InstCombineAddSub.cpp 78.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for add, fadd, sub, and fsub.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include <cassert>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

namespace {

  /// Class representing coefficient of floating-point addend.
  /// This class needs to be highly efficient, which is especially true for
  /// the constructor. As of I write this comment, the cost of the default
  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
  /// perform write-merging).
  ///
  class FAddendCoef {
  public:
    // The constructor has to initialize a APFloat, which is unnecessary for
    // most addends which have coefficient either 1 or -1. So, the constructor
    // is expensive. In order to avoid the cost of the constructor, we should
    // reuse some instances whenever possible. The pre-created instances
    // FAddCombine::Add[0-5] embodies this idea.
    FAddendCoef() = default;
    ~FAddendCoef();

    // If possible, don't define operator+/operator- etc because these
    // operators inevitably call FAddendCoef's constructor which is not cheap.
    void operator=(const FAddendCoef &A);
    void operator+=(const FAddendCoef &A);
    void operator*=(const FAddendCoef &S);

    void set(short C) {
      assert(!insaneIntVal(C) && "Insane coefficient");
      IsFp = false; IntVal = C;
    }

    void set(const APFloat& C);

    void negate();

    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
    Value *getValue(Type *) const;

    bool isOne() const { return isInt() && IntVal == 1; }
    bool isTwo() const { return isInt() && IntVal == 2; }
    bool isMinusOne() const { return isInt() && IntVal == -1; }
    bool isMinusTwo() const { return isInt() && IntVal == -2; }

  private:
    bool insaneIntVal(int V) { return V > 4 || V < -4; }

    APFloat *getFpValPtr()
      { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }

    const APFloat *getFpValPtr() const
      { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }

    const APFloat &getFpVal() const {
      assert(IsFp && BufHasFpVal && "Incorret state");
      return *getFpValPtr();
    }

    APFloat &getFpVal() {
      assert(IsFp && BufHasFpVal && "Incorret state");
      return *getFpValPtr();
    }

    bool isInt() const { return !IsFp; }

    // If the coefficient is represented by an integer, promote it to a
    // floating point.
    void convertToFpType(const fltSemantics &Sem);

    // Construct an APFloat from a signed integer.
    // TODO: We should get rid of this function when APFloat can be constructed
    //       from an *SIGNED* integer.
    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);

    bool IsFp = false;

    // True iff FpValBuf contains an instance of APFloat.
    bool BufHasFpVal = false;

    // The integer coefficient of an individual addend is either 1 or -1,
    // and we try to simplify at most 4 addends from neighboring at most
    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
    // is overkill of this end.
    short IntVal = 0;

    AlignedCharArrayUnion<APFloat> FpValBuf;
  };

  /// FAddend is used to represent floating-point addend. An addend is
  /// represented as <C, V>, where the V is a symbolic value, and C is a
  /// constant coefficient. A constant addend is represented as <C, 0>.
  class FAddend {
  public:
    FAddend() = default;

    void operator+=(const FAddend &T) {
      assert((Val == T.Val) && "Symbolic-values disagree");
      Coeff += T.Coeff;
    }

    Value *getSymVal() const { return Val; }
    const FAddendCoef &getCoef() const { return Coeff; }

    bool isConstant() const { return Val == nullptr; }
    bool isZero() const { return Coeff.isZero(); }

    void set(short Coefficient, Value *V) {
      Coeff.set(Coefficient);
      Val = V;
    }
    void set(const APFloat &Coefficient, Value *V) {
      Coeff.set(Coefficient);
      Val = V;
    }
    void set(const ConstantFP *Coefficient, Value *V) {
      Coeff.set(Coefficient->getValueAPF());
      Val = V;
    }

    void negate() { Coeff.negate(); }

    /// Drill down the U-D chain one step to find the definition of V, and
    /// try to break the definition into one or two addends.
    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);

    /// Similar to FAddend::drillDownOneStep() except that the value being
    /// splitted is the addend itself.
    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;

  private:
    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }

    // This addend has the value of "Coeff * Val".
    Value *Val = nullptr;
    FAddendCoef Coeff;
  };

  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
  /// with its neighboring at most two instructions.
  ///
  class FAddCombine {
  public:
    FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}

    Value *simplify(Instruction *FAdd);

  private:
    using AddendVect = SmallVector<const FAddend *, 4>;

    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);

    /// Convert given addend to a Value
    Value *createAddendVal(const FAddend &A, bool& NeedNeg);

    /// Return the number of instructions needed to emit the N-ary addition.
    unsigned calcInstrNumber(const AddendVect& Vect);

    Value *createFSub(Value *Opnd0, Value *Opnd1);
    Value *createFAdd(Value *Opnd0, Value *Opnd1);
    Value *createFMul(Value *Opnd0, Value *Opnd1);
    Value *createFNeg(Value *V);
    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);

     // Debugging stuff are clustered here.
    #ifndef NDEBUG
      unsigned CreateInstrNum;
      void initCreateInstNum() { CreateInstrNum = 0; }
      void incCreateInstNum() { CreateInstrNum++; }
    #else
      void initCreateInstNum() {}
      void incCreateInstNum() {}
    #endif

    InstCombiner::BuilderTy &Builder;
    Instruction *Instr = nullptr;
  };

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//
// Implementation of
//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
//
//===----------------------------------------------------------------------===//
FAddendCoef::~FAddendCoef() {
  if (BufHasFpVal)
    getFpValPtr()->~APFloat();
}

void FAddendCoef::set(const APFloat& C) {
  APFloat *P = getFpValPtr();

  if (isInt()) {
    // As the buffer is meanless byte stream, we cannot call
    // APFloat::operator=().
    new(P) APFloat(C);
  } else
    *P = C;

  IsFp = BufHasFpVal = true;
}

void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
  if (!isInt())
    return;

  APFloat *P = getFpValPtr();
  if (IntVal > 0)
    new(P) APFloat(Sem, IntVal);
  else {
    new(P) APFloat(Sem, 0 - IntVal);
    P->changeSign();
  }
  IsFp = BufHasFpVal = true;
}

APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
  if (Val >= 0)
    return APFloat(Sem, Val);

  APFloat T(Sem, 0 - Val);
  T.changeSign();

  return T;
}

void FAddendCoef::operator=(const FAddendCoef &That) {
  if (That.isInt())
    set(That.IntVal);
  else
    set(That.getFpVal());
}

void FAddendCoef::operator+=(const FAddendCoef &That) {
  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
  if (isInt() == That.isInt()) {
    if (isInt())
      IntVal += That.IntVal;
    else
      getFpVal().add(That.getFpVal(), RndMode);
    return;
  }

  if (isInt()) {
    const APFloat &T = That.getFpVal();
    convertToFpType(T.getSemantics());
    getFpVal().add(T, RndMode);
    return;
  }

  APFloat &T = getFpVal();
  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
}

void FAddendCoef::operator*=(const FAddendCoef &That) {
  if (That.isOne())
    return;

  if (That.isMinusOne()) {
    negate();
    return;
  }

  if (isInt() && That.isInt()) {
    int Res = IntVal * (int)That.IntVal;
    assert(!insaneIntVal(Res) && "Insane int value");
    IntVal = Res;
    return;
  }

  const fltSemantics &Semantic =
    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();

  if (isInt())
    convertToFpType(Semantic);
  APFloat &F0 = getFpVal();

  if (That.isInt())
    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
                APFloat::rmNearestTiesToEven);
  else
    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
}

void FAddendCoef::negate() {
  if (isInt())
    IntVal = 0 - IntVal;
  else
    getFpVal().changeSign();
}

