RISCVAsmParser.cpp
66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVAsmBackend.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "Utils/RISCVBaseInfo.h"
#include "Utils/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "riscv-asm-parser"
// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
STATISTIC(RISCVNumInstrsCompressed,
"Number of RISC-V Compressed instructions emitted");
namespace {
struct RISCVOperand;
class RISCVAsmParser : public MCTargetAsmParser {
SmallVector<FeatureBitset, 4> FeatureBitStack;
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
RISCVTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immedate value into the destination register.
void emitLoadImm(Register DestReg, int64_t Value, MCStreamer &Out);
// Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
// helpers such as emitLoadLocalAddress and emitLoadAddress.
void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lla" used in PC-rel addressing.
void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
// addressing.
void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
// addressing.
void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo load/store instruction with a symbol.
void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out, bool HasTmpReg);
// Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
// Enforcing this using a restricted register class for the second input
// operand of PseudoAddTPRel results in a poor diagnostic due to the fact
// 'add' is an overloaded mnemonic.
bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
/// Helper for processing MC instructions that have been successfully matched
/// by MatchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands,
bool AllowParens = false);
OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
OperandMatchResultTy parseAtomicMemOp(OperandVector &Operands);
OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
OperandMatchResultTy parseJALOffset(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
bool parseDirectiveOption();
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().getFeatureBits()[Feature])) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().getFeatureBits()[Feature]) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void pushFeatureBits() {
FeatureBitStack.push_back(getSTI().getFeatureBits());
}
bool popFeatureBits() {
if (FeatureBitStack.empty())
return true;
FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
copySTI().setFeatureBits(FeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
return false;
}
public:
enum RISCVMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
auto ABIName = StringRef(Options.ABIName);
if (ABIName.endswith("f") &&
!getSTI().getFeatureBits()[RISCV::FeatureStdExtF]) {
errs() << "Hard-float 'f' ABI can't be used for a target that "
"doesn't support the F instruction set extension (ignoring "
"target-abi)\n";
} else if (ABIName.endswith("d") &&
!getSTI().getFeatureBits()[RISCV::FeatureStdExtD]) {
errs() << "Hard-float 'd' ABI can't be used for a target that "
"doesn't support the D instruction set extension (ignoring "
"target-abi)\n";
}
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand : public MCParsedAsmOperand {
enum class KindTy {
Token,
Register,
Immediate,
SystemRegister
} Kind;
bool IsRV64;
struct RegOp {
Register RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
struct SysRegOp {
const char *Data;
unsigned Length;
unsigned Encoding;
// FIXME: Add the Encoding parsed fields as needed for checks,
// e.g.: read/write or user/supervisor/machine privileges.
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
struct SysRegOp SysReg;
};
RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
IsRV64 = o.IsRV64;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case KindTy::Register:
Reg = o.Reg;
break;
case KindTy::Immediate:
Imm = o.Imm;
break;
case KindTy::Token:
Tok = o.Tok;
break;
case KindTy::SystemRegister:
SysReg = o.SysReg;
break;
}
}
bool isToken() const override { return Kind == KindTy::Token; }
bool isReg() const override { return Kind == KindTy::Register; }
bool isImm() const override { return Kind == KindTy::Immediate; }
bool isMem() const override { return false; }
bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
bool isGPR() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
}
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
RISCVMCExpr::VariantKind &VK) {
if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
VK = RE->getKind();
return RE->evaluateAsConstant(Imm);
}
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
VK = RISCVMCExpr::VK_RISCV_None;
Imm = CE->getValue();
return true;
}
return false;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
bool IsValid;
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isShiftedInt<N - 1, 1>(Imm);
return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCallSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
(VK == RISCVMCExpr::VK_RISCV_CALL ||
VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
}
bool isTPRelAddSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
}
bool isCSRSystemRegister() const { return isSystemRegister(); }
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
char Prev = '\0';
for (char c : Str) {
if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
return false;
if (c <= Prev)
return false;
Prev = c;
}
return true;
}
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
}
bool isImmXLenLI() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
return true;
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
(isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
}
bool isUImmLog2XLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenNonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
if (Imm == 0)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImm5() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm5NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<6>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6NonZero() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCLUIImm() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) &&
(isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm7Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
bool isUImm9Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm10Lsb00NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm12() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isInt<12>(Imm);
return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
}
bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
bool isSImm10Lsb0000NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm20LUI() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
} else {
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
}
}
bool isUImm20AUIPC() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
} else {
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
}
}
bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
bool isImmZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
}
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64() const { return IsRV64; }
unsigned getReg() const override {
assert(Kind == KindTy::Register && "Invalid type access!");
return Reg.RegNum.id();
}
StringRef getSysReg() const {
assert(Kind == KindTy::SystemRegister && "Invalid access!");
return StringRef(SysReg.Data, SysReg.Length);
}
const MCExpr *getImm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == KindTy::Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case KindTy::Immediate:
OS << *getImm();
break;
case KindTy::Register:
OS << "<register x";
OS << getReg() << ">";
break;
case KindTy::Token:
OS << "'" << getToken() << "'";
break;
case KindTy::SystemRegister:
OS << "<sysreg: " << getSysReg() << '>';
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand>
createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.Encoding = Encoding;
Op->StartLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
if (IsConstant)
Inst.addOperand(MCOperand::createImm(Imm));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// isFenceArg has validated the operand, meaning this cast is safe
auto SE = cast<MCSymbolRefExpr>(getImm());
unsigned Imm = 0;
for (char c : SE->getSymbol().getName()) {
switch (c) {
default:
llvm_unreachable("FenceArg must contain only [iorw]");
case 'i': Imm |= RISCVFenceField::I; break;
case 'o': Imm |= RISCVFenceField::O; break;
case 'r': Imm |= RISCVFenceField::R; break;
case 'w': Imm |= RISCVFenceField::W; break;
}
}
Inst.addOperand(MCOperand::createImm(Imm));
}
void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
}
// Returns the rounding mode represented by this RISCVOperand. Should only
// be called after checking isFRMArg.
RISCVFPRndMode::RoundingMode getRoundingMode() const {
// isFRMArg has validated the operand, meaning this cast is safe.
auto SE = cast<MCSymbolRefExpr>(getImm());
RISCVFPRndMode::RoundingMode FRM =
RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
return FRM;
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getRoundingMode()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "RISCVGenAsmMatcher.inc"
static Register convertFPR64ToFPR32(Register Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_F;
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
Register Reg = Op.getReg();
bool IsRegFPR64 =
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
bool IsRegFPR64C =
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
if ((IsRegFPR64 && Kind == MCK_FPR32) ||
(IsRegFPR64C && Kind == MCK_FPR32C)) {
Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
return Match_Success;
}
return Match_InvalidOperand;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
static std::string RISCVMnemonicSpellCheck(StringRef S,
const FeatureBitset &FBS,
unsigned VariantID = 0);
bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
return processInstruction(Inst, IDLoc, Operands, Out);
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
bool FirstFeature = true;
std::string Msg = "instruction requires the following:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += FirstFeature ? " " : ", ";
Msg += getSubtargetFeatureName(i);
FirstFeature = false;
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = RISCVMnemonicSpellCheck(
((RISCVOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch(Result) {
default:
break;
case Match_InvalidImmXLenLI:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidImmZero: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "immediate must be zero");
}
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm12:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
"operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
"integer in the range");
case Match_InvalidSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm20LUI:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with "
"%hi/%tprel_hi modifier or an integer in "
"the range");
case Match_InvalidUImm20AUIPC:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with a "
"%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
"an integer in the range");
case Match_InvalidSImm21Lsb0JAL:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidCSRSystemRegister: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case Match_InvalidFenceArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be formed of letters selected in-order from 'iorw'");
}
case Match_InvalidFRMArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be a valid floating point rounding mode mnemonic");
}
case Match_InvalidBareSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidCallSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidTPRelAddSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
}
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns true and sets RegNo to 0. If IsRV32E then registers
// x16-x31 will be rejected.
static bool matchRegisterNameHelper(bool IsRV32E, Register &RegNo,
StringRef Name) {
RegNo = MatchRegisterName(Name);
// The 32- and 64-bit FPRs have the same asm name. Check that the initial
// match always matches the 64-bit variant, and not the 32-bit one.
assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
// The default FPR register class is based on the tablegen enum ordering.
static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
if (RegNo == RISCV::NoRegister)
RegNo = MatchRegisterAltName(Name);
if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
RegNo = RISCV::NoRegister;
return RegNo == RISCV::NoRegister;
}
bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
StringRef Name = getLexer().getTok().getIdentifier();
if (matchRegisterNameHelper(isRV32E(), (Register&)RegNo, Name))
return Error(StartLoc, "invalid register name");
getParser().Lex(); // Eat identifier token.
return false;
}
OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken LParen;
// If this is an LParen and a parenthesised register name is allowed, parse it
// atomically.
if (AllowParens && getLexer().is(AsmToken::LParen)) {
AsmToken Buf[2];
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
LParen = getParser().getTok();
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
if (HadParens)
getLexer().UnLex(LParen);
return MatchOperand_NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
Register RegNo;
matchRegisterNameHelper(isRV32E(), RegNo, Name);
if (RegNo == RISCV::NoRegister) {
if (HadParens)
getLexer().UnLex(LParen);
return MatchOperand_NoMatch;
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
}
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (isUInt<12>(Imm)) {
auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
// Accept an immediate representing a named or un-named Sys Reg
// if the range is valid, regardless of the required features.
Operands.push_back(RISCVOperand::createSysReg(
SysReg ? SysReg->Name : "", S, Imm, isRV64()));
return MatchOperand_Success;
}
}
Twine Msg = "immediate must be an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
// Accept a named Sys Reg if the required features are present.
if (SysReg) {
if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
Error(S, "system register use requires an option to be enabled");
return MatchOperand_ParseFail;
}
Operands.push_back(RISCVOperand::createSysReg(
Identifier, S, SysReg->Encoding, isRV64()));
return MatchOperand_Success;
}
Twine Msg = "operand must be a valid system register name "
"or an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
case AsmToken::Percent: {
// Discard operand with modifier.
Twine Msg = "immediate must be an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
}
return MatchOperand_NoMatch;
}
OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Dot:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String:
case AsmToken::Identifier:
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
break;
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Percent) {
Error(getLoc(), "expected '%' for operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '%'
if (getLexer().getKind() != AsmToken::Identifier) {
Error(getLoc(), "expected valid identifier for operand modifier");
return MatchOperand_ParseFail;
}
StringRef Identifier = getParser().getTok().getIdentifier();
RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
Error(getLoc(), "unrecognized operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat the identifier
if (getLexer().getKind() != AsmToken::LParen) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E)) {
return MatchOperand_ParseFail;
}
const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
AsmToken Tok = getLexer().getTok();
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
if (Identifier.consume_back("@plt")) {
Error(getLoc(), "'@plt' operand not valid for instruction");
return MatchOperand_ParseFail;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return MatchOperand_NoMatch;
}
Res = V;
} else
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
break;
}
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
// Avoid parsing the register in `call rd, foo` as a call symbol.
if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
if (Identifier.consume_back("@plt"))
Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Res = RISCVMCExpr::create(Res, Kind, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
// Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
// both being acceptable forms. When parsing `jal ra, foo` this function
// will be called for the `ra` register operand in an attempt to match the
// single-operand alias. parseJALOffset must fail for this case. It would
// seem logical to try parse the operand using parseImmediate and return
// NoMatch if the next token is a comma (meaning we must be parsing a jal in
// the second form rather than the first). We can't do this as there's no
// way of rewinding the lexer state. Instead, return NoMatch if this operand
// is an identifier and is followed by a comma.
if (getLexer().is(AsmToken::Identifier) &&
getLexer().peekTok().is(AsmToken::Comma))
return MatchOperand_NoMatch;
return parseImmediate(Operands);
}
OperandMatchResultTy
RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseAtomicMemOp(OperandVector &Operands) {
// Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
// as one of their register operands, such as `(a0)`. This just denotes that
// the register (in this case `a0`) contains a memory address.
