RISCVInstrInfo.td 43.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//

// Target-independent type requirements, but with target-specific formats.
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
                                       SDTCisVT<1, i32>]>;
def SDT_CallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                     SDTCisVT<1, i32>]>;

// Target-dependent type requirements.
def SDT_RISCVCall     : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
                                             SDTCisSameAs<0, 4>,
                                             SDTCisSameAs<4, 5>]>;

// Target-independent nodes, but with target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

// Target-dependent nodes.
def riscv_call      : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                              SDNPVariadic]>;
def riscv_ret_flag  : SDNode<"RISCVISD::RET_FLAG", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue]>;
def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue]>;
def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue]>;
def riscv_selectcc  : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC,
                             [SDNPInGlue]>;
def riscv_tail      : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                              SDNPVariadic]>;
def riscv_sllw      : SDNode<"RISCVISD::SLLW", SDTIntShiftOp>;
def riscv_sraw      : SDNode<"RISCVISD::SRAW", SDTIntShiftOp>;
def riscv_srlw      : SDNode<"RISCVISD::SRLW", SDTIntShiftOp>;

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
  let Name = prefix # "ImmXLen" # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
  let Name = prefix # "Imm" # width # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

def ImmZeroAsmOperand : AsmOperandClass {
  let Name = "ImmZero";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

class SImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"S", width, suffix> {
}

class UImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"U", width, suffix> {
}

def FenceArg : AsmOperandClass {
  let Name = "FenceArg";
  let RenderMethod = "addFenceArgOperands";
  let DiagnosticType = "InvalidFenceArg";
}

def fencearg : Operand<XLenVT> {
  let ParserMatchClass = FenceArg;
  let PrintMethod = "printFenceArg";
  let DecoderMethod = "decodeUImmOperand<4>";
  let OperandType = "OPERAND_UIMM4";
  let OperandNamespace = "RISCVOp";
}

def UImmLog2XLenAsmOperand : AsmOperandClass {
  let Name = "UImmLog2XLen";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidUImmLog2XLen";
}

def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return isUInt<6>(Imm);
  return isUInt<5>(Imm);
}]> {
  let ParserMatchClass = UImmLog2XLenAsmOperand;
  // TODO: should ensure invalid shamt is rejected when decoding.
  let DecoderMethod = "decodeUImmOperand<6>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (!MCOp.evaluateAsConstantImm(Imm))
      return false;
    if (STI.getTargetTriple().isArch64Bit())
      return  isUInt<6>(Imm);
    return isUInt<5>(Imm);
  }];
  let OperandType = "OPERAND_UIMMLOG2XLEN";
  let OperandNamespace = "RISCVOp";
}

def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
  let ParserMatchClass = UImmAsmOperand<5>;
  let DecoderMethod = "decodeUImmOperand<5>";
  let OperandType = "OPERAND_UIMM5";
  let OperandNamespace = "RISCVOp";
}

def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
  let ParserMatchClass = SImmAsmOperand<12>;
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeSImmOperand<12>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<12>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_SIMM12";
  let OperandNamespace = "RISCVOp";
}

// A 13-bit signed immediate where the least significant bit is zero.
def simm13_lsb0 : Operand<OtherVT> {
  let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<12, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_SIMM13_LSB0";
  let OperandNamespace = "RISCVOp";
}

class UImm20Operand : Operand<XLenVT> {
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeUImmOperand<20>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isUInt<20>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_UIMM20";
  let OperandNamespace = "RISCVOp";
}

def uimm20_lui : UImm20Operand {
  let ParserMatchClass = UImmAsmOperand<20, "LUI">;
}
def uimm20_auipc : UImm20Operand {
  let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
}

def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
  let ParserMethod = "parseJALOffset";
}

// A 21-bit signed immediate where the least significant bit is zero.
def simm21_lsb0_jal : Operand<OtherVT> {
  let ParserMatchClass = Simm21Lsb0JALAsmOperand;
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<20, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_SIMM21_LSB0";
  let OperandNamespace = "RISCVOp";
}

def BareSymbol : AsmOperandClass {
  let Name = "BareSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidBareSymbol";
  let ParserMethod = "parseBareSymbol";
}

