InstCombineAndOrXor.cpp 129 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
//===- InstCombineAndOrXor.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitAnd, visitOr, and visitXor functions.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
/// a four bit mask.
static unsigned getFCmpCode(FCmpInst::Predicate CC) {
  assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
         "Unexpected FCmp predicate!");
  // Take advantage of the bit pattern of FCmpInst::Predicate here.
  //                                                 U L G E
  static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
  static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
  static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
  static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
  static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
  static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
  static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
  static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
  static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
  static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
  static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
  static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
  static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
  static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
  static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
  static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
  return CC;
}

/// This is the complement of getICmpCode, which turns an opcode and two
/// operands into either a constant true or false, or a brand new ICmp
/// instruction. The sign is passed in to determine which kind of predicate to
/// use in the new icmp instruction.
static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
                              InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate NewPred;
  if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
    return TorF;
  return Builder.CreateICmp(NewPred, LHS, RHS);
}

/// This is the complement of getFCmpCode, which turns an opcode and two
/// operands into either a FCmp instruction, or a true/false constant.
static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
                           InstCombiner::BuilderTy &Builder) {
  const auto Pred = static_cast<FCmpInst::Predicate>(Code);
  assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
         "Unexpected FCmp predicate!");
  if (Pred == FCmpInst::FCMP_FALSE)
    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
  if (Pred == FCmpInst::FCMP_TRUE)
    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
  return Builder.CreateFCmp(Pred, LHS, RHS);
}

/// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
/// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
/// \param I Binary operator to transform.
/// \return Pointer to node that must replace the original binary operator, or
///         null pointer if no transformation was made.
static Value *SimplifyBSwap(BinaryOperator &I,
                            InstCombiner::BuilderTy &Builder) {
  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");

  Value *OldLHS = I.getOperand(0);
  Value *OldRHS = I.getOperand(1);

  Value *NewLHS;
  if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
    return nullptr;

  Value *NewRHS;
  const APInt *C;

  if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
    // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
    if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
      return nullptr;
    // NewRHS initialized by the matcher.
  } else if (match(OldRHS, m_APInt(C))) {
    // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
    if (!OldLHS->hasOneUse())
      return nullptr;
    NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
  } else
    return nullptr;

  Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
  Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
                                          I.getType());
  return Builder.CreateCall(F, BinOp);
}

/// This handles expressions of the form ((val OP C1) & C2).  Where
/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
                                    ConstantInt *OpRHS,
                                    ConstantInt *AndRHS,
                                    BinaryOperator &TheAnd) {
  Value *X = Op->getOperand(0);

  switch (Op->getOpcode()) {
  default: break;
  case Instruction::Add:
    if (Op->hasOneUse()) {
      // Adding a one to a single bit bit-field should be turned into an XOR
      // of the bit.  First thing to check is to see if this AND is with a
      // single bit constant.
      const APInt &AndRHSV = AndRHS->getValue();

      // If there is only one bit set.
      if (AndRHSV.isPowerOf2()) {
        // Ok, at this point, we know that we are masking the result of the
        // ADD down to exactly one bit.  If the constant we are adding has
        // no bits set below this bit, then we can eliminate the ADD.
        const APInt& AddRHS = OpRHS->getValue();

        // Check to see if any bits below the one bit set in AndRHSV are set.
        if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
          // If not, the only thing that can effect the output of the AND is
          // the bit specified by AndRHSV.  If that bit is set, the effect of
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
          // no effect.
          if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
            TheAnd.setOperand(0, X);
            return &TheAnd;
          } else {
            // Pull the XOR out of the AND.
            Value *NewAnd = Builder.CreateAnd(X, AndRHS);
            NewAnd->takeName(Op);
            return BinaryOperator::CreateXor(NewAnd, AndRHS);
          }
        }
      }
    }
    break;
  }
  return nullptr;
}

/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
/// whether to treat V, Lo, and Hi as signed or not.
Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
                                     bool isSigned, bool Inside) {
  assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
         "Lo is not < Hi in range emission code!");

  Type *Ty = V->getType();

  // V >= Min && V <  Hi --> V <  Hi
  // V <  Min || V >= Hi --> V >= Hi
  ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
  if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
    Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
    return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
  }

  // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
  // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
  Value *VMinusLo =
      Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
  Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
  return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
}

/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
/// that can be simplified.
/// One of A and B is considered the mask. The other is the value. This is
/// described as the "AMask" or "BMask" part of the enum. If the enum contains
/// only "Mask", then both A and B can be considered masks. If A is the mask,
/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
/// If both A and C are constants, this proof is also easy.
/// For the following explanations, we assume that A is the mask.
///
/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
/// bits of A are set in B.
///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
///
/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
/// bits of A are cleared in B.
///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
///
/// "Mixed" declares that (A & B) == C and C might or might not contain any
/// number of one bits and zero bits.
///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
///
/// "Not" means that in above descriptions "==" should be replaced by "!=".
///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
///
/// If the mask A contains a single bit, then the following is equivalent:
///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
enum MaskedICmpType {
  AMask_AllOnes           =     1,
  AMask_NotAllOnes        =     2,
  BMask_AllOnes           =     4,
  BMask_NotAllOnes        =     8,
  Mask_AllZeros           =    16,
  Mask_NotAllZeros        =    32,
  AMask_Mixed             =    64,
  AMask_NotMixed          =   128,
  BMask_Mixed             =   256,
  BMask_NotMixed          =   512
};

/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
/// satisfies.
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
                                  ICmpInst::Predicate Pred) {
  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
  bool IsEq = (Pred == ICmpInst::ICMP_EQ);
  bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
  bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
  unsigned MaskVal = 0;
  if (CCst && CCst->isZero()) {
    // if C is zero, then both A and B qualify as mask
    MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
                     : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
    if (IsAPow2)
      MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
                       : (AMask_AllOnes | AMask_Mixed));
    if (IsBPow2)
      MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
                       : (BMask_AllOnes | BMask_Mixed));
    return MaskVal;
  }

  if (A == C) {
    MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
                     : (AMask_NotAllOnes | AMask_NotMixed));
    if (IsAPow2)
      MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
                       : (Mask_AllZeros | AMask_Mixed));
  } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
    MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
  }

  if (B == C) {
    MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
                     : (BMask_NotAllOnes | BMask_NotMixed));
    if (IsBPow2)
      MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
                       : (Mask_AllZeros | BMask_Mixed));
  } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
    MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
  }

  return MaskVal;
}

/// Convert an analysis of a masked ICmp into its equivalent if all boolean
/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
/// is adjacent to the corresponding normal flag (recording ==), this just
/// involves swapping those bits over.
static unsigned conjugateICmpMask(unsigned Mask) {
  unsigned NewMask;
  NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
                     AMask_Mixed | BMask_Mixed))
            << 1;

  NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
                      AMask_NotMixed | BMask_NotMixed))
             >> 1;

  return NewMask;
}

// Adapts the external decomposeBitTestICmp for local use.
static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
                                 Value *&X, Value *&Y, Value *&Z) {
  APInt Mask;
  if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
    return false;

  Y = ConstantInt::get(X->getType(), Mask);
  Z = ConstantInt::get(X->getType(), 0);
  return true;
}

/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
/// Return the pattern classes (from MaskedICmpType) for the left hand side and
/// the right hand side as a pair.
/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
/// and PredR are their predicates, respectively.
static
Optional<std::pair<unsigned, unsigned>>
getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
                         Value *&D, Value *&E, ICmpInst *LHS,
                         ICmpInst *RHS,
                         ICmpInst::Predicate &PredL,
                         ICmpInst::Predicate &PredR) {
  // vectors are not (yet?) supported. Don't support pointers either.
  if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
      !RHS->getOperand(0)->getType()->isIntegerTy())
    return None;

  // Here comes the tricky part:
  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
  // and L11 & L12 == L21 & L22. The same goes for RHS.
  // Now we must find those components L** and R**, that are equal, so
  // that we can extract the parameters A, B, C, D, and E for the canonical
  // above.
  Value *L1 = LHS->getOperand(0);
  Value *L2 = LHS->getOperand(1);
  Value *L11, *L12, *L21, *L22;
  // Check whether the icmp can be decomposed into a bit test.
  if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
    L21 = L22 = L1 = nullptr;
  } else {
    // Look for ANDs in the LHS icmp.
    if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
      // Any icmp can be viewed as being trivially masked; if it allows us to
      // remove one, it's worth it.
      L11 = L1;
      L12 = Constant::getAllOnesValue(L1->getType());
    }

    if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
      L21 = L2;
      L22 = Constant::getAllOnesValue(L2->getType());
    }
  }

  // Bail if LHS was a icmp that can't be decomposed into an equality.
  if (!ICmpInst::isEquality(PredL))
    return None;

  Value *R1 = RHS->getOperand(0);
  Value *R2 = RHS->getOperand(1);
  Value *R11, *R12;
  bool Ok = false;
  if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
    } else {
      return None;
    }
    E = R2;
    R1 = nullptr;
    Ok = true;
  } else {
    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
      // As before, model no mask as a trivial mask if it'll let us do an
      // optimization.
      R11 = R1;
      R12 = Constant::getAllOnesValue(R1->getType());
    }

    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
      E = R2;
      Ok = true;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
      E = R2;
      Ok = true;
    }
  }

  // Bail if RHS was a icmp that can't be decomposed into an equality.
  if (!ICmpInst::isEquality(PredR))
    return None;

  // Look for ANDs on the right side of the RHS icmp.
  if (!Ok) {
    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
      R11 = R2;
      R12 = Constant::getAllOnesValue(R2->getType());
    }

    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
      A = R11;
      D = R12;
      E = R1;
      Ok = true;
    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
      A = R12;
      D = R11;
      E = R1;
      Ok = true;
    } else {
      return None;
    }
  }
  if (!Ok)
    return None;

  if (L11 == A) {
    B = L12;
    C = L2;
  } else if (L12 == A) {
    B = L11;
    C = L2;
  } else if (L21 == A) {
    B = L22;
    C = L1;
  } else if (L22 == A) {
    B = L21;
    C = L1;
  }

  unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
  unsigned RightType = getMaskedICmpType(A, D, E, PredR);
  return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
}