Value *FAddendCoef::getValue(Type *Ty) const {
  return isInt() ?
    ConstantFP::get(Ty, float(IntVal)) :
    ConstantFP::get(Ty->getContext(), getFpVal());
}

// The definition of <Val>     Addends
// =========================================
//  A + B                     <1, A>, <1,B>
//  A - B                     <1, A>, <1,B>
//  0 - B                     <-1, B>
//  C * A,                    <C, A>
//  A + C                     <1, A> <C, NULL>
//  0 +/- 0                   <0, NULL> (corner case)
//
// Legend: A and B are not constant, C is constant
unsigned FAddend::drillValueDownOneStep
  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
  Instruction *I = nullptr;
  if (!Val || !(I = dyn_cast<Instruction>(Val)))
    return 0;

  unsigned Opcode = I->getOpcode();

  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
    ConstantFP *C0, *C1;
    Value *Opnd0 = I->getOperand(0);
    Value *Opnd1 = I->getOperand(1);
    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
      Opnd0 = nullptr;

    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
      Opnd1 = nullptr;

    if (Opnd0) {
      if (!C0)
        Addend0.set(1, Opnd0);
      else
        Addend0.set(C0, nullptr);
    }

    if (Opnd1) {
      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
      if (!C1)
        Addend.set(1, Opnd1);
      else
        Addend.set(C1, nullptr);
      if (Opcode == Instruction::FSub)
        Addend.negate();
    }

    if (Opnd0 || Opnd1)
      return Opnd0 && Opnd1 ? 2 : 1;

    // Both operands are zero. Weird!
    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
    return 1;
  }

  if (I->getOpcode() == Instruction::FMul) {
    Value *V0 = I->getOperand(0);
    Value *V1 = I->getOperand(1);
    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
      Addend0.set(C, V1);
      return 1;
    }

    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
      Addend0.set(C, V0);
      return 1;
    }
  }

  return 0;
}

// Try to break *this* addend into two addends. e.g. Suppose this addend is
// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
// i.e. <2.3, X> and <2.3, Y>.
unsigned FAddend::drillAddendDownOneStep
  (FAddend &Addend0, FAddend &Addend1) const {
  if (isConstant())
    return 0;

  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
  if (!BreakNum || Coeff.isOne())
    return BreakNum;

  Addend0.Scale(Coeff);

  if (BreakNum == 2)
    Addend1.Scale(Coeff);

  return BreakNum;
}

Value *FAddCombine::simplify(Instruction *I) {
  assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
         "Expected 'reassoc'+'nsz' instruction");

  // Currently we are not able to handle vector type.
  if (I->getType()->isVectorTy())
    return nullptr;

  assert((I->getOpcode() == Instruction::FAdd ||
          I->getOpcode() == Instruction::FSub) && "Expect add/sub");

  // Save the instruction before calling other member-functions.
  Instr = I;

  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;

  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);

  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
  unsigned Opnd0_ExpNum = 0;
  unsigned Opnd1_ExpNum = 0;

  if (!Opnd0.isConstant())
    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);

  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
  if (OpndNum == 2 && !Opnd1.isConstant())
    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);

  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
  if (Opnd0_ExpNum && Opnd1_ExpNum) {
    AddendVect AllOpnds;
    AllOpnds.push_back(&Opnd0_0);
    AllOpnds.push_back(&Opnd1_0);
    if (Opnd0_ExpNum == 2)
      AllOpnds.push_back(&Opnd0_1);
    if (Opnd1_ExpNum == 2)
      AllOpnds.push_back(&Opnd1_1);

    // Compute instruction quota. We should save at least one instruction.
    unsigned InstQuota = 0;

    Value *V0 = I->getOperand(0);
    Value *V1 = I->getOperand(1);
    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;

    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
      return R;
  }

  if (OpndNum != 2) {
    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
    // splitted into two addends, say "V = X - Y", the instruction would have
    // been optimized into "I = Y - X" in the previous steps.
    //
    const FAddendCoef &CE = Opnd0.getCoef();
    return CE.isOne() ? Opnd0.getSymVal() : nullptr;
  }

  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
  if (Opnd1_ExpNum) {
    AddendVect AllOpnds;
    AllOpnds.push_back(&Opnd0);
    AllOpnds.push_back(&Opnd1_0);
    if (Opnd1_ExpNum == 2)
      AllOpnds.push_back(&Opnd1_1);

    if (Value *R = simplifyFAdd(AllOpnds, 1))
      return R;
  }

  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
  if (Opnd0_ExpNum) {
    AddendVect AllOpnds;
    AllOpnds.push_back(&Opnd1);
    AllOpnds.push_back(&Opnd0_0);
    if (Opnd0_ExpNum == 2)
      AllOpnds.push_back(&Opnd0_1);

    if (Value *R = simplifyFAdd(AllOpnds, 1))
      return R;
  }

  return nullptr;
}

Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
  unsigned AddendNum = Addends.size();
  assert(AddendNum <= 4 && "Too many addends");

  // For saving intermediate results;
  unsigned NextTmpIdx = 0;
  FAddend TmpResult[3];

  // Points to the constant addend of the resulting simplified expression.
  // If the resulting expr has constant-addend, this constant-addend is
  // desirable to reside at the top of the resulting expression tree. Placing
  // constant close to supper-expr(s) will potentially reveal some optimization
  // opportunities in super-expr(s).
  const FAddend *ConstAdd = nullptr;

  // Simplified addends are placed <SimpVect>.
  AddendVect SimpVect;

  // The outer loop works on one symbolic-value at a time. Suppose the input
  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
  // The symbolic-values will be processed in this order: x, y, z.
  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {

    const FAddend *ThisAddend = Addends[SymIdx];
    if (!ThisAddend) {
      // This addend was processed before.
      continue;
    }

    Value *Val = ThisAddend->getSymVal();
    unsigned StartIdx = SimpVect.size();
    SimpVect.push_back(ThisAddend);

    // The inner loop collects addends sharing same symbolic-value, and these
    // addends will be later on folded into a single addend. Following above
    // example, if the symbolic value "y" is being processed, the inner loop
    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
    // be later on folded into "<b1+b2, y>".
    for (unsigned SameSymIdx = SymIdx + 1;
         SameSymIdx < AddendNum; SameSymIdx++) {
      const FAddend *T = Addends[SameSymIdx];
      if (T && T->getSymVal() == Val) {
        // Set null such that next iteration of the outer loop will not process
        // this addend again.
        Addends[SameSymIdx] = nullptr;
        SimpVect.push_back(T);
      }
    }

    // If multiple addends share same symbolic value, fold them together.
    if (StartIdx + 1 != SimpVect.size()) {
      FAddend &R = TmpResult[NextTmpIdx ++];
      R = *SimpVect[StartIdx];
      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
        R += *SimpVect[Idx];

      // Pop all addends being folded and push the resulting folded addend.
      SimpVect.resize(StartIdx);
      if (Val) {
        if (!R.isZero()) {
          SimpVect.push_back(&R);
        }
      } else {
        // Don't push constant addend at this time. It will be the last element
        // of <SimpVect>.
        ConstAdd = &R;
      }
    }
  }

  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
         "out-of-bound access");

  if (ConstAdd)
    SimpVect.push_back(ConstAdd);

  Value *Result;
  if (!SimpVect.empty())
    Result = createNaryFAdd(SimpVect, InstrQuota);
  else {
    // The addition is folded to 0.0.
    Result = ConstantFP::get(Instr->getType(), 0.0);
  }

  return Result;
}

Value *FAddCombine::createNaryFAdd
  (const AddendVect &Opnds, unsigned InstrQuota) {
  assert(!Opnds.empty() && "Expect at least one addend");

  // Step 1: Check if the # of instructions needed exceeds the quota.

  unsigned InstrNeeded = calcInstrNumber(Opnds);
  if (InstrNeeded > InstrQuota)
    return nullptr;

  initCreateInstNum();

  // step 2: Emit the N-ary addition.
  // Note that at most three instructions are involved in Fadd-InstCombine: the
  // addition in question, and at most two neighboring instructions.
  // The resulting optimized addition should have at least one less instruction
  // than the original addition expression tree. This implies that the resulting
  // N-ary addition has at most two instructions, and we don't need to worry
  // about tree-height when constructing the N-ary addition.