// A bare symbol.
def bare_symbol : Operand<XLenVT> {
  let ParserMatchClass = BareSymbol;
}

def CallSymbol : AsmOperandClass {
  let Name = "CallSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidCallSymbol";
  let ParserMethod = "parseCallSymbol";
}

// A bare symbol used in call/tail only.
def call_symbol : Operand<XLenVT> {
  let ParserMatchClass = CallSymbol;
}

def TPRelAddSymbol : AsmOperandClass {
  let Name = "TPRelAddSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidTPRelAddSymbol";
  let ParserMethod = "parseOperandWithModifier";
}

// A bare symbol with the %tprel_add variant.
def tprel_add_symbol : Operand<XLenVT> {
  let ParserMatchClass = TPRelAddSymbol;
}

def CSRSystemRegister : AsmOperandClass {
  let Name = "CSRSystemRegister";
  let ParserMethod = "parseCSRSystemRegister";
  let DiagnosticType = "InvalidCSRSystemRegister";
}

def csr_sysreg : Operand<XLenVT> {
  let ParserMatchClass = CSRSystemRegister;
  let PrintMethod = "printCSRSystemRegister";
  let DecoderMethod = "decodeUImmOperand<12>";
  let OperandType = "OPERAND_UIMM12";
  let OperandNamespace = "RISCVOp";
}

// A parameterized register class alternative to i32imm/i64imm from Target.td.
def ixlenimm : Operand<XLenVT>;

def ixlenimm_li : Operand<XLenVT> {
  let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
}

// Standalone (codegen-only) immleaf patterns.
def simm32     : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>;
def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>;
// A mask value that won't affect significant shift bits.
def immbottomxlenset : ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return countTrailingOnes<uint64_t>(Imm) >= 6;
  return countTrailingOnes<uint64_t>(Imm) >= 5;
}]>;

// Addressing modes.
// Necessary because a frameindex can't be matched directly in a pattern.
def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;

// Extract least significant 12 bits from an immediate value and sign extend
// them.
def LO12Sext : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

// Extract the most significant 20 bits from an immediate value. Add 1 if bit
// 11 is 1, to compensate for the low 12 bits in the matching immediate addi
// or ld/st being negative.
def HI20 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff,
                                   SDLoc(N), N->getValueType(0));
}]>;

//===----------------------------------------------------------------------===//
// Instruction Formats
//===----------------------------------------------------------------------===//

include "RISCVInstrFormats.td"

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class BranchCC_rri<bits<3> funct3, string opcodestr>
    : RVInstB<funct3, OPC_BRANCH, (outs),
              (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
              opcodestr, "$rs1, $rs2, $imm12">,
      Sched<[WriteJmp]> {
  let isBranch = 1;
  let isTerminator = 1;
}

let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class Load_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
              opcodestr, "$rd, ${imm12}(${rs1})">;

// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class Store_rri<bits<3> funct3, string opcodestr>
    : RVInstS<funct3, OPC_STORE, (outs),
              (ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
              opcodestr, "$rs2, ${imm12}(${rs1})">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
              opcodestr, "$rd, $rs1, $imm12">,
      Sched<[WriteIALU, ReadIALU]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr>
    : RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd),
                   (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
                   "$rd, $rs1, $shamt">,
      Sched<[WriteShift, ReadShift]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "$rd, $rs1, $rs2">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ir<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ii<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
              (ins csr_sysreg:$imm12, uimm5:$rs1),
              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr>
    : RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, uimm5:$shamt), opcodestr,
                    "$rd, $rs1, $shamt">,
      Sched<[WriteShift32, ReadShift32]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
              (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv<string opcodestr, bits<7> funct7>
    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "">;