/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
/// and the right hand side is of type BMask_Mixed. For example,
/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    Value *A, Value *B, Value *C, Value *D, Value *E,
    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    llvm::InstCombiner::BuilderTy &Builder) {
  // We are given the canonical form:
  //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
  // where D & E == E.
  //
  // If IsAnd is false, we get it in negated form:
  //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
  //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
  //
  // We currently handle the case of B, C, D, E are constant.
  //
  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
  if (!BCst)
    return nullptr;
  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
  if (!CCst)
    return nullptr;
  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
  if (!DCst)
    return nullptr;
  ConstantInt *ECst = dyn_cast<ConstantInt>(E);
  if (!ECst)
    return nullptr;

  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;

  // Update E to the canonical form when D is a power of two and RHS is
  // canonicalized as,
  // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
  // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
  if (PredR != NewCC)
    ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));

  // If B or D is zero, skip because if LHS or RHS can be trivially folded by
  // other folding rules and this pattern won't apply any more.
  if (BCst->getValue() == 0 || DCst->getValue() == 0)
    return nullptr;

  // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
  // deduce anything from it.
  // For example,
  // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
  if ((BCst->getValue() & DCst->getValue()) == 0)
    return nullptr;

  // If the following two conditions are met:
  //
  // 1. mask B covers only a single bit that's not covered by mask D, that is,
  // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
  // B and D has only one bit set) and,
  //
  // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
  // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
  //
  // then that single bit in B must be one and thus the whole expression can be
  // folded to
  //   (A & (B | D)) == (B & (B ^ D)) | E.
  //
  // For example,
  // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
  // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
  if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
      (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
    APInt BorD = BCst->getValue() | DCst->getValue();
    APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
        ECst->getValue();
    Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
    Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
    Value *NewAnd = Builder.CreateAnd(A, NewMask);
    return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
  }

  auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
    return (C1->getValue() & C2->getValue()) == C1->getValue();
  };
  auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
    return (C1->getValue() & C2->getValue()) == C2->getValue();
  };

  // In the following, we consider only the cases where B is a superset of D, B
  // is a subset of D, or B == D because otherwise there's at least one bit
  // covered by B but not D, in which case we can't deduce much from it, so
  // no folding (aside from the single must-be-one bit case right above.)
  // For example,
  // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
  if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
    return nullptr;

  // At this point, either B is a superset of D, B is a subset of D or B == D.

  // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
  // and the whole expression becomes false (or true if negated), otherwise, no
  // folding.
  // For example,
  // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
  // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
  if (ECst->isZero()) {
    if (IsSubSetOrEqual(BCst, DCst))
      return ConstantInt::get(LHS->getType(), !IsAnd);
    return nullptr;
  }

  // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
  // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
  // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
  // RHS. For example,
  // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
  // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
  if (IsSuperSetOrEqual(BCst, DCst))
    return RHS;
  // Otherwise, B is a subset of D. If B and E have a common bit set,
  // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
  // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
  assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
  if ((BCst->getValue() & ECst->getValue()) != 0)
    return RHS;
  // Otherwise, LHS and RHS contradict and the whole expression becomes false
  // (or true if negated.) For example,
  // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
  // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
  return ConstantInt::get(LHS->getType(), !IsAnd);
}

/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
/// aren't of the common mask pattern type.
static Value *foldLogOpOfMaskedICmpsAsymmetric(
    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    Value *A, Value *B, Value *C, Value *D, Value *E,
    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    unsigned LHSMask, unsigned RHSMask,
    llvm::InstCombiner::BuilderTy &Builder) {
  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
         "Expected equality predicates for masked type of icmps.");
  // Handle Mask_NotAllZeros-BMask_Mixed cases.
  // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
  // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
  //    which gets swapped to
  //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
  if (!IsAnd) {
    LHSMask = conjugateICmpMask(LHSMask);
    RHSMask = conjugateICmpMask(RHSMask);
  }
  if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
            LHS, RHS, IsAnd, A, B, C, D, E,
            PredL, PredR, Builder)) {
      return V;
    }
  } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
            RHS, LHS, IsAnd, A, D, E, B, C,
            PredR, PredL, Builder)) {
      return V;
    }
  }
  return nullptr;
}

/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// into a single (icmp(A & X) ==/!= Y).
static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
                                     llvm::InstCombiner::BuilderTy &Builder) {
  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  Optional<std::pair<unsigned, unsigned>> MaskPair =
      getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
  if (!MaskPair)
    return nullptr;
  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
         "Expected equality predicates for masked type of icmps.");
  unsigned LHSMask = MaskPair->first;
  unsigned RHSMask = MaskPair->second;
  unsigned Mask = LHSMask & RHSMask;
  if (Mask == 0) {
    // Even if the two sides don't share a common pattern, check if folding can
    // still happen.
    if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
            LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
            Builder))
      return V;
    return nullptr;
  }

  // In full generality:
  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
  //
  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
  // equivalent to (icmp (A & X) !Op Y).
  //
  // Therefore, we can pretend for the rest of this function that we're dealing
  // with the conjunction, provided we flip the sense of any comparisons (both
  // input and output).

  // In most cases we're going to produce an EQ for the "&&" case.
  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
  if (!IsAnd) {
    // Convert the masking analysis into its equivalent with negated
    // comparisons.
    Mask = conjugateICmpMask(Mask);
  }

  if (Mask & Mask_AllZeros) {
    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    // -> (icmp eq (A & (B|D)), 0)
    Value *NewOr = Builder.CreateOr(B, D);
    Value *NewAnd = Builder.CreateAnd(A, NewOr);
    // We can't use C as zero because we might actually handle
    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    // with B and D, having a single bit set.
    Value *Zero = Constant::getNullValue(A->getType());
    return Builder.CreateICmp(NewCC, NewAnd, Zero);
  }
  if (Mask & BMask_AllOnes) {
    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    // -> (icmp eq (A & (B|D)), (B|D))
    Value *NewOr = Builder.CreateOr(B, D);
    Value *NewAnd = Builder.CreateAnd(A, NewOr);
    return Builder.CreateICmp(NewCC, NewAnd, NewOr);
  }
  if (Mask & AMask_AllOnes) {
    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    // -> (icmp eq (A & (B&D)), A)
    Value *NewAnd1 = Builder.CreateAnd(B, D);
    Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
    return Builder.CreateICmp(NewCC, NewAnd2, A);
  }

  // Remaining cases assume at least that B and D are constant, and depend on
  // their actual values. This isn't strictly necessary, just a "handle the
  // easy cases for now" decision.
  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
  if (!BCst)
    return nullptr;
  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
  if (!DCst)
    return nullptr;

  if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
    // Only valid if one of the masks is a superset of the other (check "B&D" is
    // the same as either B or D).
    APInt NewMask = BCst->getValue() & DCst->getValue();

    if (NewMask == BCst->getValue())
      return LHS;
    else if (NewMask == DCst->getValue())
      return RHS;
  }

  if (Mask & AMask_NotAllOnes) {
    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
    // Only valid if one of the masks is a superset of the other (check "B|D" is
    // the same as either B or D).
    APInt NewMask = BCst->getValue() | DCst->getValue();

    if (NewMask == BCst->getValue())
      return LHS;
    else if (NewMask == DCst->getValue())
      return RHS;
  }

  if (Mask & BMask_Mixed) {
    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    // We already know that B & C == C && D & E == E.
    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    // C and E, which are shared by both the mask B and the mask D, don't
    // contradict, then we can transform to
    // -> (icmp eq (A & (B|D)), (C|E))
    // Currently, we only handle the case of B, C, D, and E being constant.
    // We can't simply use C and E because we might actually handle
    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    // with B and D, having a single bit set.
    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    if (!CCst)
      return nullptr;
    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    if (!ECst)
      return nullptr;
    if (PredL != NewCC)
      CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
    if (PredR != NewCC)
      ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));

    // If there is a conflict, we should actually return a false for the
    // whole construct.
    if (((BCst->getValue() & DCst->getValue()) &
         (CCst->getValue() ^ ECst->getValue())).getBoolValue())
      return ConstantInt::get(LHS->getType(), !IsAnd);

    Value *NewOr1 = Builder.CreateOr(B, D);
    Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
    Value *NewAnd = Builder.CreateAnd(A, NewOr1);
    return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
  }

  return nullptr;
}

/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
/// If \p Inverted is true then the check is for the inverted range, e.g.
/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
                                        bool Inverted) {
  // Check the lower range comparison, e.g. x >= 0
  // InstCombine already ensured that if there is a constant it's on the RHS.
  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
  if (!RangeStart)
    return nullptr;

  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
                               Cmp0->getPredicate());

  // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
    return nullptr;

  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
                               Cmp1->getPredicate());

  Value *Input = Cmp0->getOperand(0);
  Value *RangeEnd;
  if (Cmp1->getOperand(0) == Input) {
    // For the upper range compare we have: icmp x, n
    RangeEnd = Cmp1->getOperand(1);
  } else if (Cmp1->getOperand(1) == Input) {
    // For the upper range compare we have: icmp n, x
    RangeEnd = Cmp1->getOperand(0);
    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
  } else {
    return nullptr;
  }

  // Check the upper range comparison, e.g. x < n
  ICmpInst::Predicate NewPred;
  switch (Pred1) {
    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
    default: return nullptr;
  }

  // This simplification is only valid if the upper range is not negative.
  KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
  if (!Known.isNonNegative())
    return nullptr;

  if (Inverted)
    NewPred = ICmpInst::getInversePredicate(NewPred);

  return Builder.CreateICmp(NewPred, Input, RangeEnd);
}

static Value *
foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
                                     bool JoinedByAnd,
                                     InstCombiner::BuilderTy &Builder) {
  Value *X = LHS->getOperand(0);
  if (X != RHS->getOperand(0))
    return nullptr;

  const APInt *C1, *C2;
  if (!match(LHS->getOperand(1), m_APInt(C1)) ||
      !match(RHS->getOperand(1), m_APInt(C2)))
    return nullptr;

  // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
  ICmpInst::Predicate Pred = LHS->getPredicate();
  if (Pred !=  RHS->getPredicate())
    return nullptr;
  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
    return nullptr;
  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
    return nullptr;

  // The larger unsigned constant goes on the right.
  if (C1->ugt(*C2))
    std::swap(C1, C2);