  Value *LastVal = nullptr;
  bool LastValNeedNeg = false;

  // Iterate the addends, creating fadd/fsub using adjacent two addends.
  for (const FAddend *Opnd : Opnds) {
    bool NeedNeg;
    Value *V = createAddendVal(*Opnd, NeedNeg);
    if (!LastVal) {
      LastVal = V;
      LastValNeedNeg = NeedNeg;
      continue;
    }

    if (LastValNeedNeg == NeedNeg) {
      LastVal = createFAdd(LastVal, V);
      continue;
    }

    if (LastValNeedNeg)
      LastVal = createFSub(V, LastVal);
    else
      LastVal = createFSub(LastVal, V);

    LastValNeedNeg = false;
  }

  if (LastValNeedNeg) {
    LastVal = createFNeg(LastVal);
  }

#ifndef NDEBUG
  assert(CreateInstrNum == InstrNeeded &&
         "Inconsistent in instruction numbers");
#endif

  return LastVal;
}

Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
  Value *V = Builder.CreateFSub(Opnd0, Opnd1);
  if (Instruction *I = dyn_cast<Instruction>(V))
    createInstPostProc(I);
  return V;
}

Value *FAddCombine::createFNeg(Value *V) {
  Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
  Value *NewV = createFSub(Zero, V);
  if (Instruction *I = dyn_cast<Instruction>(NewV))
    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
  return NewV;
}

Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
  Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
  if (Instruction *I = dyn_cast<Instruction>(V))
    createInstPostProc(I);
  return V;
}

Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
  Value *V = Builder.CreateFMul(Opnd0, Opnd1);
  if (Instruction *I = dyn_cast<Instruction>(V))
    createInstPostProc(I);
  return V;
}

void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
  NewInstr->setDebugLoc(Instr->getDebugLoc());

  // Keep track of the number of instruction created.
  if (!NoNumber)
    incCreateInstNum();

  // Propagate fast-math flags
  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
}

// Return the number of instruction needed to emit the N-ary addition.
// NOTE: Keep this function in sync with createAddendVal().
unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
  unsigned OpndNum = Opnds.size();
  unsigned InstrNeeded = OpndNum - 1;

  // The number of addends in the form of "(-1)*x".
  unsigned NegOpndNum = 0;

  // Adjust the number of instructions needed to emit the N-ary add.
  for (const FAddend *Opnd : Opnds) {
    if (Opnd->isConstant())
      continue;

    // The constant check above is really for a few special constant
    // coefficients.
    if (isa<UndefValue>(Opnd->getSymVal()))
      continue;

    const FAddendCoef &CE = Opnd->getCoef();
    if (CE.isMinusOne() || CE.isMinusTwo())
      NegOpndNum++;

    // Let the addend be "c * x". If "c == +/-1", the value of the addend
    // is immediately available; otherwise, it needs exactly one instruction
    // to evaluate the value.
    if (!CE.isMinusOne() && !CE.isOne())
      InstrNeeded++;
  }
  if (NegOpndNum == OpndNum)
    InstrNeeded++;
  return InstrNeeded;
}

// Input Addend        Value           NeedNeg(output)
// ================================================================
// Constant C          C               false
// <+/-1, V>           V               coefficient is -1
// <2/-2, V>          "fadd V, V"      coefficient is -2
// <C, V>             "fmul V, C"      false
//
// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
  const FAddendCoef &Coeff = Opnd.getCoef();

  if (Opnd.isConstant()) {
    NeedNeg = false;
    return Coeff.getValue(Instr->getType());
  }

  Value *OpndVal = Opnd.getSymVal();

  if (Coeff.isMinusOne() || Coeff.isOne()) {
    NeedNeg = Coeff.isMinusOne();
    return OpndVal;
  }

  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
    NeedNeg = Coeff.isMinusTwo();
    return createFAdd(OpndVal, OpndVal);
  }

  NeedNeg = false;
  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
}

// Checks if any operand is negative and we can convert add to sub.
// This function checks for following negative patterns
//   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
//   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
//   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
static Value *checkForNegativeOperand(BinaryOperator &I,
                                      InstCombiner::BuilderTy &Builder) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);

  // This function creates 2 instructions to replace ADD, we need at least one
  // of LHS or RHS to have one use to ensure benefit in transform.
  if (!LHS->hasOneUse() && !RHS->hasOneUse())
    return nullptr;

  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
  const APInt *C1 = nullptr, *C2 = nullptr;

  // if ONE is on other side, swap
  if (match(RHS, m_Add(m_Value(X), m_One())))
    std::swap(LHS, RHS);

  if (match(LHS, m_Add(m_Value(X), m_One()))) {
    // if XOR on other side, swap
    if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
      std::swap(X, RHS);

    if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
      // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
      // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
      if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
        Value *NewAnd = Builder.CreateAnd(Z, *C1);
        return Builder.CreateSub(RHS, NewAnd, "sub");
      } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
        // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
        // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
        Value *NewOr = Builder.CreateOr(Z, ~(*C1));
        return Builder.CreateSub(RHS, NewOr, "sub");
      }
    }
  }

  // Restore LHS and RHS
  LHS = I.getOperand(0);
  RHS = I.getOperand(1);

  // if XOR is on other side, swap
  if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
    std::swap(LHS, RHS);

  // C2 is ODD
  // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
    if (C1->countTrailingZeros() == 0)
      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
        Value *NewOr = Builder.CreateOr(Z, ~(*C2));
        return Builder.CreateSub(RHS, NewOr, "sub");
      }
  return nullptr;
}

/// Wrapping flags may allow combining constants separated by an extend.
static Instruction *foldNoWrapAdd(BinaryOperator &Add,
                                  InstCombiner::BuilderTy &Builder) {
  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
  Type *Ty = Add.getType();
  Constant *Op1C;
  if (!match(Op1, m_Constant(Op1C)))
    return nullptr;

  // Try this match first because it results in an add in the narrow type.
  // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
  Value *X;
  const APInt *C1, *C2;
  if (match(Op1, m_APInt(C1)) &&
      match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
      C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
    Constant *NewC =
        ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
    return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
  }

  // More general combining of constants in the wide type.
  // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
  Constant *NarrowC;
  if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
    Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
    Value *WideX = Builder.CreateSExt(X, Ty);
    return BinaryOperator::CreateAdd(WideX, NewC);
  }
  // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
  if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
    Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
    Value *WideX = Builder.CreateZExt(X, Ty);
    return BinaryOperator::CreateAdd(WideX, NewC);
  }

  return nullptr;
}

Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
  Constant *Op1C;
  if (!match(Op1, m_Constant(Op1C)))
    return nullptr;

  if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
    return NV;

  Value *X;
  Constant *Op00C;

  // add (sub C1, X), C2 --> sub (add C1, C2), X
  if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
    return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);

  Value *Y;

  // add (sub X, Y), -1 --> add (not Y), X
  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
      match(Op1, m_AllOnes()))
    return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);