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
                  "lui", "$rd, $imm20">, Sched<[WriteIALU]>;

def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
                    "auipc", "$rd, $imm20">, Sched<[WriteIALU]>;

let isCall = 1 in
def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
                  "jal", "$rd, $imm20">, Sched<[WriteJal]>;

let isCall = 1 in
def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
                   (ins GPR:$rs1, simm12:$imm12),
                   "jalr", "$rd, ${imm12}(${rs1})">,
           Sched<[WriteJalr, ReadJalr]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

def BEQ  : BranchCC_rri<0b000, "beq">;
def BNE  : BranchCC_rri<0b001, "bne">;
def BLT  : BranchCC_rri<0b100, "blt">;
def BGE  : BranchCC_rri<0b101, "bge">;
def BLTU : BranchCC_rri<0b110, "bltu">;
def BGEU : BranchCC_rri<0b111, "bgeu">;

def LB  : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
def LH  : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
def LW  : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;

def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;

// ADDI isn't always rematerializable, but isReMaterializable will be used as
// a hint which is verified in isReallyTriviallyReMaterializable.
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def ADDI  : ALU_ri<0b000, "addi">;

def SLTI  : ALU_ri<0b010, "slti">;
def SLTIU : ALU_ri<0b011, "sltiu">;

let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def XORI  : ALU_ri<0b100, "xori">;
def ORI   : ALU_ri<0b110, "ori">;
}

def ANDI  : ALU_ri<0b111, "andi">;

def SLLI : Shift_ri<0, 0b001, "slli">;
def SRLI : Shift_ri<0, 0b101, "srli">;
def SRAI : Shift_ri<1, 0b101, "srai">;

def ADD  : ALU_rr<0b0000000, 0b000, "add">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SUB  : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLL  : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLT  : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def XOR  : ALU_rr<0b0000000, 0b100, "xor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SRL  : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SRA  : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def OR   : ALU_rr<0b0000000, 0b110, "or">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def AND  : ALU_rr<0b0000000, 0b111, "and">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
                    (ins fencearg:$pred, fencearg:$succ),
                    "fence", "$pred, $succ">, Sched<[]> {
  bits<4> pred;
  bits<4> succ;

  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b0000,pred,succ};
}

def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b1000,0b0011,0b0011};
}

def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
             Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 1;
}

// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
            Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0b110000000000;
}
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0

def CSRRW : CSR_ir<0b001, "csrrw">;
def CSRRS : CSR_ir<0b010, "csrrs">;
def CSRRC : CSR_ir<0b011, "csrrc">;

def CSRRWI : CSR_ii<0b101, "csrrwi">;
def CSRRSI : CSR_ii<0b110, "csrrsi">;
def CSRRCI : CSR_ii<0b111, "csrrci">;

/// RV64I instructions

let Predicates = [IsRV64] in {
def LWU   : Load_ri<0b110, "lwu">, Sched<[WriteLDWU, ReadMemBase]>;
def LD    : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
def SD    : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, simm12:$imm12),
                    "addiw", "$rd, $rs1, $imm12">,
            Sched<[WriteIALU32, ReadIALU32]>;

def SLLIW : ShiftW_ri<0, 0b001, "slliw">;
def SRLIW : ShiftW_ri<0, 0b101, "srliw">;
def SRAIW : ShiftW_ri<1, 0b101, "sraiw">;

def ADDW  : ALUW_rr<0b0000000, 0b000, "addw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SUBW  : ALUW_rr<0b0100000, 0b000, "subw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SLLW  : ALUW_rr<0b0000000, 0b001, "sllw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SRLW  : ALUW_rr<0b0000000, 0b101, "srlw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SRAW  : ALUW_rr<0b0100000, 0b101, "sraw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
} // Predicates = [IsRV64]

//===----------------------------------------------------------------------===//
// Privileged instructions
//===----------------------------------------------------------------------===//

let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def URET : Priv<"uret", 0b0000000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}

def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}

def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1

def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00101;
}

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
                         (ins GPR:$rs1, GPR:$rs2),
                         "sfence.vma", "$rs1, $rs2">, Sched<[]> {
  let rd = 0;
}