  APInt Xor = *C1 ^ *C2;
  if (Xor.isPowerOf2()) {
    // If LHSC and RHSC differ by only one bit, then set that bit in X and
    // compare against the larger constant:
    // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
    // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
    // We choose an 'or' with a Pow2 constant rather than the inverse mask with
    // 'and' because that may lead to smaller codegen from a smaller constant.
    Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
    return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
  }

  // Special case: get the ordering right when the values wrap around zero.
  // Ie, we assumed the constants were unsigned when swapping earlier.
  if (C1->isNullValue() && C2->isAllOnesValue())
    std::swap(C1, C2);

  if (*C1 == *C2 - 1) {
    // (X == 13 || X == 14) --> X - 13 <=u 1
    // (X != 13 && X != 14) --> X - 13  >u 1
    // An 'add' is the canonical IR form, so favor that over a 'sub'.
    Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
    auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
    return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
  }

  return nullptr;
}

// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
// Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
                                                   bool JoinedByAnd,
                                                   Instruction &CxtI) {
  ICmpInst::Predicate Pred = LHS->getPredicate();
  if (Pred != RHS->getPredicate())
    return nullptr;
  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
    return nullptr;
  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
    return nullptr;

  // TODO support vector splats
  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
  if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
    return nullptr;

  Value *A, *B, *C, *D;
  if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
      match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
    if (A == D || B == D)
      std::swap(C, D);
    if (B == C)
      std::swap(A, B);

    if (A == C &&
        isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
        isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
      Value *Mask = Builder.CreateOr(B, D);
      Value *Masked = Builder.CreateAnd(A, Mask);
      auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
      return Builder.CreateICmp(NewPred, Masked, Mask);
    }
  }

  return nullptr;
}

/// General pattern:
///   X & Y
///
/// Where Y is checking that all the high bits (covered by a mask 4294967168)
/// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
/// Pattern can be one of:
///   %t = add        i32 %arg,    128
///   %r = icmp   ult i32 %t,      256
/// Or
///   %t0 = shl       i32 %arg,    24
///   %t1 = ashr      i32 %t0,     24
///   %r  = icmp  eq  i32 %t1,     %arg
/// Or
///   %t0 = trunc     i32 %arg  to i8
///   %t1 = sext      i8  %t0   to i32
///   %r  = icmp  eq  i32 %t1,     %arg
/// This pattern is a signed truncation check.
///
/// And X is checking that some bit in that same mask is zero.
/// I.e. can be one of:
///   %r = icmp sgt i32   %arg,    -1
/// Or
///   %t = and      i32   %arg,    2147483648
///   %r = icmp eq  i32   %t,      0
///
/// Since we are checking that all the bits in that mask are the same,
/// and a particular bit is zero, what we are really checking is that all the
/// masked bits are zero.
/// So this should be transformed to:
///   %r = icmp ult i32 %arg, 128
static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
                                        Instruction &CxtI,
                                        InstCombiner::BuilderTy &Builder) {
  assert(CxtI.getOpcode() == Instruction::And);

  // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
  auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
                                            APInt &SignBitMask) -> bool {
    CmpInst::Predicate Pred;
    const APInt *I01, *I1; // powers of two; I1 == I01 << 1
    if (!(match(ICmp,
                m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
          Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
      return false;
    // Which bit is the new sign bit as per the 'signed truncation' pattern?
    SignBitMask = *I01;
    return true;
  };

  // One icmp needs to be 'signed truncation check'.
  // We need to match this first, else we will mismatch commutative cases.
  Value *X1;
  APInt HighestBit;
  ICmpInst *OtherICmp;
  if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
    OtherICmp = ICmp0;
  else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
    OtherICmp = ICmp1;
  else
    return nullptr;

  assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");

  // Try to match/decompose into:  icmp eq (X & Mask), 0
  auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
                           APInt &UnsetBitsMask) -> bool {
    CmpInst::Predicate Pred = ICmp->getPredicate();
    // Can it be decomposed into  icmp eq (X & Mask), 0  ?
    if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
                                   Pred, X, UnsetBitsMask,
                                   /*LookThroughTrunc=*/false) &&
        Pred == ICmpInst::ICMP_EQ)
      return true;
    // Is it  icmp eq (X & Mask), 0  already?
    const APInt *Mask;
    if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
        Pred == ICmpInst::ICMP_EQ) {
      UnsetBitsMask = *Mask;
      return true;
    }
    return false;
  };

  // And the other icmp needs to be decomposable into a bit test.
  Value *X0;
  APInt UnsetBitsMask;
  if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
    return nullptr;

  assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");

  // Are they working on the same value?
  Value *X;
  if (X1 == X0) {
    // Ok as is.
    X = X1;
  } else if (match(X0, m_Trunc(m_Specific(X1)))) {
    UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
    X = X1;
  } else
    return nullptr;

  // So which bits should be uniform as per the 'signed truncation check'?
  // (all the bits starting with (i.e. including) HighestBit)
  APInt SignBitsMask = ~(HighestBit - 1U);

  // UnsetBitsMask must have some common bits with SignBitsMask,
  if (!UnsetBitsMask.intersects(SignBitsMask))
    return nullptr;

  // Does UnsetBitsMask contain any bits outside of SignBitsMask?
  if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
    APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
    if (!OtherHighestBit.isPowerOf2())
      return nullptr;
    HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
  }
  // Else, if it does not, then all is ok as-is.

  // %r = icmp ult %X, SignBit
  return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
                               CxtI.getName() + ".simplified");
}

/// Reduce a pair of compares that check if a value has exactly 1 bit set.
static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
                             InstCombiner::BuilderTy &Builder) {
  // Handle 'and' / 'or' commutation: make the equality check the first operand.
  if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
    std::swap(Cmp0, Cmp1);
  else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
    std::swap(Cmp0, Cmp1);

  // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
  CmpInst::Predicate Pred0, Pred1;
  Value *X;
  if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
                         m_SpecificInt(2))) &&
      Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
    Value *CtPop = Cmp1->getOperand(0);
    return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
  }
  // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
  if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
                         m_SpecificInt(1))) &&
      Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
    Value *CtPop = Cmp1->getOperand(0);
    return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
  }
  return nullptr;
}

/// Commuted variants are assumed to be handled by calling this function again
/// with the parameters swapped.
static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
                                         ICmpInst *UnsignedICmp, bool IsAnd,
                                         const SimplifyQuery &Q,
                                         InstCombiner::BuilderTy &Builder) {
  Value *ZeroCmpOp;
  ICmpInst::Predicate EqPred;
  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
      !ICmpInst::isEquality(EqPred))
    return nullptr;

  auto IsKnownNonZero = [&](Value *V) {
    return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
  };

  ICmpInst::Predicate UnsignedPred;

  Value *A, *B;
  if (match(UnsignedICmp,
            m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
      match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
      (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
    if (UnsignedICmp->getOperand(0) != ZeroCmpOp)
      UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);

    auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
      if (!IsKnownNonZero(NonZero))
        std::swap(NonZero, Other);
      return IsKnownNonZero(NonZero);
    };

    // Given  ZeroCmpOp = (A + B)
    //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A
    //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A
    //
    //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
    //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
    //     with X being the value (A/B) that is known to be non-zero,
    //     and Y being remaining value.
    if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
        IsAnd)
      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
    if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
        IsAnd && GetKnownNonZeroAndOther(B, A))
      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
    if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
        !IsAnd)
      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
    if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
        !IsAnd && GetKnownNonZeroAndOther(B, A))
      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
  }

  Value *Base, *Offset;
  if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
    return nullptr;

  if (!match(UnsignedICmp,
             m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
      !ICmpInst::isUnsigned(UnsignedPred))
    return nullptr;
  if (UnsignedICmp->getOperand(0) != Base)
    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);

  // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
  // (no overflow and not null)
  if ((UnsignedPred == ICmpInst::ICMP_UGE ||
       UnsignedPred == ICmpInst::ICMP_UGT) &&
      EqPred == ICmpInst::ICMP_NE && IsAnd)
    return Builder.CreateICmpUGT(Base, Offset);

  // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
  // (overflow or null)
  if ((UnsignedPred == ICmpInst::ICMP_ULE ||
       UnsignedPred == ICmpInst::ICMP_ULT) &&
      EqPred == ICmpInst::ICMP_EQ && !IsAnd)
    return Builder.CreateICmpULE(Base, Offset);

  // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
  if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
      IsAnd)
    return Builder.CreateICmpULT(Base, Offset);

  // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
  if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
      !IsAnd)
    return Builder.CreateICmpUGE(Base, Offset);

  return nullptr;
}

/// Fold (icmp)&(icmp) if possible.
Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
                                    Instruction &CxtI) {
  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);

  // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
  // if K1 and K2 are a one-bit mask.
  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
    return V;

  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();

  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
  if (predicatesFoldable(PredL, PredR)) {
    if (LHS->getOperand(0) == RHS->getOperand(1) &&
        LHS->getOperand(1) == RHS->getOperand(0))
      LHS->swapOperands();
    if (LHS->getOperand(0) == RHS->getOperand(0) &&
        LHS->getOperand(1) == RHS->getOperand(1)) {
      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
      bool IsSigned = LHS->isSigned() || RHS->isSigned();
      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
    }
  }

  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
    return V;

  // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
    return V;

  // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
    return V;

  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
    return V;

  if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder))
    return V;

  if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
    return V;

  if (Value *X =
          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
    return X;
  if (Value *X =
          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
    return X;

  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
  if (!LHSC || !RHSC)
    return nullptr;

  if (LHSC == RHSC && PredL == PredR) {
    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    // where C is a power of 2 or
    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
        (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
      Value *NewOr = Builder.CreateOr(LHS0, RHS0);
      return Builder.CreateICmp(PredL, NewOr, LHSC);
    }
  }

  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
  // where CMAX is the all ones value for the truncated type,
  // iff the lower bits of C2 and CA are zero.
  if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
      RHS->hasOneUse()) {
    Value *V;
    ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;

    // (trunc x) == C1 & (and x, CA) == C2
    // (and x, CA) == C2 & (trunc x) == C1
    if (match(RHS0, m_Trunc(m_Value(V))) &&
        match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
      SmallC = RHSC;
      BigC = LHSC;
    } else if (match(LHS0, m_Trunc(m_Value(V))) &&
               match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
      SmallC = LHSC;
      BigC = RHSC;
    }

    if (SmallC && BigC) {
      unsigned BigBitSize = BigC->getType()->getBitWidth();
      unsigned SmallBitSize = SmallC->getType()->getBitWidth();