  // zext(bool) + C -> bool ? C + 1 : C
  if (match(Op0, m_ZExt(m_Value(X))) &&
      X->getType()->getScalarSizeInBits() == 1)
    return SelectInst::Create(X, AddOne(Op1C), Op1);
  // sext(bool) + C -> bool ? C - 1 : C
  if (match(Op0, m_SExt(m_Value(X))) &&
      X->getType()->getScalarSizeInBits() == 1)
    return SelectInst::Create(X, SubOne(Op1C), Op1);

  // ~X + C --> (C-1) - X
  if (match(Op0, m_Not(m_Value(X))))
    return BinaryOperator::CreateSub(SubOne(Op1C), X);

  const APInt *C;
  if (!match(Op1, m_APInt(C)))
    return nullptr;

  // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
  const APInt *C2;
  if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
    return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));

  if (C->isSignMask()) {
    // If wrapping is not allowed, then the addition must set the sign bit:
    // X + (signmask) --> X | signmask
    if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
      return BinaryOperator::CreateOr(Op0, Op1);

    // If wrapping is allowed, then the addition flips the sign bit of LHS:
    // X + (signmask) --> X ^ signmask
    return BinaryOperator::CreateXor(Op0, Op1);
  }

  // Is this add the last step in a convoluted sext?
  // add(zext(xor i16 X, -32768), -32768) --> sext X
  Type *Ty = Add.getType();
  if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
      C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
    return CastInst::Create(Instruction::SExt, X, Ty);

  if (C->isOneValue() && Op0->hasOneUse()) {
    // add (sext i1 X), 1 --> zext (not X)
    // TODO: The smallest IR representation is (select X, 0, 1), and that would
    // not require the one-use check. But we need to remove a transform in
    // visitSelect and make sure that IR value tracking for select is equal or
    // better than for these ops.
    if (match(Op0, m_SExt(m_Value(X))) &&
        X->getType()->getScalarSizeInBits() == 1)
      return new ZExtInst(Builder.CreateNot(X), Ty);

    // Shifts and add used to flip and mask off the low bit:
    // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
    const APInt *C3;
    if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
        C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
      Value *NotX = Builder.CreateNot(X);
      return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
    }
  }

  return nullptr;
}

// Matches multiplication expression Op * C where C is a constant. Returns the
// constant value in C and the other operand in Op. Returns true if such a
// match is found.
static bool MatchMul(Value *E, Value *&Op, APInt &C) {
  const APInt *AI;
  if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
    C = *AI;
    return true;
  }
  if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
    C = APInt(AI->getBitWidth(), 1);
    C <<= *AI;
    return true;
  }
  return false;
}

// Matches remainder expression Op % C where C is a constant. Returns the
// constant value in C and the other operand in Op. Returns the signedness of
// the remainder operation in IsSigned. Returns true if such a match is
// found.
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
  const APInt *AI;
  IsSigned = false;
  if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
    IsSigned = true;
    C = *AI;
    return true;
  }
  if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
    C = *AI;
    return true;
  }
  if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
    C = *AI + 1;
    return true;
  }
  return false;
}

// Matches division expression Op / C with the given signedness as indicated
// by IsSigned, where C is a constant. Returns the constant value in C and the
// other operand in Op. Returns true if such a match is found.
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
  const APInt *AI;
  if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
    C = *AI;
    return true;
  }
  if (!IsSigned) {
    if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
      C = *AI;
      return true;
    }
    if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
      C = APInt(AI->getBitWidth(), 1);
      C <<= *AI;
      return true;
    }
  }
  return false;
}

// Returns whether C0 * C1 with the given signedness overflows.
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
  bool overflow;
  if (IsSigned)
    (void)C0.smul_ov(C1, overflow);
  else
    (void)C0.umul_ov(C1, overflow);
  return overflow;
}

// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
// does not overflow.
Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Value *X, *MulOpV;
  APInt C0, MulOpC;
  bool IsSigned;
  // Match I = X % C0 + MulOpV * C0
  if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
       (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
      C0 == MulOpC) {
    Value *RemOpV;
    APInt C1;
    bool Rem2IsSigned;
    // Match MulOpC = RemOpV % C1
    if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
        IsSigned == Rem2IsSigned) {
      Value *DivOpV;
      APInt DivOpC;
      // Match RemOpV = X / C0
      if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
          C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
        Value *NewDivisor =
            ConstantInt::get(X->getType()->getContext(), C0 * C1);
        return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
                        : Builder.CreateURem(X, NewDivisor, "urem");
      }
    }
  }

  return nullptr;
}

/// Fold
///   (1 << NBits) - 1
/// Into:
///   ~(-(1 << NBits))
/// Because a 'not' is better for bit-tracking analysis and other transforms
/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
                                           InstCombiner::BuilderTy &Builder) {
  Value *NBits;
  if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
    return nullptr;

  Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
  Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
  // Be wary of constant folding.
  if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
    // Always NSW. But NUW propagates from `add`.
    BOp->setHasNoSignedWrap();
    BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
  }

  return BinaryOperator::CreateNot(NotMask, I.getName());
}

static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
  Type *Ty = I.getType();
  auto getUAddSat = [&]() {
    return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
  };

  // add (umin X, ~Y), Y --> uaddsat X, Y
  Value *X, *Y;
  if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
                        m_Deferred(Y))))
    return CallInst::Create(getUAddSat(), { X, Y });

  // add (umin X, ~C), C --> uaddsat X, C
  const APInt *C, *NotC;
  if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
      *C == ~*NotC)
    return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });

  return nullptr;
}

Instruction *
InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
    BinaryOperator &I) {
  assert((I.getOpcode() == Instruction::Add ||
          I.getOpcode() == Instruction::Or ||
          I.getOpcode() == Instruction::Sub) &&
         "Expecting add/or/sub instruction");

  // We have a subtraction/addition between a (potentially truncated) *logical*
  // right-shift of X and a "select".
  Value *X, *Select;
  Instruction *LowBitsToSkip, *Extract;
  if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
                               m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
                               m_Instruction(Extract))),
                           m_Value(Select))))
    return nullptr;

  // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
  if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
    return nullptr;

  Type *XTy = X->getType();
  bool HadTrunc = I.getType() != XTy;

  // If there was a truncation of extracted value, then we'll need to produce
  // one extra instruction, so we need to ensure one instruction will go away.
  if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
    return nullptr;

  // Extraction should extract high NBits bits, with shift amount calculated as:
  //   low bits to skip = shift bitwidth - high bits to extract
  // The shift amount itself may be extended, and we need to look past zero-ext
  // when matching NBits, that will matter for matching later.
  Constant *C;
  Value *NBits;
  if (!match(
          LowBitsToSkip,
          m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
      !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                                   APInt(C->getType()->getScalarSizeInBits(),
                                         X->getType()->getScalarSizeInBits()))))
    return nullptr;

  // Sign-extending value can be zero-extended if we `sub`tract it,
  // or sign-extended otherwise.
  auto SkipExtInMagic = [&I](Value *&V) {
    if (I.getOpcode() == Instruction::Sub)
      match(V, m_ZExtOrSelf(m_Value(V)));
    else
      match(V, m_SExtOrSelf(m_Value(V)));
  };

  // Now, finally validate the sign-extending magic.
  // `select` itself may be appropriately extended, look past that.
  SkipExtInMagic(Select);

  ICmpInst::Predicate Pred;
  const APInt *Thr;
  Value *SignExtendingValue, *Zero;
  bool ShouldSignext;
  // It must be a select between two values we will later establish to be a
  // sign-extending value and a zero constant. The condition guarding the
  // sign-extension must be based on a sign bit of the same X we had in `lshr`.
  if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
                              m_Value(SignExtendingValue), m_Value(Zero))) ||
      !isSignBitCheck(Pred, *Thr, ShouldSignext))
    return nullptr;