//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//

def : InstAlias<"nop",           (ADDI      X0,      X0,       0)>;

// Note that the size is 32 because up to 8 32-bit instructions are needed to
// generate an arbitrary 64-bit immediate. However, the size does not really
// matter since PseudoLI is currently only used in the AsmParser where it gets
// expanded to real instructions immediately.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
    isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
                      "li", "$rd, $imm">;

def PseudoLB  : PseudoLoad<"lb">;
def PseudoLBU : PseudoLoad<"lbu">;
def PseudoLH  : PseudoLoad<"lh">;
def PseudoLHU : PseudoLoad<"lhu">;
def PseudoLW  : PseudoLoad<"lw">;

def PseudoSB  : PseudoStore<"sb">;
def PseudoSH  : PseudoStore<"sh">;
def PseudoSW  : PseudoStore<"sw">;

let Predicates = [IsRV64] in {
def PseudoLWU : PseudoLoad<"lwu">;
def PseudoLD  : PseudoLoad<"ld">;
def PseudoSD  : PseudoStore<"sd">;
} // Predicates = [IsRV64]

def : InstAlias<"mv $rd, $rs",   (ADDI GPR:$rd, GPR:$rs,       0)>;
def : InstAlias<"not $rd, $rs",  (XORI GPR:$rd, GPR:$rs,      -1)>;
def : InstAlias<"neg $rd, $rs",  (SUB  GPR:$rd,      X0, GPR:$rs)>;

let Predicates = [IsRV64] in {
def : InstAlias<"negw $rd, $rs",   (SUBW  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs,       0)>;
} // Predicates = [IsRV64]

def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs,       1)>;
def : InstAlias<"snez $rd, $rs", (SLTU  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sltz $rd, $rs", (SLT   GPR:$rd, GPR:$rs,      X0)>;
def : InstAlias<"sgtz $rd, $rs", (SLT   GPR:$rd,      X0, GPR:$rs)>;

// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
// form will always be printed. Therefore, set a zero weight.
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;

def : InstAlias<"beqz $rs, $offset",
                (BEQ GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bnez $rs, $offset",
                (BNE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"blez $rs, $offset",
                (BGE      X0, GPR:$rs, simm13_lsb0:$offset)>;
def : InstAlias<"bgez $rs, $offset",
                (BGE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bltz $rs, $offset",
                (BLT GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bgtz $rs, $offset",
                (BLT      X0, GPR:$rs, simm13_lsb0:$offset)>;

// Always output the canonical mnemonic for the pseudo branch instructions.
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
// objdump). Match this behaviour by setting a zero weight.
def : InstAlias<"bgt $rs, $rt, $offset",
                (BLT  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"ble $rs, $rt, $offset",
                (BGE  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bgtu $rs, $rt, $offset",
                (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bleu $rs, $rt, $offset",
                (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;

def : InstAlias<"j $offset",   (JAL X0, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;

// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
// two-register form, then the one-register forms and finally "ret".
def : InstAlias<"jr $rs",                (JALR      X0, GPR:$rs, 0), 3>;
def : InstAlias<"jr ${offset}(${rs})",   (JALR      X0, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rs",              (JALR      X1, GPR:$rs, 0), 3>;
def : InstAlias<"jalr ${offset}(${rs})", (JALR      X1, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rd, $rs",         (JALR GPR:$rd, GPR:$rs, 0), 2>;
def : InstAlias<"ret",                   (JALR      X0,      X1, 0), 4>;

