent()->end();
while (!isSafe && ++I != E) {
const MachineInstr &Instr = *I;
for (unsigned IO = 0, EO = Instr.getNumOperands(); !isSafe && IO != EO;
++IO) {
const MachineOperand &MO = Instr.getOperand(IO);
if (MO.isRegMask() && MO.clobbersPhysReg(Lanai::SR)) {
isSafe = true;
break;
}
if (!MO.isReg() || MO.getReg() != Lanai::SR)
continue;
if (MO.isDef()) {
isSafe = true;
break;
}
// Condition code is after the operand before SR.
LPCC::CondCode CC;
CC = (LPCC::CondCode)Instr.getOperand(IO - 1).getImm();
if (Sub) {
LPCC::CondCode NewCC = getOppositeCondition(CC);
if (NewCC == LPCC::ICC_T)
return false;
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on
// CMP needs to be updated to be based on SUB. Push the condition
// code operands to OperandsToUpdate. If it is safe to remove
// CmpInstr, the condition code of these operands will be modified.
if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
Sub->getOperand(2).getReg() == SrcReg) {
OperandsToUpdate.push_back(
std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
}
} else {
// No Sub, so this is x = <op> y, z; cmp x, 0.
switch (CC) {
case LPCC::ICC_EQ: // Z
case LPCC::ICC_NE: // Z
case LPCC::ICC_MI: // N
case LPCC::ICC_PL: // N
case LPCC::ICC_F: // none
case LPCC::ICC_T: // none
// SR can be used multiple times, we should continue.
break;
case LPCC::ICC_CS: // C
case LPCC::ICC_CC: // C
case LPCC::ICC_VS: // V
case LPCC::ICC_VC: // V
case LPCC::ICC_HI: // C Z
case LPCC::ICC_LS: // C Z
case LPCC::ICC_GE: // N V
case LPCC::ICC_LT: // N V
case LPCC::ICC_GT: // Z N V
case LPCC::ICC_LE: // Z N V
// The instruction uses the V bit or C bit which is not safe.
return false;
case LPCC::UNKNOWN:
return false;
}
}
}
}
// If SR is not killed nor re-defined, we should check whether it is
// live-out. If it is live-out, do not optimize.
if (!isSafe) {
MachineBasicBlock *MBB = CmpInstr.getParent();
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end();
SI != SE; ++SI)
if ((*SI)->isLiveIn(Lanai::SR))
return false;
}
// Toggle the optional operand to SR.
MI->setDesc(get(flagSettingOpcodeVariant(MI->getOpcode())));
MI->addRegisterDefined(Lanai::SR);
CmpInstr.eraseFromParent();
return true;
}
return false;
}
bool LanaiInstrInfo::analyzeSelect(const MachineInstr &MI,
SmallVectorImpl<MachineOperand> &Cond,
unsigned &TrueOp, unsigned &FalseOp,
bool &Optimizable) const {
assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction");
// Select operands:
// 0: Def.
// 1: True use.
// 2: False use.
// 3: Condition code.
TrueOp = 1;
FalseOp = 2;
Cond.push_back(MI.getOperand(3));
Optimizable = true;
return false;
}
// Identify instructions that can be folded into a SELECT instruction, and
// return the defining instruction.
static MachineInstr *canFoldIntoSelect(unsigned Reg,
const MachineRegisterInfo &MRI) {
if (!Register::isVirtualRegister(Reg))
return nullptr;
if (!MRI.hasOneNonDBGUse(Reg))
return nullptr;
MachineInstr *MI = MRI.getVRegDef(Reg);
if (!MI)
return nullptr;
// MI is folded into the SELECT by predicating it.
if (!MI->isPredicable())
return nullptr;
// Check if MI has any non-dead defs or physreg uses. This also detects
// predicated instructions which will be reading SR.
for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Reject frame index operands.
if (MO.isFI() || MO.isCPI() || MO.isJTI())
return nullptr;
if (!MO.isReg())
continue;
// MI can't have any tied operands, that would conflict with predication.
if (MO.isTied())
return nullptr;
if (Register::isPhysicalRegister(MO.getReg()))
return nullptr;
if (MO.isDef() && !MO.isDead())
return nullptr;
}
bool DontMoveAcrossStores = true;
if (!MI->isSafeToMove(/*AliasAnalysis=*/nullptr, DontMoveAcrossStores))
return nullptr;
return MI;
}
MachineInstr *
LanaiInstrInfo::optimizeSelect(MachineInstr &MI,
SmallPtrSetImpl<MachineInstr *> &SeenMIs,
bool /*PreferFalse*/) const {
assert(MI.getOpcode() == Lanai::SELECT && "unknown select instruction");
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
MachineInstr *DefMI = canFoldIntoSelect(MI.getOperand(1).getReg(), MRI);
bool Invert = !DefMI;
if (!DefMI)
DefMI = canFoldIntoSelect(MI.getOperand(2).getReg(), MRI);
if (!DefMI)
return nullptr;
// Find new register class to use.