  // icmp-select pair is commutative.
  if (!ShouldSignext)
    std::swap(SignExtendingValue, Zero);

  // If we should not perform sign-extension then we must add/or/subtract zero.
  if (!match(Zero, m_Zero()))
    return nullptr;
  // Otherwise, it should be some constant, left-shifted by the same NBits we
  // had in `lshr`. Said left-shift can also be appropriately extended.
  // Again, we must look past zero-ext when looking for NBits.
  SkipExtInMagic(SignExtendingValue);
  Constant *SignExtendingValueBaseConstant;
  if (!match(SignExtendingValue,
             m_Shl(m_Constant(SignExtendingValueBaseConstant),
                   m_ZExtOrSelf(m_Specific(NBits)))))
    return nullptr;
  // If we `sub`, then the constant should be one, else it should be all-ones.
  if (I.getOpcode() == Instruction::Sub
          ? !match(SignExtendingValueBaseConstant, m_One())
          : !match(SignExtendingValueBaseConstant, m_AllOnes()))
    return nullptr;

  auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
                                             Extract->getName() + ".sext");
  NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
  if (!HadTrunc)
    return NewAShr;

  Builder.Insert(NewAShr);
  return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
}

Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
  if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (SimplifyAssociativeOrCommutative(I))
    return &I;

  if (Instruction *X = foldVectorBinop(I))
    return X;

  // (A*B)+(A*C) -> A*(B+C) etc
  if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldAddWithConstant(I))
    return X;

  if (Instruction *X = foldNoWrapAdd(I, Builder))
    return X;

  // FIXME: This should be moved into the above helper function to allow these
  // transforms for general constant or constant splat vectors.
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Type *Ty = I.getType();
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
      unsigned TySizeBits = Ty->getScalarSizeInBits();
      const APInt &RHSVal = CI->getValue();
      unsigned ExtendAmt = 0;
      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
      if (XorRHS->getValue() == -RHSVal) {
        if (RHSVal.isPowerOf2())
          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
        else if (XorRHS->getValue().isPowerOf2())
          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
      }

      if (ExtendAmt) {
        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
        if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
          ExtendAmt = 0;
      }

      if (ExtendAmt) {
        Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
        Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
        return BinaryOperator::CreateAShr(NewShl, ShAmt);
      }

      // If this is a xor that was canonicalized from a sub, turn it back into
      // a sub and fuse this add with it.
      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
        KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
        if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
                                           XorLHS);
      }
      // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
      // transform them into (X + (signmask ^ C))
      if (XorRHS->getValue().isSignMask())
        return BinaryOperator::CreateAdd(XorLHS,
                                         ConstantExpr::getXor(XorRHS, CI));
    }
  }

  if (Ty->isIntOrIntVectorTy(1))
    return BinaryOperator::CreateXor(LHS, RHS);

  // X + X --> X << 1
  if (LHS == RHS) {
    auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
    Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
    Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    return Shl;
  }

  Value *A, *B;
  if (match(LHS, m_Neg(m_Value(A)))) {
    // -A + -B --> -(A + B)
    if (match(RHS, m_Neg(m_Value(B))))
      return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));

    // -A + B --> B - A
    return BinaryOperator::CreateSub(RHS, A);
  }

  // A + -B  -->  A - B
  if (match(RHS, m_Neg(m_Value(B))))
    return BinaryOperator::CreateSub(LHS, B);

  if (Value *V = checkForNegativeOperand(I, Builder))
    return replaceInstUsesWith(I, V);

  // (A + 1) + ~B --> A - B
  // ~B + (A + 1) --> A - B
  // (~B + A) + 1 --> A - B
  // (A + ~B) + 1 --> A - B
  if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
      match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
    return BinaryOperator::CreateSub(A, B);

  // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
  if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);

  // A+B --> A|B iff A and B have no bits set in common.
  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
    return BinaryOperator::CreateOr(LHS, RHS);

  // FIXME: We already did a check for ConstantInt RHS above this.
  // FIXME: Is this pattern covered by another fold? No regression tests fail on
  // removal.
  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    // (X & FF00) + xx00  -> (X+xx00) & FF00
    Value *X;
    ConstantInt *C2;
    if (LHS->hasOneUse() &&
        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
      // See if all bits from the first bit set in the Add RHS up are included
      // in the mask.  First, get the rightmost bit.
      const APInt &AddRHSV = CRHS->getValue();

      // Form a mask of all bits from the lowest bit added through the top.
      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));

      // See if the and mask includes all of these bits.
      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());

      if (AddRHSHighBits == AddRHSHighBitsAnd) {
        // Okay, the xform is safe.  Insert the new add pronto.
        Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
        return BinaryOperator::CreateAnd(NewAdd, C2);
      }
    }
  }

  // add (select X 0 (sub n A)) A  -->  select X A n
  {
    SelectInst *SI = dyn_cast<SelectInst>(LHS);
    Value *A = RHS;
    if (!SI) {
      SI = dyn_cast<SelectInst>(RHS);
      A = LHS;
    }
    if (SI && SI->hasOneUse()) {
      Value *TV = SI->getTrueValue();
      Value *FV = SI->getFalseValue();
      Value *N;

      // Can we fold the add into the argument of the select?
      // We check both true and false select arguments for a matching subtract.
      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
        // Fold the add into the true select value.
        return SelectInst::Create(SI->getCondition(), N, A);

      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
        // Fold the add into the false select value.
        return SelectInst::Create(SI->getCondition(), A, N);
    }
  }

  if (Instruction *Ext = narrowMathIfNoOverflow(I))
    return Ext;

  // (add (xor A, B) (and A, B)) --> (or A, B)
  // (add (and A, B) (xor A, B)) --> (or A, B)
  if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
                          m_c_And(m_Deferred(A), m_Deferred(B)))))
    return BinaryOperator::CreateOr(A, B);

  // (add (or A, B) (and A, B)) --> (add A, B)
  // (add (and A, B) (or A, B)) --> (add A, B)
  if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
                          m_c_And(m_Deferred(A), m_Deferred(B))))) {
    I.setOperand(0, A);
    I.setOperand(1, B);
    return &I;
  }

  // TODO(jingyue): Consider willNotOverflowSignedAdd and
  // willNotOverflowUnsignedAdd to reduce the number of invocations of
  // computeKnownBits.
  bool Changed = false;
  if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
    Changed = true;
    I.setHasNoSignedWrap(true);
  }
  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
    Changed = true;
    I.setHasNoUnsignedWrap(true);
  }

  if (Instruction *V = canonicalizeLowbitMask(I, Builder))
    return V;

  if (Instruction *V =
          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
    return V;

  if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
    return SatAdd;

  return Changed ? &I : nullptr;
}

/// Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction *factorizeLerp(BinaryOperator &I,
                                  InstCombiner::BuilderTy &Builder) {
  Value *X, *Y, *Z;
  if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
                                            m_OneUse(m_FSub(m_FPOne(),
                                                            m_Value(Z))))),
                          m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
    return nullptr;

  // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
  Value *XY = Builder.CreateFSubFMF(X, Y, &I);
  Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
  return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
}

/// Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction *factorizeFAddFSub(BinaryOperator &I,
                                      InstCombiner::BuilderTy &Builder) {
  assert((I.getOpcode() == Instruction::FAdd ||
          I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
  assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
         "FP factorization requires FMF");

  if (Instruction *Lerp = factorizeLerp(I, Builder))
    return Lerp;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *X, *Y, *Z;
  bool IsFMul;
  if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
      (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
    IsFMul = true;
  else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
           match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
    IsFMul = false;
  else
    return nullptr;