//
// Normally, we would be able to parse these by putting the parens into the
// instruction string. However, GNU as also accepts a zero-offset memory
// operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
// with parseImmediate followed by parseMemOpBaseReg, but these instructions
// do not accept an immediate operand, and we do not want to add a "dummy"
// operand that is silently dropped.
//
// Instead, we use this custom parser. This will: allow (and discard) an
// offset if it is zero; require (and discard) parentheses; and add only the
// parsed register operand to `Operands`.
//
// These operands are printed with RISCVInstPrinter::printAtomicMemOp, which
// will only print the register surrounded by parentheses (which GNU as also
// uses as its canonical representation for these operands).
std::unique_ptr<RISCVOperand> OptionalImmOp;
if (getLexer().isNot(AsmToken::LParen)) {
// Parse an Integer token. We do not accept arbritrary constant expressions
// in the offset field (because they may include parens, which complicates
// parsing a lot).
int64_t ImmVal;
SMLoc ImmStart = getLoc();
if (getParser().parseIntToken(ImmVal,
"expected '(' or optional integer offset"))
return MatchOperand_ParseFail;
// Create a RISCVOperand for checking later (so the error messages are
// nicer), but we don't add it to Operands.
SMLoc ImmEnd = getLoc();
OptionalImmOp =
RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
ImmStart, ImmEnd, isRV64());
}
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
: "expected '(' or optional integer offset");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
// Deferred Handling of non-zero offsets. This makes the error messages nicer.
if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
return MatchOperand_ParseFail;
}
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result == MatchOperand_Success)
return false;
if (Result == MatchOperand_ParseFail)
return true;
// Attempt to parse token as a register.
if (parseRegister(Operands, true) == MatchOperand_Success)
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands) == MatchOperand_Success) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return parseMemOpBaseReg(Operands) != MatchOperand_Success;
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Ensure that if the instruction occurs when relaxation is enabled,
// relocations are forced for the file. Ideally this would be done when there
// is enough information to reliably determine if the instruction itself may
// cause relaxations. Unfortunately instruction processing stage occurs in the
// same pass as relocation emission, so it's too late to set a 'sticky bit'
// for the entire file.
if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
if (Assembler != nullptr) {
RISCVAsmBackend &MAB =
static_cast<RISCVAsmBackend &>(Assembler->getBackend());
MAB.setForceRelocs();
}
}
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands
unsigned OperandIdx = 1;
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token
getLexer().Lex();
// Parse next operand
if (parseOperand(Operands, Name))
return true;
++OperandIdx;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend) {
Kind = RISCVMCExpr::VK_RISCV_None;
Addend = 0;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getKind();
Expr = RE->getSubExpr();
}
// It's a simple symbol reference or constant with no addend.
if (isa<MCConstantExpr>(Expr) || isa<MCSymbolRefExpr>(Expr))
return true;
const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
if (!BE)
return false;
if (!isa<MCSymbolRefExpr>(BE->getLHS()))
return false;
if (BE->getOpcode() != MCBinaryExpr::Add &&
BE->getOpcode() != MCBinaryExpr::Sub)
return false;
// We are able to support the subtraction of two symbol references
if (BE->getOpcode() == MCBinaryExpr::Sub &&
isa<MCSymbolRefExpr>(BE->getRHS()))
return true;
// See if the addend is a constant, otherwise there's more going
// on here than we can deal with.
auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
if (!AddendExpr)
return false;
Addend = AddendExpr->getValue();
if (BE->getOpcode() == MCBinaryExpr::Sub)
Addend = -Addend;
// It's some symbol reference + a constant addend
return Kind != RISCVMCExpr::VK_RISCV_Invalid;
}
bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
// This returns false if this function recognizes the directive
// regardless of whether it is successfully handles or reports an
// error. Otherwise it returns true to give the generic parser a
// chance at recognizing it.