// Non-canonical forms for jump targets also accepted by the assembler.
def : InstAlias<"jr $rs, $offset",        (JALR      X0, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rs, $offset",      (JALR      X1, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;

def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw

def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
def : InstAlias<"rdcycle $rd",   (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
def : InstAlias<"rdtime $rd",    (CSRRS GPR:$rd, TIME.Encoding, X0)>;

let Predicates = [IsRV32] in {
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
def : InstAlias<"rdcycleh $rd",   (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
def : InstAlias<"rdtimeh $rd",    (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
} // Predicates = [IsRV32]

def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr,      X0)>;
def : InstAlias<"csrw $csr, $rs", (CSRRW      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrs $csr, $rs", (CSRRS      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrc $csr, $rs", (CSRRC      X0, csr_sysreg:$csr, GPR:$rs)>;

def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

let EmitPriority = 0 in {
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
}

def : InstAlias<"sfence.vma",     (SFENCE_VMA      X0, X0)>;
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;

let EmitPriority = 0 in {
def : InstAlias<"lb $rd, (${rs1})",
                (LB  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lh $rd, (${rs1})",
                (LH  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lw $rd, (${rs1})",
                (LW  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lbu $rd, (${rs1})",
                (LBU  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lhu $rd, (${rs1})",
                (LHU  GPR:$rd, GPR:$rs1, 0)>;

def : InstAlias<"sb $rs2, (${rs1})",
                (SB  GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sh $rs2, (${rs1})",
                (SH  GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sw $rs2, (${rs1})",
                (SW  GPR:$rs2, GPR:$rs1, 0)>;

def : InstAlias<"add $rd, $rs1, $imm12",
                (ADDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"and $rd, $rs1, $imm12",
                (ANDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"xor $rd, $rs1, $imm12",
                (XORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"or $rd, $rs1, $imm12",
                (ORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sll $rd, $rs1, $shamt",
                (SLLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"srl $rd, $rs1, $shamt",
                (SRLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"sra $rd, $rs1, $shamt",
                (SRAI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
let Predicates = [IsRV64] in {
def : InstAlias<"lwu $rd, (${rs1})",
                (LWU  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"ld $rd, (${rs1})",
                (LD  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sd $rs2, (${rs1})",
                (SD  GPR:$rs2, GPR:$rs1, 0)>;

def : InstAlias<"addw $rd, $rs1, $imm12",
                (ADDIW  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sllw $rd, $rs1, $shamt",
                (SLLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"srlw $rd, $rs1, $shamt",
                (SRLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"sraw $rd, $rs1, $shamt",
                (SRAIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
} // Predicates = [IsRV64]
def : InstAlias<"slt $rd, $rs1, $imm12",
                (SLTI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sltu $rd, $rs1, $imm12",
                (SLTIU  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
}

def : MnemonicAlias<"move", "mv">;

// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
// the old name for backwards compatibility.
def : MnemonicAlias<"scall", "ecall">;
def : MnemonicAlias<"sbreak", "ebreak">;

//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2. For pattern classes which offer a more complex
// expension, prefix the class name, e.g. BccPat.
//===----------------------------------------------------------------------===//

/// Generic pattern classes

class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
    : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
    : Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>;
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
    : Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt),
          (Inst GPR:$rs1, uimmlog2xlen:$shamt)>;

/// Predicates

def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
  return isOrEquivalentToAdd(N);
}]>;
def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
}]>;
def sexti32 : PatFrags<(ops node:$src),
                       [(sext_inreg node:$src, i32),
                        (assertsexti32 node:$src)]>;
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
}]>;
def zexti32 : PatFrags<(ops node:$src),
                       [(and node:$src, 0xffffffff),
                        (assertzexti32 node:$src)]>;

/// Immediates

def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>;
def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>;
def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>,
      Requires<[IsRV32]>;

/// Simple arithmetic operations

def : PatGprGpr<add, ADD>;
def : PatGprSimm12<add, ADDI>;
def : PatGprGpr<sub, SUB>;
def : PatGprGpr<or, OR>;
def : PatGprSimm12<or, ORI>;
def : PatGprGpr<and, AND>;
def : PatGprSimm12<and, ANDI>;
def : PatGprGpr<xor, XOR>;
def : PatGprSimm12<xor, XORI>;
def : PatGprUimmLog2XLen<shl, SLLI>;
def : PatGprUimmLog2XLen<srl, SRLI>;
def : PatGprUimmLog2XLen<sra, SRAI>;

// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
class shiftop<SDPatternOperator operator>
    : PatFrags<(ops node:$val, node:$count),
               [(operator node:$val, node:$count),
                (operator node:$val, (and node:$count, immbottomxlenset))]>;

def : PatGprGpr<shiftop<shl>, SLL>;
def : PatGprGpr<shiftop<srl>, SRL>;
def : PatGprGpr<shiftop<sra>, SRA>;

// This is a special case of the ADD instruction used to facilitate the use of a
// fourth operand to emit a relocation on a symbol relating to this instruction.
// The relocation does not affect any bits of the instruction itself but is used
// as a hint to the linker.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
                            (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
                            "add", "$rd, $rs1, $rs2, $src">;

/// FrameIndex calculations

def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12),
          (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12),
          (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;

/// Setcc

def : PatGprGpr<setlt, SLT>;
def : PatGprSimm12<setlt, SLTI>;
def : PatGprGpr<setult, SLTU>;
def : PatGprSimm12<setult, SLTIU>;

// Define pattern expansions for setcc operations that aren't directly
// handled by a RISC-V instruction.
def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(seteq GPR:$rs1, simm12:$imm12),
          (SLTIU (XORI GPR:$rs1, simm12:$imm12), 1)>;
def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
def : Pat<(setne GPR:$rs1, simm12:$imm12),
          (SLTU X0, (XORI GPR:$rs1, simm12:$imm12))>;
def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;

let usesCustomInserter = 1 in
class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
    : Pseudo<(outs valty:$dst),
             (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
              valty:$truev, valty:$falsev),
             [(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs,
              (XLenVT imm:$imm), valty:$truev, valty:$falsev))]>;

def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;

/// Branches and jumps

// Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch
// instruction.
class BccPat<PatFrag CondOp, RVInstB Inst>
    : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
          (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;

def : BccPat<seteq, BEQ>;
def : BccPat<setne, BNE>;
def : BccPat<setlt, BLT>;
def : BccPat<setge, BGE>;
def : BccPat<setult, BLTU>;
def : BccPat<setuge, BGEU>;

class BccSwapPat<PatFrag CondOp, RVInst InstBcc>
    : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
          (InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>;

// Condition codes that don't have matching RISC-V branch instructions, but
// are trivially supported by swapping the two input operands
def : BccSwapPat<setgt, BLT>;
def : BccSwapPat<setle, BGE>;
def : BccSwapPat<setugt, BLTU>;
def : BccSwapPat<setule, BGEU>;

// An extra pattern is needed for a brcond without a setcc (i.e. where the
// condition was calculated elsewhere).
def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>;

let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
               PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;

let isCall = 1, Defs=[X1] in
let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
                  PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;

def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
          (PseudoBRIND GPR:$rs1, simm12:$imm12)>;

// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
// expand to auipc and jalr while encoding, with any given register used as the
// destination.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0,
    mayStore = 0, mayLoad = 0 in
def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> {
  let AsmString = "call\t$rd, $func";
}

// PseudoCALL is a pseudo instruction which will eventually expand to auipc
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
// if the offset fits in a signed 21-bit immediate.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> {
  let AsmString = "call\t$func";
}

def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;

def : Pat<(riscv_uret_flag), (URET X0, X0)>;
def : Pat<(riscv_sret_flag), (SRET X0, X0)>;
def : Pat<(riscv_mret_flag), (MRET X0, X0)>;

let isCall = 1, Defs = [X1] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1),
                                [(riscv_call GPR:$rs1)]>,
                         PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;

let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>,
                PseudoInstExpansion<(JALR X0, X1, 0)>;

// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
// expand to auipc and jalr while encoding.
// Define AsmString to print "tail" when compile with -S flag.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
    isCodeGenOnly = 0 in
def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> {
  let AsmString = "tail\t$dst";
}