  // (X * Z) + (Y * Z) --> (X + Y) * Z
  // (X * Z) - (Y * Z) --> (X - Y) * Z
  // (X / Z) + (Y / Z) --> (X + Y) / Z
  // (X / Z) - (Y / Z) --> (X - Y) / Z
  bool IsFAdd = I.getOpcode() == Instruction::FAdd;
  Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
                     : Builder.CreateFSubFMF(X, Y, &I);

  // Bail out if we just created a denormal constant.
  // TODO: This is copied from a previous implementation. Is it necessary?
  const APFloat *C;
  if (match(XY, m_APFloat(C)) && !C->isNormal())
    return nullptr;

  return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
                : BinaryOperator::CreateFDivFMF(XY, Z, &I);
}

Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
  if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
                                  I.getFastMathFlags(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (SimplifyAssociativeOrCommutative(I))
    return &I;

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
    return FoldedFAdd;

  // (-X) + Y --> Y - X
  Value *X, *Y;
  if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
    return BinaryOperator::CreateFSubFMF(Y, X, &I);

  // Similar to above, but look through fmul/fdiv for the negated term.
  // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
  Value *Z;
  if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
                         m_Value(Z)))) {
    Value *XY = Builder.CreateFMulFMF(X, Y, &I);
    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
  }
  // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
  // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
  if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
                         m_Value(Z))) ||
      match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
                         m_Value(Z)))) {
    Value *XY = Builder.CreateFDivFMF(X, Y, &I);
    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
  }

  // Check for (fadd double (sitofp x), y), see if we can merge this into an
  // integer add followed by a promotion.
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
    Value *LHSIntVal = LHSConv->getOperand(0);
    Type *FPType = LHSConv->getType();

    // TODO: This check is overly conservative. In many cases known bits
    // analysis can tell us that the result of the addition has less significant
    // bits than the integer type can hold.
    auto IsValidPromotion = [](Type *FTy, Type *ITy) {
      Type *FScalarTy = FTy->getScalarType();
      Type *IScalarTy = ITy->getScalarType();

      // Do we have enough bits in the significand to represent the result of
      // the integer addition?
      unsigned MaxRepresentableBits =
          APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
      return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
    };

    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
    // ... if the constant fits in the integer value.  This is useful for things
    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
    // requires a constant pool load, and generally allows the add to be better
    // instcombined.
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
        Constant *CI =
          ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
        if (LHSConv->hasOneUse() &&
            ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
            willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
          // Insert the new integer add.
          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
          return new SIToFPInst(NewAdd, I.getType());
        }
      }

    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
      Value *RHSIntVal = RHSConv->getOperand(0);
      // It's enough to check LHS types only because we require int types to
      // be the same for this transform.
      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
        // Only do this if x/y have the same type, if at least one of them has a
        // single use (so we don't increase the number of int->fp conversions),
        // and if the integer add will not overflow.
        if (LHSIntVal->getType() == RHSIntVal->getType() &&
            (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
            willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
          // Insert the new integer add.
          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
          return new SIToFPInst(NewAdd, I.getType());
        }
      }
    }
  }

  // Handle specials cases for FAdd with selects feeding the operation
  if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
    return replaceInstUsesWith(I, V);

  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
    if (Instruction *F = factorizeFAddFSub(I, Builder))
      return F;
    if (Value *V = FAddCombine(Builder).simplify(&I))
      return replaceInstUsesWith(I, V);
  }

  return nullptr;
}

/// Optimize pointer differences into the same array into a size.  Consider:
///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
                                               Type *Ty, bool IsNUW) {
  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
  // this.
  bool Swapped = false;
  GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;

  // For now we require one side to be the base pointer "A" or a constant
  // GEP derived from it.
  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
    // (gep X, ...) - X
    if (LHSGEP->getOperand(0) == RHS) {
      GEP1 = LHSGEP;
      Swapped = false;
    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
      // (gep X, ...) - (gep X, ...)
      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
            RHSGEP->getOperand(0)->stripPointerCasts()) {
        GEP2 = RHSGEP;
        GEP1 = LHSGEP;
        Swapped = false;
      }
    }
  }

  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
    // X - (gep X, ...)
    if (RHSGEP->getOperand(0) == LHS) {
      GEP1 = RHSGEP;
      Swapped = true;
    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
      // (gep X, ...) - (gep X, ...)
      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
            LHSGEP->getOperand(0)->stripPointerCasts()) {
        GEP2 = LHSGEP;
        GEP1 = RHSGEP;
        Swapped = true;
      }
    }
  }

  if (!GEP1)
    // No GEP found.
    return nullptr;

  if (GEP2) {
    // (gep X, ...) - (gep X, ...)
    //
    // Avoid duplicating the arithmetic if there are more than one non-constant
    // indices between the two GEPs and either GEP has a non-constant index and
    // multiple users. If zero non-constant index, the result is a constant and
    // there is no duplication. If one non-constant index, the result is an add
    // or sub with a constant, which is no larger than the original code, and
    // there's no duplicated arithmetic, even if either GEP has multiple
    // users. If more than one non-constant indices combined, as long as the GEP
    // with at least one non-constant index doesn't have multiple users, there
    // is no duplication.
    unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
    unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
    if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
        ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
         (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
      return nullptr;
    }
  }

  // Emit the offset of the GEP and an intptr_t.
  Value *Result = EmitGEPOffset(GEP1);

  // If this is a single inbounds GEP and the original sub was nuw,
  // then the final multiplication is also nuw. We match an extra add zero
  // here, because that's what EmitGEPOffset() generates.
  Instruction *I;
  if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
      match(Result, m_Add(m_Instruction(I), m_Zero())) &&
      I->getOpcode() == Instruction::Mul)
    I->setHasNoUnsignedWrap();

  // If we had a constant expression GEP on the other side offsetting the
  // pointer, subtract it from the offset we have.
  if (GEP2) {
    Value *Offset = EmitGEPOffset(GEP2);
    Result = Builder.CreateSub(Result, Offset);
  }

  // If we have p - gep(p, ...)  then we have to negate the result.
  if (Swapped)
    Result = Builder.CreateNeg(Result, "diff.neg");

  return Builder.CreateIntCast(Result, Ty, true);
}

Instruction *InstCombiner::visitSub(BinaryOperator &I) {
  if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  // (A*B)-(A*C) -> A*(B-C) etc
  if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);

  // If this is a 'B = x-(-A)', change to B = x+A.
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (Value *V = dyn_castNegVal(Op1)) {
    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);

    if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
      assert(BO->getOpcode() == Instruction::Sub &&
             "Expected a subtraction operator!");
      if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
        Res->setHasNoSignedWrap(true);
    } else {
      if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
        Res->setHasNoSignedWrap(true);
    }

    return Res;
  }

  if (I.getType()->isIntOrIntVectorTy(1))
    return BinaryOperator::CreateXor(Op0, Op1);

  // Replace (-1 - A) with (~A).
  if (match(Op0, m_AllOnes()))
    return BinaryOperator::CreateNot(Op1);

  // (~X) - (~Y) --> Y - X
  Value *X, *Y;
  if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
    return BinaryOperator::CreateSub(Y, X);

  // (X + -1) - Y --> ~Y + X
  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
    return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);

  // Y - (X + 1) --> ~X + Y
  if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
    return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);