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
return true;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Option = Tok.getIdentifier();
if (Option == "push") {
getTargetStreamer().emitDirectiveOptionPush();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
pushFeatureBits();
return false;
}
if (Option == "pop") {
SMLoc StartLoc = Parser.getTok().getLoc();
getTargetStreamer().emitDirectiveOptionPop();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
if (popFeatureBits())
return Error(StartLoc, ".option pop with no .option push");
return false;
}
if (Option == "rvc") {
getTargetStreamer().emitDirectiveOptionRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
getTargetStreamer().emitDirectiveOptionNoRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "relax") {
getTargetStreamer().emitDirectiveOptionRelax();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "norelax") {
getTargetStreamer().emitDirectiveOptionNoRelax();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
"'norelax'");
Parser.eatToEndOfStatement();
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
if (Res)
++RISCVNumInstrsCompressed;
S.EmitInstruction((Res ? CInst : Inst), getSTI());
}
void RISCVAsmParser::emitLoadImm(Register DestReg, int64_t Value,
MCStreamer &Out) {
RISCVMatInt::InstSeq Seq;
RISCVMatInt::generateInstSeq(Value, isRV64(), Seq);
Register SrcReg = RISCV::X0;
for (RISCVMatInt::Inst &Inst : Seq) {
if (Inst.Opc == RISCV::LUI) {
emitToStreamer(
Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm));
} else {
emitToStreamer(
Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm(
Inst.Imm));
}
// Only the first instruction has X0 as its source.
SrcReg = DestReg;
}
}
void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol,
RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc,
MCStreamer &Out) {
// A pair of instructions for PC-relative addressing; expands to
// TmpLabel: AUIPC TmpReg, VKHi(symbol)
// OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
MCContext &Ctx = getContext();
MCSymbol *TmpLabel = Ctx.createTempSymbol(
"pcrel_hi", /* AlwaysAddSuffix */ true, /* CanBeUnnamed */ false);
Out.EmitLabel(TmpLabel);
const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
emitToStreamer(
Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
const MCExpr *RefToLinkTmpLabel =
RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(TmpReg)
.addExpr(RefToLinkTmpLabel));
}
void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load local address pseudo-instruction "lla" is used in PC-relative
// addressing of local symbols:
// lla rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load address pseudo-instruction "la" is used in PC-relative and
// GOT-indirect addressing of global symbols:
// la rdest, symbol
// expands to either (for non-PIC)
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
// or (for PIC)
// TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode;
RISCVMCExpr::VariantKind VKHi;
// FIXME: Should check .option (no)pic when implemented
if (getContext().getObjectFileInfo()->isPositionIndependent()) {
SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
} else {
SecondOpcode = RISCV::ADDI;
VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
}
emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS IE address pseudo-instruction "la.tls.ie" is used in
// initial-exec TLS model addressing of global symbols:
// la.tls.ie rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS GD address pseudo-instruction "la.tls.gd" is used in
// global-dynamic TLS model addressing of global symbols:
// la.tls.gd rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
SMLoc IDLoc, MCStreamer &Out,
bool HasTmpReg) {
// The load/store pseudo-instruction does a pc-relative load with
// a symbol.
//
// The expansion looks like this
//
// TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
// [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
MCOperand DestReg = Inst.getOperand(0);
unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
unsigned TmpRegOpIdx = HasTmpReg ? 1 : 0;
MCOperand TmpReg = Inst.getOperand(TmpRegOpIdx);
const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
Opcode, IDLoc, Out);
}
bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
if (Inst.getOperand(2).getReg() != RISCV::X4) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
"%tprel_add modifier");
}
return false;
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
OperandVector &Operands,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
switch (Inst.getOpcode()) {
default:
break;
case RISCV::PseudoLI: {
Register Reg = Inst.getOperand(0).getReg();
const MCOperand &Op1 = Inst.getOperand(1);
if (Op1.isExpr()) {
// We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
// Just convert to an addi. This allows compatibility with gas.
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(Reg)
.addReg(RISCV::X0)
.addExpr(Op1.getExpr()));
return false;
}
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
case RISCV::PseudoLLA:
emitLoadLocalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA:
emitLoadAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_IE:
emitLoadTLSIEAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_GD:
emitLoadTLSGDAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLB:
emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLBU:
emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLH:
emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLHU:
emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLW:
emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLWU:
emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLD:
emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoFLW:
emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLD:
emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSB:
emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSH:
emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSW:
emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSD:
emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSW:
emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSD:
emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoAddTPRel:
if (checkPseudoAddTPRel(Inst, Operands))
return true;
break;
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}