      // Check that the low bits are zero.
      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
      if ((Low & AndC->getValue()).isNullValue() &&
          (Low & BigC->getValue()).isNullValue()) {
        Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
        APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
        Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
        return Builder.CreateICmp(PredL, NewAnd, NewVal);
      }
    }
  }

  // From here on, we only handle:
  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
  if (LHS0 != RHS0)
    return nullptr;

  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
    return nullptr;

  // We can't fold (ugt x, C) & (sgt x, C2).
  if (!predicatesFoldable(PredL, PredR))
    return nullptr;

  // Ensure that the larger constant is on the RHS.
  bool ShouldSwap;
  if (CmpInst::isSigned(PredL) ||
      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
  else
    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());

  if (ShouldSwap) {
    std::swap(LHS, RHS);
    std::swap(LHSC, RHSC);
    std::swap(PredL, PredR);
  }

  // At this point, we know we have two icmp instructions
  // comparing a value against two constants and and'ing the result
  // together.  Because of the above check, we know that we only have
  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
  // (from the icmp folding check above), that the two constants
  // are not equal and that the larger constant is on the RHS
  assert(LHSC != RHSC && "Compares not folded above?");

  switch (PredL) {
  default:
    llvm_unreachable("Unknown integer condition code!");
  case ICmpInst::ICMP_NE:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_ULT:
      // (X != 13 & X u< 14) -> X < 13
      if (LHSC->getValue() == (RHSC->getValue() - 1))
        return Builder.CreateICmpULT(LHS0, LHSC);
      if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
                               false, true);
      break; // (X != 13 & X u< 15) -> no change
    case ICmpInst::ICMP_SLT:
      // (X != 13 & X s< 14) -> X < 13
      if (LHSC->getValue() == (RHSC->getValue() - 1))
        return Builder.CreateICmpSLT(LHS0, LHSC);
      // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
      if (LHSC->isMinValue(true))
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
                               true, true);
      break; // (X != 13 & X s< 15) -> no change
    case ICmpInst::ICMP_NE:
      // Potential folds for this case should already be handled.
      break;
    }
    break;
  case ICmpInst::ICMP_UGT:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_NE:
      // (X u> 13 & X != 14) -> X u> 14
      if (RHSC->getValue() == (LHSC->getValue() + 1))
        return Builder.CreateICmp(PredL, LHS0, RHSC);
      // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
      if (RHSC->isMaxValue(false))
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
                               false, true);
      break;                 // (X u> 13 & X != 15) -> no change
    case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
                             false, true);
    }
    break;
  case ICmpInst::ICMP_SGT:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_NE:
      // (X s> 13 & X != 14) -> X s> 14
      if (RHSC->getValue() == (LHSC->getValue() + 1))
        return Builder.CreateICmp(PredL, LHS0, RHSC);
      // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
      if (RHSC->isMaxValue(true))
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
                               true, true);
      break;                 // (X s> 13 & X != 15) -> no change
    case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
                             true);
    }
    break;
  }

  return nullptr;
}

Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();

  if (LHS0 == RHS1 && RHS0 == LHS1) {
    // Swap RHS operands to match LHS.
    PredR = FCmpInst::getSwappedPredicate(PredR);
    std::swap(RHS0, RHS1);
  }

  // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
  // Suppose the relation between x and y is R, where R is one of
  // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
  // testing the desired relations.
  //
  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
  //    bool(R & CC0) && bool(R & CC1)
  //  = bool((R & CC0) & (R & CC1))
  //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
  //
  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
  //    bool(R & CC0) || bool(R & CC1)
  //  = bool((R & CC0) | (R & CC1))
  //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
  if (LHS0 == RHS0 && LHS1 == RHS1) {
    unsigned FCmpCodeL = getFCmpCode(PredL);
    unsigned FCmpCodeR = getFCmpCode(PredR);
    unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
    return getFCmpValue(NewPred, LHS0, LHS1, Builder);
  }

  if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
      (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
    if (LHS0->getType() != RHS0->getType())
      return nullptr;

    // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
    // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
    if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
      // Ignore the constants because they are obviously not NANs:
      // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
      // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
      return Builder.CreateFCmp(PredL, LHS0, RHS0);
  }

  return nullptr;
}

/// This a limited reassociation for a special case (see above) where we are
/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
/// This could be handled more generally in '-reassociation', but it seems like
/// an unlikely pattern for a large number of logic ops and fcmps.
static Instruction *reassociateFCmps(BinaryOperator &BO,
                                     InstCombiner::BuilderTy &Builder) {
  Instruction::BinaryOps Opcode = BO.getOpcode();
  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
         "Expecting and/or op for fcmp transform");

  // There are 4 commuted variants of the pattern. Canonicalize operands of this
  // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
  FCmpInst::Predicate Pred;
  if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
    std::swap(Op0, Op1);

  // Match inner binop and the predicate for combining 2 NAN checks into 1.
  BinaryOperator *BO1;
  FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
                                                           : FCmpInst::FCMP_UNO;
  if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
      !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
    return nullptr;

  // The inner logic op must have a matching fcmp operand.
  Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
      Pred != NanPred || X->getType() != Y->getType())
    std::swap(BO10, BO11);

  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
      Pred != NanPred || X->getType() != Y->getType())
    return nullptr;

  // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
  // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
  Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
  if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
    // Intersect FMF from the 2 source fcmps.
    NewFCmpInst->copyIRFlags(Op0);
    NewFCmpInst->andIRFlags(BO10);
  }
  return BinaryOperator::Create(Opcode, NewFCmp, BO11);
}

/// Match De Morgan's Laws:
/// (~A & ~B) == (~(A | B))
/// (~A | ~B) == (~(A & B))
static Instruction *matchDeMorgansLaws(BinaryOperator &I,
                                       InstCombiner::BuilderTy &Builder) {
  auto Opcode = I.getOpcode();
  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
         "Trying to match De Morgan's Laws with something other than and/or");

  // Flip the logic operation.
  Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;

  Value *A, *B;
  if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
      match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
      !isFreeToInvert(A, A->hasOneUse()) &&
      !isFreeToInvert(B, B->hasOneUse())) {
    Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
    return BinaryOperator::CreateNot(AndOr);
  }

  return nullptr;
}

bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
  Value *CastSrc = CI->getOperand(0);

  // Noop casts and casts of constants should be eliminated trivially.
  if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
    return false;

  // If this cast is paired with another cast that can be eliminated, we prefer
  // to have it eliminated.
  if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
    if (isEliminableCastPair(PrecedingCI, CI))
      return false;

  return true;
}

/// Fold {and,or,xor} (cast X), C.
static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
                                          InstCombiner::BuilderTy &Builder) {
  Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
  if (!C)
    return nullptr;

  auto LogicOpc = Logic.getOpcode();
  Type *DestTy = Logic.getType();
  Type *SrcTy = Cast->getSrcTy();

  // Move the logic operation ahead of a zext or sext if the constant is
  // unchanged in the smaller source type. Performing the logic in a smaller
  // type may provide more information to later folds, and the smaller logic
  // instruction may be cheaper (particularly in the case of vectors).
  Value *X;
  if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
    Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
    if (ZextTruncC == C) {
      // LogicOpc (zext X), C --> zext (LogicOpc X, C)
      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
      return new ZExtInst(NewOp, DestTy);
    }
  }

  if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
    Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
    if (SextTruncC == C) {
      // LogicOpc (sext X), C --> sext (LogicOpc X, C)
      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
      return new SExtInst(NewOp, DestTy);
    }
  }

  return nullptr;
}

/// Fold {and,or,xor} (cast X), Y.
Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
  auto LogicOpc = I.getOpcode();
  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  CastInst *Cast0 = dyn_cast<CastInst>(Op0);
  if (!Cast0)
    return nullptr;

  // This must be a cast from an integer or integer vector source type to allow
  // transformation of the logic operation to the source type.
  Type *DestTy = I.getType();
  Type *SrcTy = Cast0->getSrcTy();
  if (!SrcTy->isIntOrIntVectorTy())
    return nullptr;

  if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
    return Ret;

  CastInst *Cast1 = dyn_cast<CastInst>(Op1);
  if (!Cast1)
    return nullptr;

  // Both operands of the logic operation are casts. The casts must be of the
  // same type for reduction.
  auto CastOpcode = Cast0->getOpcode();
  if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
    return nullptr;

  Value *Cast0Src = Cast0->getOperand(0);
  Value *Cast1Src = Cast1->getOperand(0);

  // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
  if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
    Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
                                        I.getName());
    return CastInst::Create(CastOpcode, NewOp, DestTy);
  }

  // For now, only 'and'/'or' have optimizations after this.
  if (LogicOpc == Instruction::Xor)
    return nullptr;

  // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
  // cast is otherwise not optimizable.  This happens for vector sexts.
  ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
  if (ICmp0 && ICmp1) {
    Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
                                              : foldOrOfICmps(ICmp0, ICmp1, I);
    if (Res)
      return CastInst::Create(CastOpcode, Res, DestTy);
    return nullptr;
  }

  // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
  // cast is otherwise not optimizable.  This happens for vector sexts.
  FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
  FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
  if (FCmp0 && FCmp1)
    if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
      return CastInst::Create(CastOpcode, R, DestTy);

  return nullptr;
}

static Instruction *foldAndToXor(BinaryOperator &I,
                                 InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::And);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;

  // Operand complexity canonicalization guarantees that the 'or' is Op0.
  // (A | B) & ~(A & B) --> A ^ B
  // (A | B) & ~(B & A) --> A ^ B
  if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
                        m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
    return BinaryOperator::CreateXor(A, B);

  // (A | ~B) & (~A | B) --> ~(A ^ B)
  // (A | ~B) & (B | ~A) --> ~(A ^ B)
  // (~B | A) & (~A | B) --> ~(A ^ B)
  // (~B | A) & (B | ~A) --> ~(A ^ B)
  if (Op0->hasOneUse() || Op1->hasOneUse())
    if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
                          m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));

  return nullptr;
}

static Instruction *foldOrToXor(BinaryOperator &I,
                                InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::Or);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;

  // Operand complexity canonicalization guarantees that the 'and' is Op0.
  // (A & B) | ~(A | B) --> ~(A ^ B)
  // (A & B) | ~(B | A) --> ~(A ^ B)
  if (Op0->hasOneUse() || Op1->hasOneUse())
    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));