  // Y - ~X --> (X + 1) + Y
  if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
    return BinaryOperator::CreateAdd(
        Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
  }

  if (Constant *C = dyn_cast<Constant>(Op0)) {
    bool IsNegate = match(C, m_ZeroInt());
    Value *X;
    if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
      // 0 - (zext bool) --> sext bool
      // C - (zext bool) --> bool ? C - 1 : C
      if (IsNegate)
        return CastInst::CreateSExtOrBitCast(X, I.getType());
      return SelectInst::Create(X, SubOne(C), C);
    }
    if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
      // 0 - (sext bool) --> zext bool
      // C - (sext bool) --> bool ? C + 1 : C
      if (IsNegate)
        return CastInst::CreateZExtOrBitCast(X, I.getType());
      return SelectInst::Create(X, AddOne(C), C);
    }

    // C - ~X == X + (1+C)
    if (match(Op1, m_Not(m_Value(X))))
      return BinaryOperator::CreateAdd(X, AddOne(C));

    // Try to fold constant sub into select arguments.
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI))
        return R;

    // Try to fold constant sub into PHI values.
    if (PHINode *PN = dyn_cast<PHINode>(Op1))
      if (Instruction *R = foldOpIntoPhi(I, PN))
        return R;

    Constant *C2;

    // C-(C2-X) --> X+(C-C2)
    if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
      return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));

    // C-(X+C2) --> (C-C2)-X
    if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
  }

  const APInt *Op0C;
  if (match(Op0, m_APInt(Op0C))) {

    if (Op0C->isNullValue()) {
      Value *Op1Wide;
      match(Op1, m_TruncOrSelf(m_Value(Op1Wide)));
      bool HadTrunc = Op1Wide != Op1;
      bool NoTruncOrTruncIsOneUse = !HadTrunc || Op1->hasOneUse();
      unsigned BitWidth = Op1Wide->getType()->getScalarSizeInBits();

      Value *X;
      const APInt *ShAmt;
      // -(X >>u 31) -> (X >>s 31)
      if (NoTruncOrTruncIsOneUse &&
          match(Op1Wide, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
          *ShAmt == BitWidth - 1) {
        Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
        Instruction *NewShift = BinaryOperator::CreateAShr(X, ShAmtOp);
        NewShift->copyIRFlags(Op1Wide);
        if (!HadTrunc)
          return NewShift;
        Builder.Insert(NewShift);
        return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
      }
      // -(X >>s 31) -> (X >>u 31)
      if (NoTruncOrTruncIsOneUse &&
          match(Op1Wide, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
          *ShAmt == BitWidth - 1) {
        Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
        Instruction *NewShift = BinaryOperator::CreateLShr(X, ShAmtOp);
        NewShift->copyIRFlags(Op1Wide);
        if (!HadTrunc)
          return NewShift;
        Builder.Insert(NewShift);
        return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
      }

      if (!HadTrunc && Op1->hasOneUse()) {
        Value *LHS, *RHS;
        SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
        if (SPF == SPF_ABS || SPF == SPF_NABS) {
          // This is a negate of an ABS/NABS pattern. Just swap the operands
          // of the select.
          cast<SelectInst>(Op1)->swapValues();
          // Don't swap prof metadata, we didn't change the branch behavior.
          return replaceInstUsesWith(I, Op1);
        }
      }
    }

    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
    // zero.
    if (Op0C->isMask()) {
      KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
      if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
        return BinaryOperator::CreateXor(Op1, Op0);
    }
  }

  {
    Value *Y;
    // X-(X+Y) == -Y    X-(Y+X) == -Y
    if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
      return BinaryOperator::CreateNeg(Y);

    // (X-Y)-X == -Y
    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
      return BinaryOperator::CreateNeg(Y);
  }

  // (sub (or A, B) (and A, B)) --> (xor A, B)
  {
    Value *A, *B;
    if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateXor(A, B);
  }

  // (sub (and A, B) (or A, B)) --> neg (xor A, B)
  {
    Value *A, *B;
    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
        (Op0->hasOneUse() || Op1->hasOneUse()))
      return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
  }

  // (sub (or A, B), (xor A, B)) --> (and A, B)
  {
    Value *A, *B;
    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(A, B);
  }

  // (sub (xor A, B) (or A, B)) --> neg (and A, B)
  {
    Value *A, *B;
    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
        (Op0->hasOneUse() || Op1->hasOneUse()))
      return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
  }

  {
    Value *Y;
    // ((X | Y) - X) --> (~X & Y)
    if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
      return BinaryOperator::CreateAnd(
          Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
  }

  {
    // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
    Value *X;
    if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
                                    m_OneUse(m_Neg(m_Value(X))))))) {
      return BinaryOperator::CreateNeg(Builder.CreateAnd(
          Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
    }
  }

  {
    // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
    Constant *C;
    if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
      return BinaryOperator::CreateNeg(
          Builder.CreateAnd(Op1, Builder.CreateNot(C)));
    }
  }

  {
    // If we have a subtraction between some value and a select between
    // said value and something else, sink subtraction into select hands, i.e.:
    //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
    //     ->
    //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
    //  or
    //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
    //     ->
    //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
    // This will result in select between new subtraction and 0.
    auto SinkSubIntoSelect =
        [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
                           auto SubBuilder) -> Instruction * {
      Value *Cond, *TrueVal, *FalseVal;
      if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
                                           m_Value(FalseVal)))))
        return nullptr;
      if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
        return nullptr;
      // While it is really tempting to just create two subtractions and let
      // InstCombine fold one of those to 0, it isn't possible to do so
      // because of worklist visitation order. So ugly it is.
      bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
      Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
      Constant *Zero = Constant::getNullValue(Ty);
      SelectInst *NewSel =
          SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
                             OtherHandOfSubIsTrueVal ? NewSub : Zero);
      // Preserve prof metadata if any.
      NewSel->copyMetadata(cast<Instruction>(*Select));
      return NewSel;
    };
    if (Instruction *NewSel = SinkSubIntoSelect(
            /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
            [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
              return Builder->CreateSub(OtherHandOfSelect,
                                        /*OtherHandOfSub=*/Op1);
            }))
      return NewSel;
    if (Instruction *NewSel = SinkSubIntoSelect(
            /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
            [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
              return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
                                        OtherHandOfSelect);
            }))
      return NewSel;
  }

  if (Op1->hasOneUse()) {
    Value *X = nullptr, *Y = nullptr, *Z = nullptr;
    Constant *C = nullptr;

    // (X - (Y - Z))  -->  (X + (Z - Y)).
    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
      return BinaryOperator::CreateAdd(Op0,
                                      Builder.CreateSub(Z, Y, Op1->getName()));

    // (X - (X & Y))   -->   (X & ~Y)
    if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
      return BinaryOperator::CreateAnd(Op0,
                                  Builder.CreateNot(Y, Y->getName() + ".not"));

    // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
    if (match(Op0, m_Zero())) {
      Constant *Op11C;
      if (match(Op1, m_SDiv(m_Value(X), m_Constant(Op11C))) &&
          !Op11C->containsUndefElement() && Op11C->isNotMinSignedValue() &&
          Op11C->isNotOneValue()) {
        Instruction *BO =
            BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(Op11C));
        BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
        return BO;
      }
    }

    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
      if (Value *XNeg = dyn_castNegVal(X))
        return BinaryOperator::CreateShl(XNeg, Y);