MachineOperand FalseReg = MI.getOperand(Invert ? 1 : 2);
Register DestReg = MI.getOperand(0).getReg();
const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
if (!MRI.constrainRegClass(DestReg, PreviousClass))
return nullptr;
// Create a new predicated version of DefMI.
MachineInstrBuilder NewMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
// Copy all the DefMI operands, excluding its (null) predicate.
const MCInstrDesc &DefDesc = DefMI->getDesc();
for (unsigned i = 1, e = DefDesc.getNumOperands();
i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
NewMI.add(DefMI->getOperand(i));
unsigned CondCode = MI.getOperand(3).getImm();
if (Invert)
NewMI.addImm(getOppositeCondition(LPCC::CondCode(CondCode)));
else
NewMI.addImm(CondCode);
NewMI.copyImplicitOps(MI);
// The output register value when the predicate is false is an implicit
// register operand tied to the first def. The tie makes the register
// allocator ensure the FalseReg is allocated the same register as operand 0.
FalseReg.setImplicit();
NewMI.add(FalseReg);
NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
// Update SeenMIs set: register newly created MI and erase removed DefMI.
SeenMIs.insert(NewMI);
SeenMIs.erase(DefMI);
// If MI is inside a loop, and DefMI is outside the loop, then kill flags on
// DefMI would be invalid when transferred inside the loop. Checking for a
// loop is expensive, but at least remove kill flags if they are in different
// BBs.
if (DefMI->getParent() != MI.getParent())
NewMI->clearKillInfo();
// The caller will erase MI, but not DefMI.
DefMI->eraseFromParent();
return NewMI;
}
// The analyzeBranch function is used to examine conditional instructions and
// remove unnecessary instructions. This method is used by BranchFolder and
// IfConverter machine function passes to improve the CFG.
// - TrueBlock is set to the destination if condition evaluates true (it is the
// nullptr if the destination is the fall-through branch);
// - FalseBlock is set to the destination if condition evaluates to false (it
// is the nullptr if the branch is unconditional);
// - condition is populated with machine operands needed to generate the branch
// to insert in insertBranch;
// Returns: false if branch could successfully be analyzed.
bool LanaiInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TrueBlock,
MachineBasicBlock *&FalseBlock,
SmallVectorImpl<MachineOperand> &Condition,
bool AllowModify) const {
// Iterator to current instruction being considered.
MachineBasicBlock::iterator Instruction = MBB.end();
// Start from the bottom of the block and work up, examining the
// terminator instructions.
while (Instruction != MBB.begin()) {
--Instruction;
// Skip over debug instructions.
if (Instruction->isDebugInstr())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(*Instruction))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!Instruction->isBranch())
return true;
// Handle unconditional branches.
if (Instruction->getOpcode() == Lanai::BT) {
if (!AllowModify) {
TrueBlock = Instruction->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a branch, delete them.
while (std::next(Instruction) != MBB.end()) {
std::next(Instruction)->eraseFromParent();
}
Condition.clear();
FalseBlock = nullptr;
// Delete the jump if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(Instruction->getOperand(0).getMBB())) {
TrueBlock = nullptr;
Instruction->eraseFromParent();
Instruction = MBB.end();
continue;
}
// TrueBlock is used to indicate the unconditional destination.
TrueBlock = Instruction->getOperand(0).getMBB();
continue;
}
// Handle conditional branches
unsigned Opcode = Instruction->getOpcode();
if (Opcode != Lanai::BRCC)
return true; // Unknown opcode.
// Multiple conditional branches are not handled here so only proceed if
// there are no conditions enqueued.
if (Condition.empty()) {
LPCC::CondCode BranchCond =
static_cast<LPCC::CondCode>(Instruction->getOperand(1).getImm());
// TrueBlock is the target of the previously seen unconditional branch.