  // (A & ~B) | (~A & B) --> A ^ B
  // (A & ~B) | (B & ~A) --> A ^ B
  // (~B & A) | (~A & B) --> A ^ B
  // (~B & A) | (B & ~A) --> A ^ B
  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
      match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
    return BinaryOperator::CreateXor(A, B);

  return nullptr;
}

/// Return true if a constant shift amount is always less than the specified
/// bit-width. If not, the shift could create poison in the narrower type.
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
  if (auto *ScalarC = dyn_cast<ConstantInt>(C))
    return ScalarC->getZExtValue() < BitWidth;

  if (C->getType()->isVectorTy()) {
    // Check each element of a constant vector.
    unsigned NumElts = C->getType()->getVectorNumElements();
    for (unsigned i = 0; i != NumElts; ++i) {
      Constant *Elt = C->getAggregateElement(i);
      if (!Elt)
        return false;
      if (isa<UndefValue>(Elt))
        continue;
      auto *CI = dyn_cast<ConstantInt>(Elt);
      if (!CI || CI->getZExtValue() >= BitWidth)
        return false;
    }
    return true;
  }

  // The constant is a constant expression or unknown.
  return false;
}

/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
/// a common zext operand: and (binop (zext X), C), (zext X).
Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
  // This transform could also apply to {or, and, xor}, but there are better
  // folds for those cases, so we don't expect those patterns here. AShr is not
  // handled because it should always be transformed to LShr in this sequence.
  // The subtract transform is different because it has a constant on the left.
  // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
  Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
  Constant *C;
  if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
      !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
    return nullptr;

  Value *X;
  if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
    return nullptr;

  Type *Ty = And.getType();
  if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
    return nullptr;

  // If we're narrowing a shift, the shift amount must be safe (less than the
  // width) in the narrower type. If the shift amount is greater, instsimplify
  // usually handles that case, but we can't guarantee/assert it.
  Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
  if (Opc == Instruction::LShr || Opc == Instruction::Shl)
    if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
      return nullptr;

  // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
  // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
  Value *NewC = ConstantExpr::getTrunc(C, X->getType());
  Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
                                         : Builder.CreateBinOp(Opc, X, NewC);
  return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
}

// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
// here. We should standardize that construct where it is needed or choose some
// other way to ensure that commutated variants of patterns are not missed.
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
  if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (SimplifyAssociativeOrCommutative(I))
    return &I;

  if (Instruction *X = foldVectorBinop(I))
    return X;

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  // Do this before using distributive laws to catch simple and/or/not patterns.
  if (Instruction *Xor = foldAndToXor(I, Builder))
    return Xor;

  // (A|B)&(A|C) -> A|(B&C) etc
  if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);

  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  const APInt *C;
  if (match(Op1, m_APInt(C))) {
    Value *X, *Y;
    if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
        C->isOneValue()) {
      // (1 << X) & 1 --> zext(X == 0)
      // (1 >> X) & 1 --> zext(X == 0)
      Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
      return new ZExtInst(IsZero, I.getType());
    }

    const APInt *XorC;
    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
      Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
      Value *And = Builder.CreateAnd(X, Op1);
      And->takeName(Op0);
      return BinaryOperator::CreateXor(And, NewC);
    }

    const APInt *OrC;
    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
      // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
      // NOTE: This reduces the number of bits set in the & mask, which
      // can expose opportunities for store narrowing for scalars.
      // NOTE: SimplifyDemandedBits should have already removed bits from C1
      // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
      // above, but this feels safer.
      APInt Together = *C & *OrC;
      Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
                                                         Together ^ *C));
      And->takeName(Op0);
      return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
                                                            Together));
    }

    // If the mask is only needed on one incoming arm, push the 'and' op up.
    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
        match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
      APInt NotAndMask(~(*C));
      BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
      if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
        // Not masking anything out for the LHS, move mask to RHS.
        // and ({x}or X, Y), C --> {x}or X, (and Y, C)
        Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
        return BinaryOperator::Create(BinOp, X, NewRHS);
      }
      if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
        // Not masking anything out for the RHS, move mask to LHS.
        // and ({x}or X, Y), C --> {x}or (and X, C), Y
        Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
        return BinaryOperator::Create(BinOp, NewLHS, Y);
      }
    }

  }

  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
    const APInt &AndRHSMask = AndRHS->getValue();

    // Optimize a variety of ((val OP C1) & C2) combinations...
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
      // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
      // of X and OP behaves well when given trunc(C1) and X.
      // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
      switch (Op0I->getOpcode()) {
      default:
        break;
      case Instruction::Xor:
      case Instruction::Or:
      case Instruction::Mul:
      case Instruction::Add:
      case Instruction::Sub:
        Value *X;
        ConstantInt *C1;
        // TODO: The one use restrictions could be relaxed a little if the AND
        // is going to be removed.
        if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
                                           m_ConstantInt(C1))))) {
          if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
            auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
            Value *BinOp;
            Value *Op0LHS = Op0I->getOperand(0);
            if (isa<ZExtInst>(Op0LHS))
              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
            else
              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
            auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
            auto *And = Builder.CreateAnd(BinOp, TruncC2);
            return new ZExtInst(And, I.getType());
          }
        }
      }

      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
          return Res;
    }

    // If this is an integer truncation, and if the source is an 'and' with
    // immediate, transform it.  This frequently occurs for bitfield accesses.
    {
      Value *X = nullptr; ConstantInt *YC = nullptr;
      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
        // Change: and (trunc (and X, YC) to T), C2
        // into  : and (trunc X to T), trunc(YC) & C2
        // This will fold the two constants together, which may allow
        // other simplifications.
        Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
        C3 = ConstantExpr::getAnd(C3, AndRHS);
        return BinaryOperator::CreateAnd(NewCast, C3);
      }
    }
  }

  if (Instruction *Z = narrowMaskedBinOp(I))
    return Z;

  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;

  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
    return DeMorgan;

  {
    Value *A, *B, *C;
    // A & (A ^ B) --> A & ~B
    if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
    // (A ^ B) & A --> A & ~B
    if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
      return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));

    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
    if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
        if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
          return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));

    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
        if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
          return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));

    // (A | B) & ((~A) ^ B) -> (A & B)
    // (A | B) & (B ^ (~A)) -> (A & B)
    // (B | A) & ((~A) ^ B) -> (A & B)
    // (B | A) & (B ^ (~A)) -> (A & B)
    if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(A, B);

    // ((~A) ^ B) & (A | B) -> (A & B)
    // ((~A) ^ B) & (B | A) -> (A & B)
    // (B ^ (~A)) & (A | B) -> (A & B)
    // (B ^ (~A)) & (B | A) -> (A & B)
    if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
      return BinaryOperator::CreateAnd(A, B);
  }

  {
    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
    if (LHS && RHS)
      if (Value *Res = foldAndOfICmps(LHS, RHS, I))
        return replaceInstUsesWith(I, Res);

    // TODO: Make this recursive; it's a little tricky because an arbitrary
    // number of 'and' instructions might have to be created.
    Value *X, *Y;
    if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
      if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
    }
    if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
      if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
    }
  }

  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
      if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
        return replaceInstUsesWith(I, Res);

  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
    return FoldedFCmps;

  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
    return CastedAnd;

  // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
  Value *A;
  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));

  // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
  {
    Value *X, *Y;
    const APInt *ShAmt;
    Type *Ty = I.getType();
    if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
                                          m_APInt(ShAmt))),
                          m_Deferred(X))) &&
        *ShAmt == Ty->getScalarSizeInBits() - 1) {
      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
      return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
    }
  }

  return nullptr;
}

Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) {
  assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
  Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);

  // Look through zero extends.
  if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
    Op0 = Ext->getOperand(0);

  if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
    Op1 = Ext->getOperand(0);

  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
  bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
                 match(Op1, m_Or(m_Value(), m_Value()));

  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
  bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
                    match(Op1, m_LogicalShift(m_Value(), m_Value()));

  // (A & B) | (C & D)                              -> bswap if possible.
  bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
                  match(Op1, m_And(m_Value(), m_Value()));

  // (A << B) | (C & D)                              -> bswap if possible.
  // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
  // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
  // C2 = 8 for i32).
  // This pattern can occur when the operands of the 'or' are not canonicalized
  // for some reason (not having only one use, for example).
  bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
                       match(Op1, m_And(m_Value(), m_Value()))) ||
                      (match(Op0, m_And(m_Value(), m_Value())) &&
                       match(Op1, m_LogicalShift(m_Value(), m_Value())));

  if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
    return nullptr;

  SmallVector<Instruction*, 4> Insts;
  if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts))
    return nullptr;
  Instruction *LastInst = Insts.pop_back_val();
  LastInst->removeFromParent();

  for (auto *Inst : Insts)
    Worklist.Add(Inst);
  return LastInst;
}

/// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
static Instruction *matchRotate(Instruction &Or) {
  // TODO: Can we reduce the code duplication between this and the related
  // rotate matching code under visitSelect and visitTrunc?
  unsigned Width = Or.getType()->getScalarSizeInBits();
  if (!isPowerOf2_32(Width))
    return nullptr;

  // First, find an or'd pair of opposite shifts with the same shifted operand:
  // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
  BinaryOperator *Or0, *Or1;
  if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
      !match(Or.getOperand(1), m_BinOp(Or1)))
    return nullptr;

  Value *ShVal, *ShAmt0, *ShAmt1;
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
    return nullptr;

  BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode();
  BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode();
  if (ShiftOpcode0 == ShiftOpcode1)
    return nullptr;

  // Match the shift amount operands for a rotate pattern. This always matches
  // a subtraction on the R operand.
  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
    // The shift amount may be masked with negation:
    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
    Value *X;
    unsigned Mask = Width - 1;
    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
      return X;

    // Similar to above, but the shift amount may be extended after masking,
    // so return the extended value as the parameter for the intrinsic.
    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
        match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
                       m_SpecificInt(Mask))))
      return L;

    return nullptr;
  };

  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
  bool SubIsOnLHS = false;
  if (!ShAmt) {
    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
    SubIsOnLHS = true;
  }
  if (!ShAmt)
    return nullptr;

  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
  Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
  return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt });
}