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
                                [(riscv_tail GPRTC:$rs1)]>,
                         PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;

def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
          (PseudoTAIL texternalsym:$dst)>;
def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
          (PseudoTAIL texternalsym:$dst)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                       "lla", "$dst, $src">;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                      "la", "$dst, $src">;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                             "la.tls.ie", "$dst, $src">;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                             "la.tls.gd", "$dst, $src">;

/// Loads

multiclass LdPat<PatFrag LoadOp, RVInst Inst> {
  def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>;
  def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>;
  def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)),
            (Inst GPR:$rs1, simm12:$imm12)>;
  def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)),
            (Inst AddrFI:$rs1, simm12:$imm12)>;
  def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
            (Inst AddrFI:$rs1, simm12:$imm12)>;
}

defm : LdPat<sextloadi8, LB>;
defm : LdPat<extloadi8, LB>;
defm : LdPat<sextloadi16, LH>;
defm : LdPat<extloadi16, LH>;
defm : LdPat<load, LW>, Requires<[IsRV32]>;
defm : LdPat<zextloadi8, LBU>;
defm : LdPat<zextloadi16, LHU>;

/// Stores

multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> {
  def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>;
  def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>;
  def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
  def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
  def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
}

defm : StPat<truncstorei8, SB, GPR>;
defm : StPat<truncstorei16, SH, GPR>;
defm : StPat<store, SW, GPR>, Requires<[IsRV32]>;

/// Fences

// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
// Manual: Volume I.

// fence acquire -> fence r, rw
def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
// fence release -> fence rw, w
def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
// fence acq_rel -> fence.tso
def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
// fence seq_cst -> fence rw, rw
def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;

// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
// Although these are lowered to fence+load/store instructions defined in the
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
// with inline atomic operations for the same object.

/// Other pseudo-instructions

// Pessimistically assume the stack pointer will be clobbered
let Defs = [X2], Uses = [X2] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [X2], Uses = [X2]

/// RV64 patterns

let Predicates = [IsRV64] in {

/// sext and zext

def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>;

/// ALU operations

def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
          (ADDW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
          (ADDIW GPR:$rs1, simm12:$imm12)>;
def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
          (SUBW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
          (SLLIW GPR:$rs1, uimm5:$shamt)>;
// (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the
// need to undo manipulation of the mask value performed by DAGCombine.
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
          (SRAIW GPR:$rs1, uimm5:$shamt)>;

def : PatGprGpr<riscv_sllw, SLLW>;
def : PatGprGpr<riscv_srlw, SRLW>;
def : PatGprGpr<riscv_sraw, SRAW>;

/// Loads

defm : LdPat<sextloadi32, LW>;
defm : LdPat<extloadi32, LW>;
defm : LdPat<zextloadi32, LWU>;
defm : LdPat<load, LD>;

/// Stores

defm : StPat<truncstorei32, SW, GPR>;
defm : StPat<store, SD, GPR>;
} // Predicates = [IsRV64]

/// readcyclecounter
// On RV64, we can directly read the 64-bit "cycle" CSR.
let Predicates = [IsRV64] in
def : Pat<(readcyclecounter), (CSRRS CYCLE.Encoding, X0)>;
// On RV32, ReadCycleWide will be expanded to the suggested loop reading both
// halves of the 64-bit "cycle" CSR.
let Predicates = [IsRV32], usesCustomInserter = 1, hasSideEffects = 0,
mayLoad = 0, mayStore = 0, hasNoSchedulingInfo = 1 in
def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), [], "", "">;

/// traps

// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
// systems.
def : Pat<(trap), (UNIMP)>;

// We lower `debugtrap` to `ebreak`, as this will get the attention of the
// debugger if possible.
def : Pat<(debugtrap), (EBREAK)>;

//===----------------------------------------------------------------------===//
// Standard extensions
//===----------------------------------------------------------------------===//

include "RISCVInstrInfoM.td"
include "RISCVInstrInfoA.td"
include "RISCVInstrInfoF.td"
include "RISCVInstrInfoD.td"
include "RISCVInstrInfoC.td"