    // Subtracting -1/0 is the same as adding 1/0:
    // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
    // 'nuw' is dropped in favor of the canonical form.
    if (match(Op1, m_SExt(m_Value(Y))) &&
        Y->getType()->getScalarSizeInBits() == 1) {
      Value *Zext = Builder.CreateZExt(Y, I.getType());
      BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
      Add->setHasNoSignedWrap(I.hasNoSignedWrap());
      return Add;
    }
    // sub [nsw] X, zext(bool Y) -> add [nsw] X, sext(bool Y)
    // 'nuw' is dropped in favor of the canonical form.
    if (match(Op1, m_ZExt(m_Value(Y))) && Y->getType()->isIntOrIntVectorTy(1)) {
      Value *Sext = Builder.CreateSExt(Y, I.getType());
      BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Sext);
      Add->setHasNoSignedWrap(I.hasNoSignedWrap());
      return Add;
    }

    // X - A*-B -> X + A*B
    // X - -A*B -> X + A*B
    Value *A, *B;
    if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
      return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));

    // X - A*C -> X + A*-C
    // No need to handle commuted multiply because multiply handling will
    // ensure constant will be move to the right hand side.
    if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
      Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
      return BinaryOperator::CreateAdd(Op0, NewMul);
    }
  }

  {
    // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
    // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
    // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
    // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
    // So long as O here is freely invertible, this will be neutral or a win.
    Value *LHS, *RHS, *A;
    Value *NotA = Op0, *MinMax = Op1;
    SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
    if (!SelectPatternResult::isMinOrMax(SPF)) {
      NotA = Op1;
      MinMax = Op0;
      SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
    }
    if (SelectPatternResult::isMinOrMax(SPF) &&
        match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
      if (NotA == LHS)
        std::swap(LHS, RHS);
      // LHS is now O above and expected to have at least 2 uses (the min/max)
      // NotA is epected to have 2 uses from the min/max and 1 from the sub.
      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
          !NotA->hasNUsesOrMore(4)) {
        // Note: We don't generate the inverse max/min, just create the not of
        // it and let other folds do the rest.
        Value *Not = Builder.CreateNot(MinMax);
        if (NotA == Op0)
          return BinaryOperator::CreateSub(Not, A);
        else
          return BinaryOperator::CreateSub(A, Not);
      }
    }
  }

  // Optimize pointer differences into the same array into a size.  Consider:
  //  &A[10] - &A[0]: we should compile this to "10".
  Value *LHSOp, *RHSOp;
  if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
      match(Op1, m_PtrToInt(m_Value(RHSOp))))
    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
                                               I.hasNoUnsignedWrap()))
      return replaceInstUsesWith(I, Res);

  // trunc(p)-trunc(q) -> trunc(p-q)
  if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
      match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
                                               /* IsNUW */ false))
      return replaceInstUsesWith(I, Res);

  // Canonicalize a shifty way to code absolute value to the common pattern.
  // There are 2 potential commuted variants.
  // We're relying on the fact that we only do this transform when the shift has
  // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
  // instructions).
  Value *A;
  const APInt *ShAmt;
  Type *Ty = I.getType();
  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
      match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
    // B = ashr i32 A, 31 ; smear the sign bit
    // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
    // --> (A < 0) ? -A : A
    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
    // Copy the nuw/nsw flags from the sub to the negate.
    Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
                                   I.hasNoSignedWrap());
    return SelectInst::Create(Cmp, Neg, A);
  }

  if (Instruction *V =
          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
    return V;

  if (Instruction *Ext = narrowMathIfNoOverflow(I))
    return Ext;

  bool Changed = false;
  if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
    Changed = true;
    I.setHasNoSignedWrap(true);
  }
  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
    Changed = true;
    I.setHasNoUnsignedWrap(true);
  }

  return Changed ? &I : nullptr;
}

/// This eliminates floating-point negation in either 'fneg(X)' or
/// 'fsub(-0.0, X)' form by combining into a constant operand.
static Instruction *foldFNegIntoConstant(Instruction &I) {
  Value *X;
  Constant *C;

  // Fold negation into constant operand. This is limited with one-use because
  // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
  // -(X * C) --> X * (-C)
  // FIXME: It's arguable whether these should be m_OneUse or not. The current
  // belief is that the FNeg allows for better reassociation opportunities.
  if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
    return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
  // -(X / C) --> X / (-C)
  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
    return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
  // -(C / X) --> (-C) / X
  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
    return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);

  return nullptr;
}

static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
                                           InstCombiner::BuilderTy &Builder) {
  Value *FNeg;
  if (!match(&I, m_FNeg(m_Value(FNeg))))
    return nullptr;

  Value *X, *Y;
  if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
    return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);

  if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
    return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);

  return nullptr;
}

Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
  Value *Op = I.getOperand(0);

  if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldFNegIntoConstant(I))
    return X;

  Value *X, *Y;

  // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
  if (I.hasNoSignedZeros() &&
      match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
    return BinaryOperator::CreateFSubFMF(Y, X, &I);

  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
    return R;

  return nullptr;
}

Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
  if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
                                  I.getFastMathFlags(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  // Subtraction from -0.0 is the canonical form of fneg.
  // fsub nsz 0, X ==> fsub nsz -0.0, X
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
    return BinaryOperator::CreateFNegFMF(Op1, &I);

  if (Instruction *X = foldFNegIntoConstant(I))
    return X;

  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
    return R;

  Value *X, *Y;
  Constant *C;

  // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
  // Canonicalize to fadd to make analysis easier.
  // This can also help codegen because fadd is commutative.
  // Note that if this fsub was really an fneg, the fadd with -0.0 will get
  // killed later. We still limit that particular transform with 'hasOneUse'
  // because an fneg is assumed better/cheaper than a generic fsub.
  if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
    if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
      Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
      return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
    }
  }

  if (isa<Constant>(Op0))
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *NV = FoldOpIntoSelect(I, SI))
        return NV;

  // X - C --> X + (-C)
  // But don't transform constant expressions because there's an inverse fold
  // for X + (-Y) --> X - Y.
  if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
    return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);

  // X - (-Y) --> X + Y
  if (match(Op1, m_FNeg(m_Value(Y))))
    return BinaryOperator::CreateFAddFMF(Op0, Y, &I);

  // Similar to above, but look through a cast of the negated value:
  // X - (fptrunc(-Y)) --> X + fptrunc(Y)
  Type *Ty = I.getType();
  if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);

  // X - (fpext(-Y)) --> X + fpext(Y)
  if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);

  // Similar to above, but look through fmul/fdiv of the negated value:
  // Op0 - (-X * Y) --> Op0 + (X * Y)
  // Op0 - (Y * -X) --> Op0 + (X * Y)
  if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
    Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
    return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
  }
  // Op0 - (-X / Y) --> Op0 + (X / Y)
  // Op0 - (X / -Y) --> Op0 + (X / Y)
  if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
      match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
    Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
    return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
  }

  // Handle special cases for FSub with selects feeding the operation
  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
    return replaceInstUsesWith(I, V);

  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
    // (Y - X) - Y --> -X
    if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
      return BinaryOperator::CreateFNegFMF(X, &I);

    // Y - (X + Y) --> -X
    // Y - (Y + X) --> -X
    if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
      return BinaryOperator::CreateFNegFMF(X, &I);

    // (X * C) - X --> X * (C - 1.0)
    if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
      Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
      return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
    }
    // X - (X * C) --> X * (1.0 - C)
    if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
      Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
      return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
    }

    if (Instruction *F = factorizeFAddFSub(I, Builder))
      return F;

    // TODO: This performs reassociative folds for FP ops. Some fraction of the
    // functionality has been subsumed by simple pattern matching here and in
    // InstSimplify. We should let a dedicated reassociation pass handle more
    // complex pattern matching and remove this from InstCombine.
    if (Value *V = FAddCombine(Builder).simplify(&I))
      return replaceInstUsesWith(I, V);
  }

  return nullptr;
}