/// If all elements of two constant vectors are 0/-1 and inverses, return true.
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
  unsigned NumElts = C1->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *EltC1 = C1->getAggregateElement(i);
    Constant *EltC2 = C2->getAggregateElement(i);
    if (!EltC1 || !EltC2)
      return false;

    // One element must be all ones, and the other must be all zeros.
    if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
      return false;
  }
  return true;
}

/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
/// B, it can be used as the condition operand of a select instruction.
Value *InstCombiner::getSelectCondition(Value *A, Value *B) {
  // Step 1: We may have peeked through bitcasts in the caller.
  // Exit immediately if we don't have (vector) integer types.
  Type *Ty = A->getType();
  if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
    return nullptr;

  // Step 2: We need 0 or all-1's bitmasks.
  if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
    return nullptr;

  // Step 3: If B is the 'not' value of A, we have our answer.
  if (match(A, m_Not(m_Specific(B)))) {
    // If these are scalars or vectors of i1, A can be used directly.
    if (Ty->isIntOrIntVectorTy(1))
      return A;
    return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
  }

  // If both operands are constants, see if the constants are inverse bitmasks.
  Constant *AConst, *BConst;
  if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
    if (AConst == ConstantExpr::getNot(BConst))
      return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));

  // Look for more complex patterns. The 'not' op may be hidden behind various
  // casts. Look through sexts and bitcasts to find the booleans.
  Value *Cond;
  Value *NotB;
  if (match(A, m_SExt(m_Value(Cond))) &&
      Cond->getType()->isIntOrIntVectorTy(1) &&
      match(B, m_OneUse(m_Not(m_Value(NotB))))) {
    NotB = peekThroughBitcast(NotB, true);
    if (match(NotB, m_SExt(m_Specific(Cond))))
      return Cond;
  }

  // All scalar (and most vector) possibilities should be handled now.
  // Try more matches that only apply to non-splat constant vectors.
  if (!Ty->isVectorTy())
    return nullptr;

  // If both operands are xor'd with constants using the same sexted boolean
  // operand, see if the constants are inverse bitmasks.
  // TODO: Use ConstantExpr::getNot()?
  if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
      Cond->getType()->isIntOrIntVectorTy(1) &&
      areInverseVectorBitmasks(AConst, BConst)) {
    AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
    return Builder.CreateXor(Cond, AConst);
  }
  return nullptr;
}

/// We have an expression of the form (A & C) | (B & D). Try to simplify this
/// to "A' ? C : D", where A' is a boolean or vector of booleans.
Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B,
                                          Value *D) {
  // The potential condition of the select may be bitcasted. In that case, look
  // through its bitcast and the corresponding bitcast of the 'not' condition.
  Type *OrigType = A->getType();
  A = peekThroughBitcast(A, true);
  B = peekThroughBitcast(B, true);
  if (Value *Cond = getSelectCondition(A, B)) {
    // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
    // The bitcasts will either all exist or all not exist. The builder will
    // not create unnecessary casts if the types already match.
    Value *BitcastC = Builder.CreateBitCast(C, A->getType());
    Value *BitcastD = Builder.CreateBitCast(D, A->getType());
    Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
    return Builder.CreateBitCast(Select, OrigType);
  }

  return nullptr;
}

/// Fold (icmp)|(icmp) if possible.
Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
                                   Instruction &CxtI) {
  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);

  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
  // if K1 and K2 are a one-bit mask.
  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
    return V;

  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();

  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));

  // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
  //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
  // The original condition actually refers to the following two ranges:
  // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
  // We can fold these two ranges if:
  // 1) C1 and C2 is unsigned greater than C3.
  // 2) The two ranges are separated.
  // 3) C1 ^ C2 is one-bit mask.
  // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
  // This implies all values in the two ranges differ by exactly one bit.

  if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
      PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
      LHSC->getType() == RHSC->getType() &&
      LHSC->getValue() == (RHSC->getValue())) {

    Value *LAdd = LHS->getOperand(0);
    Value *RAdd = RHS->getOperand(0);

    Value *LAddOpnd, *RAddOpnd;
    ConstantInt *LAddC, *RAddC;
    if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
        match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
        LAddC->getValue().ugt(LHSC->getValue()) &&
        RAddC->getValue().ugt(LHSC->getValue())) {

      APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
      if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
        ConstantInt *MaxAddC = nullptr;
        if (LAddC->getValue().ult(RAddC->getValue()))
          MaxAddC = RAddC;
        else
          MaxAddC = LAddC;

        APInt RRangeLow = -RAddC->getValue();
        APInt RRangeHigh = RRangeLow + LHSC->getValue();
        APInt LRangeLow = -LAddC->getValue();
        APInt LRangeHigh = LRangeLow + LHSC->getValue();
        APInt LowRangeDiff = RRangeLow ^ LRangeLow;
        APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
        APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
                                                   : RRangeLow - LRangeLow;

        if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
            RangeDiff.ugt(LHSC->getValue())) {
          Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);

          Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
          Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
          return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
        }
      }
    }
  }

  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
  if (predicatesFoldable(PredL, PredR)) {
    if (LHS->getOperand(0) == RHS->getOperand(1) &&
        LHS->getOperand(1) == RHS->getOperand(0))
      LHS->swapOperands();
    if (LHS->getOperand(0) == RHS->getOperand(0) &&
        LHS->getOperand(1) == RHS->getOperand(1)) {
      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
      bool IsSigned = LHS->isSigned() || RHS->isSigned();
      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
    }
  }

  // handle (roughly):
  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
    return V;

  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
  if (LHS->hasOneUse() || RHS->hasOneUse()) {
    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
    Value *A = nullptr, *B = nullptr;
    if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
      B = LHS0;
      if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
        A = RHS0;
      else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
        A = RHS->getOperand(1);
    }
    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
    else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
      B = RHS0;
      if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
        A = LHS0;
      else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
        A = LHS->getOperand(1);
    }
    if (A && B)
      return Builder.CreateICmp(
          ICmpInst::ICMP_UGE,
          Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
  }

  // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
    return V;

  // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
    return V;

  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
    return V;

  if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
    return V;

  if (Value *X =
          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
    return X;
  if (Value *X =
          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
    return X;

  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
  if (!LHSC || !RHSC)
    return nullptr;

  if (LHSC == RHSC && PredL == PredR) {
    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
    if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
      Value *NewOr = Builder.CreateOr(LHS0, RHS0);
      return Builder.CreateICmp(PredL, NewOr, LHSC);
    }
  }

  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
  //   iff C2 + CA == C1.
  if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
    ConstantInt *AddC;
    if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
      if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
        return Builder.CreateICmpULE(LHS0, LHSC);
  }

  // From here on, we only handle:
  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
  if (LHS0 != RHS0)
    return nullptr;

  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
    return nullptr;

  // We can't fold (ugt x, C) | (sgt x, C2).
  if (!predicatesFoldable(PredL, PredR))
    return nullptr;

  // Ensure that the larger constant is on the RHS.
  bool ShouldSwap;
  if (CmpInst::isSigned(PredL) ||
      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
  else
    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());

  if (ShouldSwap) {
    std::swap(LHS, RHS);
    std::swap(LHSC, RHSC);
    std::swap(PredL, PredR);
  }

  // At this point, we know we have two icmp instructions
  // comparing a value against two constants and or'ing the result
  // together.  Because of the above check, we know that we only have
  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
  // icmp folding check above), that the two constants are not
  // equal.
  assert(LHSC != RHSC && "Compares not folded above?");

  switch (PredL) {
  default:
    llvm_unreachable("Unknown integer condition code!");
  case ICmpInst::ICMP_EQ:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_EQ:
      // Potential folds for this case should already be handled.
      break;
    case ICmpInst::ICMP_UGT:
      // (X == 0 || X u> C) -> (X-1) u>= C
      if (LHSC->isMinValue(false))
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
                               false, false);
      // (X == 13 | X u> 14) -> no change
      break;
    case ICmpInst::ICMP_SGT:
      // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
      if (LHSC->isMinValue(true))
        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
                               true, false);
      // (X == 13 | X s> 14) -> no change
      break;
    }
    break;
  case ICmpInst::ICMP_ULT:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
      // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
      if (RHSC->isMaxValue(false))
        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
                               false, false);
      break;
    case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
      assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
                             false, false);
    }
    break;
  case ICmpInst::ICMP_SLT:
    switch (PredR) {
    default:
      llvm_unreachable("Unknown integer condition code!");
    case ICmpInst::ICMP_EQ:
      // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
      if (RHSC->isMaxValue(true))
        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
                               true, false);
      // (X s< 13 | X == 14) -> no change
      break;
    case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
      assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
                             false);
    }
    break;
  }
  return nullptr;
}

// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
// here. We should standardize that construct where it is needed or choose some
// other way to ensure that commutated variants of patterns are not missed.
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
  if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
                                SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (SimplifyAssociativeOrCommutative(I))
    return &I;

  if (Instruction *X = foldVectorBinop(I))
    return X;

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  // Do this before using distributive laws to catch simple and/or/not patterns.
  if (Instruction *Xor = foldOrToXor(I, Builder))
    return Xor;

  // (A&B)|(A&C) -> A&(B|C) etc
  if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);

  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);

  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;

  if (Instruction *BSwap = matchBSwap(I))
    return BSwap;

  if (Instruction *Rotate = matchRotate(I))
    return Rotate;

  Value *X, *Y;
  const APInt *CV;
  if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
      !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
    // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
    // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
    Value *Or = Builder.CreateOr(X, Y);
    return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
  }

  // (A & C)|(B & D)
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Value *A, *B, *C, *D;
  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
      match(Op1, m_And(m_Value(B), m_Value(D)))) {
    ConstantInt *C1 = dyn_cast<ConstantInt>(C);
    ConstantInt *C2 = dyn_cast<ConstantInt>(D);
    if (C1 && C2) {  // (A & C1)|(B & C2)
      Value *V1 = nullptr, *V2 = nullptr;
      if ((C1->getValue() & C2->getValue()).isNullValue()) {
        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
        // iff (C1&C2) == 0 and (N&~C1) == 0
        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
            ((V1 == B &&
              MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
             (V2 == B &&
              MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
          return BinaryOperator::CreateAnd(A,
                                Builder.getInt(C1->getValue()|C2->getValue()));
        // Or commutes, try both ways.
        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
            ((V1 == A &&
              MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
             (V2 == A &&
              MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
          return BinaryOperator::CreateAnd(B,
                                 Builder.getInt(C1->getValue()|C2->getValue()));