FalseBlock = TrueBlock;
TrueBlock = Instruction->getOperand(0).getMBB();
Condition.push_back(MachineOperand::CreateImm(BranchCond));
continue;
}
// Multiple conditional branches are not handled.
return true;
}
// Return false indicating branch successfully analyzed.
return false;
}
// reverseBranchCondition - Reverses the branch condition of the specified
// condition list, returning false on success and true if it cannot be
// reversed.
bool LanaiInstrInfo::reverseBranchCondition(
SmallVectorImpl<llvm::MachineOperand> &Condition) const {
assert((Condition.size() == 1) &&
"Lanai branch conditions should have one component.");
LPCC::CondCode BranchCond =
static_cast<LPCC::CondCode>(Condition[0].getImm());
Condition[0].setImm(getOppositeCondition(BranchCond));
return false;
}
// Insert the branch with condition specified in condition and given targets
// (TrueBlock and FalseBlock). This function returns the number of machine
// instructions inserted.
unsigned LanaiInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TrueBlock,
MachineBasicBlock *FalseBlock,
ArrayRef<MachineOperand> Condition,
const DebugLoc &DL,
int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TrueBlock && "insertBranch must not be told to insert a fallthrough");
assert(!BytesAdded && "code size not handled");
// If condition is empty then an unconditional branch is being inserted.
if (Condition.empty()) {
assert(!FalseBlock && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(TrueBlock);
return 1;
}
// Else a conditional branch is inserted.
assert((Condition.size() == 1) &&
"Lanai branch conditions should have one component.");
unsigned ConditionalCode = Condition[0].getImm();
BuildMI(&MBB, DL, get(Lanai::BRCC)).addMBB(TrueBlock).addImm(ConditionalCode);
// If no false block, then false behavior is fall through and no branch needs
// to be inserted.
if (!FalseBlock)
return 1;
BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(FalseBlock);
return 2;
}
unsigned LanaiInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator Instruction = MBB.end();
unsigned Count = 0;
while (Instruction != MBB.begin()) {
--Instruction;
if (Instruction->isDebugInstr())
continue;
if (Instruction->getOpcode() != Lanai::BT &&
Instruction->getOpcode() != Lanai::BRCC) {
break;
}
// Remove the branch.
Instruction->eraseFromParent();
Instruction = MBB.end();
++Count;
}
return Count;
}
unsigned LanaiInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (MI.getOpcode() == Lanai::LDW_RI)
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
return 0;
}
unsigned LanaiInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
if (MI.getOpcode() == Lanai::LDW_RI) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
SmallVector<const MachineMemOperand *, 1> Accesses;
if (hasLoadFromStackSlot(MI, Accesses)){
FrameIndex =
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
->getFrameIndex();
return 1;
}
}
return 0;
}
unsigned LanaiInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (MI.getOpcode() == Lanai::SW_RI)
if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
MI.getOperand(1).getImm() == 0) {
FrameIndex = MI.getOperand(0).getIndex();
return MI.getOperand(2).getReg();
}
return 0;
}
bool LanaiInstrInfo::getMemOperandWithOffsetWidth(
const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
unsigned &Width, const TargetRegisterInfo * /*TRI*/) const {
// Handle only loads/stores with base register followed by immediate offset
// and with add as ALU op.
if (LdSt.getNumOperands() != 4)
return false;
if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm() ||
!(LdSt.getOperand(3).isImm() && LdSt.getOperand(3).getImm() == LPAC::ADD))
return false;
switch (LdSt.getOpcode()) {
default:
return false;
case Lanai::LDW_RI:
case Lanai::LDW_RR:
case Lanai::SW_RR:
case Lanai::SW_RI:
Width = 4;
break;
case Lanai::LDHs_RI:
case Lanai::LDHz_RI:
case Lanai::STH_RI:
Width = 2;
break;
case Lanai::LDBs_RI:
case Lanai::LDBz_RI:
case Lanai::STB_RI:
Width = 1;
break;
}
BaseOp = &LdSt.getOperand(1);
Offset = LdSt.getOperand(2).getImm();
if (!BaseOp->isReg())
return false;
return true;
}
bool LanaiInstrInfo::getMemOperandWithOffset(const MachineInstr &LdSt,
const MachineOperand *&BaseOp,
int64_t &Offset,
const TargetRegisterInfo *TRI) const {
switch (LdSt.getOpcode()) {
default:
return false;
case Lanai::LDW_RI:
case Lanai::LDW_RR:
case Lanai::SW_RR:
case Lanai::SW_RI:
case Lanai::LDHs_RI:
case Lanai::LDHz_RI:
case Lanai::STH_RI:
case Lanai::LDBs_RI:
case Lanai::LDBz_RI:
unsigned Width;
return getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI);
}
}