        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
        ConstantInt *C3 = nullptr, *C4 = nullptr;
        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
            (C3->getValue() & ~C1->getValue()).isNullValue() &&
            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
            (C4->getValue() & ~C2->getValue()).isNullValue()) {
          V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
          return BinaryOperator::CreateAnd(V2,
                                 Builder.getInt(C1->getValue()|C2->getValue()));
        }
      }

      if (C1->getValue() == ~C2->getValue()) {
        Value *X;

        // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
        if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
        // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
        if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);

        // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
        if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
        // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
        if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
      }
    }

    // Don't try to form a select if it's unlikely that we'll get rid of at
    // least one of the operands. A select is generally more expensive than the
    // 'or' that it is replacing.
    if (Op0->hasOneUse() || Op1->hasOneUse()) {
      // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
      if (Value *V = matchSelectFromAndOr(A, C, B, D))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(A, C, D, B))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(C, A, B, D))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(C, A, D, B))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(B, D, A, C))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(B, D, C, A))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(D, B, A, C))
        return replaceInstUsesWith(I, V);
      if (Value *V = matchSelectFromAndOr(D, B, C, A))
        return replaceInstUsesWith(I, V);
    }
  }

  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
  if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
      return BinaryOperator::CreateOr(Op0, C);

  // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
  if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
      return BinaryOperator::CreateOr(Op1, C);

  // ((B | C) & A) | B -> B | (A & C)
  if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
    return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));

  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
    return DeMorgan;

  // Canonicalize xor to the RHS.
  bool SwappedForXor = false;
  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
    std::swap(Op0, Op1);
    SwappedForXor = true;
  }

  // A | ( A ^ B) -> A |  B
  // A | (~A ^ B) -> A | ~B
  // (A & B) | (A ^ B)
  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
    if (Op0 == A || Op0 == B)
      return BinaryOperator::CreateOr(A, B);

    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
        match(Op0, m_And(m_Specific(B), m_Specific(A))))
      return BinaryOperator::CreateOr(A, B);

    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
      Value *Not = Builder.CreateNot(B, B->getName() + ".not");
      return BinaryOperator::CreateOr(Not, Op0);
    }
    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
      Value *Not = Builder.CreateNot(A, A->getName() + ".not");
      return BinaryOperator::CreateOr(Not, Op0);
    }
  }

  // A | ~(A | B) -> A | ~B
  // A | ~(A ^ B) -> A | ~B
  if (match(Op1, m_Not(m_Value(A))))
    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
                               B->getOpcode() == Instruction::Xor)) {
        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
                                                 B->getOperand(0);
        Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
        return BinaryOperator::CreateOr(Not, Op0);
      }

  if (SwappedForXor)
    std::swap(Op0, Op1);

  {
    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
    if (LHS && RHS)
      if (Value *Res = foldOrOfICmps(LHS, RHS, I))
        return replaceInstUsesWith(I, Res);

    // TODO: Make this recursive; it's a little tricky because an arbitrary
    // number of 'or' instructions might have to be created.
    Value *X, *Y;
    if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
      if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
          return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
    }
    if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
      if (auto *Cmp = dyn_cast<ICmpInst>(X))
        if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
        if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
          return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
    }
  }

  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
      if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
        return replaceInstUsesWith(I, Res);

  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
    return FoldedFCmps;

  if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
    return CastedOr;

  // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
      A->getType()->isIntOrIntVectorTy(1))
    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);

  // Note: If we've gotten to the point of visiting the outer OR, then the
  // inner one couldn't be simplified.  If it was a constant, then it won't
  // be simplified by a later pass either, so we try swapping the inner/outer
  // ORs in the hopes that we'll be able to simplify it this way.
  // (X|C) | V --> (X|V) | C
  ConstantInt *CI;
  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
      match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
    Value *Inner = Builder.CreateOr(A, Op1);
    Inner->takeName(Op0);
    return BinaryOperator::CreateOr(Inner, CI);
  }

  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
  // Since this OR statement hasn't been optimized further yet, we hope
  // that this transformation will allow the new ORs to be optimized.
  {
    Value *X = nullptr, *Y = nullptr;
    if (Op0->hasOneUse() && Op1->hasOneUse() &&
        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
      Value *orTrue = Builder.CreateOr(A, C);
      Value *orFalse = Builder.CreateOr(B, D);
      return SelectInst::Create(X, orTrue, orFalse);
    }
  }

  // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X)  --> X s> Y ? -1 : X.
  {
    Value *X, *Y;
    const APInt *ShAmt;
    Type *Ty = I.getType();
    if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
                                         m_APInt(ShAmt))),
                         m_Deferred(X))) &&
        *ShAmt == Ty->getScalarSizeInBits() - 1) {
      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
      return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty),
                                X);
    }
  }

  if (Instruction *V =
          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
    return V;

  return nullptr;
}

/// A ^ B can be specified using other logic ops in a variety of patterns. We
/// can fold these early and efficiently by morphing an existing instruction.
static Instruction *foldXorToXor(BinaryOperator &I,
                                 InstCombiner::BuilderTy &Builder) {
  assert(I.getOpcode() == Instruction::Xor);
  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *A, *B;

  // There are 4 commuted variants for each of the basic patterns.

  // (A & B) ^ (A | B) -> A ^ B
  // (A & B) ^ (B | A) -> A ^ B
  // (A | B) ^ (A & B) -> A ^ B
  // (A | B) ^ (B & A) -> A ^ B
  if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
                        m_c_Or(m_Deferred(A), m_Deferred(B))))) {
    I.setOperand(0, A);
    I.setOperand(1, B);
    return &I;
  }

  // (A | ~B) ^ (~A | B) -> A ^ B
  // (~B | A) ^ (~A | B) -> A ^ B
  // (~A | B) ^ (A | ~B) -> A ^ B
  // (B | ~A) ^ (A | ~B) -> A ^ B
  if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
                      m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
    I.setOperand(0, A);
    I.setOperand(1, B);
    return &I;
  }

  // (A & ~B) ^ (~A & B) -> A ^ B
  // (~B & A) ^ (~A & B) -> A ^ B
  // (~A & B) ^ (A & ~B) -> A ^ B
  // (B & ~A) ^ (A & ~B) -> A ^ B
  if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
                      m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
    I.setOperand(0, A);
    I.setOperand(1, B);
    return &I;
  }

  // For the remaining cases we need to get rid of one of the operands.
  if (!Op0->hasOneUse() && !Op1->hasOneUse())
    return nullptr;

  // (A | B) ^ ~(A & B) -> ~(A ^ B)
  // (A | B) ^ ~(B & A) -> ~(A ^ B)
  // (A & B) ^ ~(A | B) -> ~(A ^ B)
  // (A & B) ^ ~(B | A) -> ~(A ^ B)
  // Complexity sorting ensures the not will be on the right side.
  if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
       match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
      (match(Op0, m_And(m_Value(A), m_Value(B))) &&
       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));

  return nullptr;
}

Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
                                    BinaryOperator &I) {
  assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
         I.getOperand(1) == RHS && "Should be 'xor' with these operands");

  if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
    if (LHS->getOperand(0) == RHS->getOperand(1) &&
        LHS->getOperand(1) == RHS->getOperand(0))
      LHS->swapOperands();
    if (LHS->getOperand(0) == RHS->getOperand(0) &&
        LHS->getOperand(1) == RHS->getOperand(1)) {
      // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
      unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
      bool IsSigned = LHS->isSigned() || RHS->isSigned();
      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
    }
  }

  // TODO: This can be generalized to compares of non-signbits using
  // decomposeBitTestICmp(). It could be enhanced more by using (something like)
  // foldLogOpOfMaskedICmps().
  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
  if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
      LHS0->getType() == RHS0->getType() &&
      LHS0->getType()->isIntOrIntVectorTy()) {
    // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
    // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
      Value *Zero = ConstantInt::getNullValue(LHS0->getType());
      return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
    }
    // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
    // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
      Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
      return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
    }
  }

  // Instead of trying to imitate the folds for and/or, decompose this 'xor'
  // into those logic ops. That is, try to turn this into an and-of-icmps
  // because we have many folds for that pattern.
  //
  // This is based on a truth table definition of xor:
  // X ^ Y --> (X | Y) & !(X & Y)
  if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
    // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
    // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
    if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
      // TODO: Independently handle cases where the 'and' side is a constant.
      ICmpInst *X = nullptr, *Y = nullptr;
      if (OrICmp == LHS && AndICmp == RHS) {
        // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
        X = LHS;
        Y = RHS;
      }
      if (OrICmp == RHS && AndICmp == LHS) {
        // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
        X = RHS;
        Y = LHS;
      }
      if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
        // Invert the predicate of 'Y', thus inverting its output.
        Y->setPredicate(Y->getInversePredicate());
        // So, are there other uses of Y?
        if (!Y->hasOneUse()) {
          // We need to adapt other uses of Y though. Get a value that matches
          // the original value of Y before inversion. While this increases
          // immediate instruction count, we have just ensured that all the
          // users are freely-invertible, so that 'not' *will* get folded away.
          BuilderTy::InsertPointGuard Guard(Builder);
          // Set insertion point to right after the Y.
          Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
          Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
          // Replace all uses of Y (excluding the one in NotY!) with NotY.
          Y->replaceUsesWithIf(NotY,
                               [NotY](Use &U) { return U.getUser() != NotY; });
        }
        // All done.
        return Builder.CreateAnd(LHS, RHS);
      }
    }
  }

  return nullptr;
}

/// If we have a masked merge, in the canonical form of:
/// (assuming that A only has one use.)
///   |        A  |  |B|
///   ((x ^ y) & M) ^ y
///    |  D  |
/// * If M is inverted:
///      |  D  |
///     ((x ^ y) & ~M) ^ y
///   We can canonicalize by swapping the final xor operand
///   to eliminate the 'not' of the mask.
///     ((x ^ y) & M) ^ x
/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
///   because that shortens the dependency chain and improves analysis:
///     (x & M) | (y & ~M)
static Instruction *visitMaskedMerge(BinaryOperator &I,
                                     InstCombiner::BuilderTy &Builder) {
  Value *B, *X, *D;
  Value *M;
  if (!match(&I, m_c_Xor(m_Value(B),
                         m_OneUse(m_c_And(
                             m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
                                          m_Value(D)),
                             m_Value(M))))))
    return nullptr;

  Value *NotM;
  if (match(M, m_Not(m_Value(NotM)))) {
    // De-invert the mask and swap the value in B part.
    Value *NewA = Builder.CreateAnd(D, NotM);
    return BinaryOperator::CreateXor(NewA, X);
  }

  Constant *C;
  if (D->hasOneUse() && match(M, m_Constant(C))) {
    // Unfold.
    Value *LHS = Builder.CreateAnd(X, C);
    Value *NotC = Builder.CreateNot(C);
    Value *RHS = Builder.CreateAnd(B, NotC);
    return BinaryOperator::CreateOr(LHS, RHS);
  }

  return nullptr;
}

// Transform
//   ~(x ^ y)
// into:
//   (~x) ^ y
// or into
//   x ^ (~y)
static Instruction *sinkNotIntoXor(BinaryOperator &I,
                                   InstCombiner::BuilderTy &Builder) {
  Value *X, *Y;
  // FIXME: one-use check is not needed in general, but currently we are unable
  // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
  if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
    return nullptr;

  // We only want to do the transform if it is free to do.
  if (isFreeToInvert(X, X->hasOneUse())) {
    // Ok, good.
  } else if (isFreeToInvert(Y, Y->hasOneUse())) {
    std::swap(X, Y);
  } else
    return nullptr;

  Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
  return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
}

// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
// here. We should standardize that construct where it is needed or choose some
// other way to ensure that commutated variants of patterns are not missed.
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
  if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
                                 SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (SimplifyAssociativeOrCommutative(I))
    return &I;

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *NewXor = foldXorToXor(I, Builder))
    return NewXor;

  // (A&B)^(A&C) -> A&(B^C) etc
  if (Value *V = SimplifyUsingDistributiveLaws(I))
    return replaceInstUsesWith(I, V);

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  if (Value *V = SimplifyBSwap(I, Builder))
    return replaceInstUsesWith(I, V);

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
  // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
  // calls in there are unnecessary as SimplifyDemandedInstructionBits should
  // have already taken care of those cases.
  Value *M;
  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
                        m_c_And(m_Deferred(M), m_Value()))))
    return BinaryOperator::CreateOr(Op0, Op1);

  // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
  Value *X, *Y;

  // We must eliminate the and/or (one-use) for these transforms to not increase
  // the instruction count.
  // ~(~X & Y) --> (X | ~Y)
  // ~(Y & ~X) --> (X | ~Y)
  if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return BinaryOperator::CreateOr(X, NotY);
  }
  // ~(~X | Y) --> (X & ~Y)
  // ~(Y | ~X) --> (X & ~Y)
  if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
    return BinaryOperator::CreateAnd(X, NotY);
  }

  if (Instruction *Xor = visitMaskedMerge(I, Builder))
    return Xor;

  // Is this a 'not' (~) fed by a binary operator?
  BinaryOperator *NotVal;
  if (match(&I, m_Not(m_BinOp(NotVal)))) {
    if (NotVal->getOpcode() == Instruction::And ||
        NotVal->getOpcode() == Instruction::Or) {
      // Apply DeMorgan's Law when inverts are free:
      // ~(X & Y) --> (~X | ~Y)
      // ~(X | Y) --> (~X & ~Y)
      if (isFreeToInvert(NotVal->getOperand(0),
                         NotVal->getOperand(0)->hasOneUse()) &&
          isFreeToInvert(NotVal->getOperand(1),
                         NotVal->getOperand(1)->hasOneUse())) {
        Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
        Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
        if (NotVal->getOpcode() == Instruction::And)
          return BinaryOperator::CreateOr(NotX, NotY);
        return BinaryOperator::CreateAnd(NotX, NotY);
      }
    }

    // ~(X - Y) --> ~X + Y
    if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
      if (isa<Constant>(X) || NotVal->hasOneUse())
        return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);

    // ~(~X >>s Y) --> (X >>s Y)
    if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
      return BinaryOperator::CreateAShr(X, Y);

    // If we are inverting a right-shifted constant, we may be able to eliminate
    // the 'not' by inverting the constant and using the opposite shift type.
    // Canonicalization rules ensure that only a negative constant uses 'ashr',
    // but we must check that in case that transform has not fired yet.

    // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
    Constant *C;
    if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
        match(C, m_Negative()))
      return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);

    // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
    if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
        match(C, m_NonNegative()))
      return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);

    // ~(X + C) --> -(C + 1) - X
    if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
      return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
  }

  // Use DeMorgan and reassociation to eliminate a 'not' op.
  Constant *C1;
  if (match(Op1, m_Constant(C1))) {
    Constant *C2;
    if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
      // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
      Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
      return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
    }
    if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
      // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
      Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
      return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
    }
  }

  // not (cmp A, B) = !cmp A, B
  CmpInst::Predicate Pred;
  if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
    cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
    return replaceInstUsesWith(I, Op0);
  }

  {
    const APInt *RHSC;
    if (match(Op1, m_APInt(RHSC))) {
      Value *X;
      const APInt *C;
      if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
        // (C - X) ^ signmask -> (C + signmask - X)
        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
        return BinaryOperator::CreateSub(NewC, X);
      }
      if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
        // (X + C) ^ signmask -> (X + C + signmask)
        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
        return BinaryOperator::CreateAdd(X, NewC);
      }

      // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
      if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
          MaskedValueIsZero(X, *C, 0, &I)) {
        Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
        Worklist.Add(cast<Instruction>(Op0));
        I.setOperand(0, X);
        I.setOperand(1, NewC);
        return &I;
      }
    }
  }

  if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
        if (Op0I->getOpcode() == Instruction::LShr) {
          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
          // E1 = "X ^ C1"
          BinaryOperator *E1;
          ConstantInt *C1;
          if (Op0I->hasOneUse() &&
              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
              E1->getOpcode() == Instruction::Xor &&
              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
            // fold (C1 >> C2) ^ C3
            ConstantInt *C2 = Op0CI, *C3 = RHSC;
            APInt FoldConst = C1->getValue().lshr(C2->getValue());
            FoldConst ^= C3->getValue();
            // Prepare the two operands.
            Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
            Opnd0->takeName(Op0I);
            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);

            return BinaryOperator::CreateXor(Opnd0, FoldVal);
          }
        }
      }
    }
  }

  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
    return FoldedLogic;

  // Y ^ (X | Y) --> X & ~Y
  // Y ^ (Y | X) --> X & ~Y
  if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
  // (X | Y) ^ Y --> X & ~Y
  // (Y | X) ^ Y --> X & ~Y
  if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));

  // Y ^ (X & Y) --> ~X & Y
  // Y ^ (Y & X) --> ~X & Y
  if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
    return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
  // (X & Y) ^ Y --> ~X & Y
  // (Y & X) ^ Y --> ~X & Y
  // Canonical form is (X & C) ^ C; don't touch that.
  // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
  //       be fixed to prefer that (otherwise we get infinite looping).
  if (!match(Op1, m_Constant()) &&
      match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
    return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));

  Value *A, *B, *C;
  // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
                        m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
      return BinaryOperator::CreateXor(
          Builder.CreateAnd(Builder.CreateNot(A), C), B);

  // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
                        m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
      return BinaryOperator::CreateXor(
          Builder.CreateAnd(Builder.CreateNot(B), C), A);

  // (A & B) ^ (A ^ B) -> (A | B)
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
    return BinaryOperator::CreateOr(A, B);
  // (A ^ B) ^ (A & B) -> (A | B)
  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
      match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
    return BinaryOperator::CreateOr(A, B);

  // (A & ~B) ^ ~A -> ~(A & B)
  // (~B & A) ^ ~A -> ~(A & B)
  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
      match(Op1, m_Not(m_Specific(A))))
    return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));

  if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
    if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
      if (Value *V = foldXorOfICmps(LHS, RHS, I))
        return replaceInstUsesWith(I, V);

  if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
    return CastedXor;

  // Canonicalize a shifty way to code absolute value to the common pattern.
  // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
  // We're relying on the fact that we only do this transform when the shift has
  // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
  // instructions).
  if (Op0->hasNUses(2))
    std::swap(Op0, Op1);

  const APInt *ShAmt;
  Type *Ty = I.getType();
  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
      match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
    // B = ashr i32 A, 31 ; smear the sign bit
    // xor (add A, B), B  ; add -1 and flip bits if negative
    // --> (A < 0) ? -A : A
    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
    // Copy the nuw/nsw flags from the add to the negate.
    auto *Add = cast<BinaryOperator>(Op0);
    Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
                                   Add->hasNoSignedWrap());
    return SelectInst::Create(Cmp, Neg, A);
  }

  // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
  //
  //   %notx = xor i32 %x, -1
  //   %cmp1 = icmp sgt i32 %notx, %y
  //   %smax = select i1 %cmp1, i32 %notx, i32 %y
  //   %res = xor i32 %smax, -1
  // =>
  //   %noty = xor i32 %y, -1
  //   %cmp2 = icmp slt %x, %noty
  //   %res = select i1 %cmp2, i32 %x, i32 %noty
  //
  // Same is applicable for smin/umax/umin.
  if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
    Value *LHS, *RHS;
    SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
    if (SelectPatternResult::isMinOrMax(SPF)) {
      // It's possible we get here before the not has been simplified, so make
      // sure the input to the not isn't freely invertible.
      if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
        Value *NotY = Builder.CreateNot(RHS);
        return SelectInst::Create(
            Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
      }

      // It's possible we get here before the not has been simplified, so make
      // sure the input to the not isn't freely invertible.
      if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
        Value *NotX = Builder.CreateNot(LHS);
        return SelectInst::Create(
            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
      }

      // If both sides are freely invertible, then we can get rid of the xor
      // completely.
      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
          isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
        Value *NotLHS = Builder.CreateNot(LHS);
        Value *NotRHS = Builder.CreateNot(RHS);
        return SelectInst::Create(
            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
            NotLHS, NotRHS);
      }
    }

    // Pull 'not' into operands of select if both operands are one-use compares.
    // Inverting the predicates eliminates the 'not' operation.
    // Example:
    //     not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
    //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
    // TODO: Canonicalize by hoisting 'not' into an arm of the select if only
    //       1 select operand is a cmp?
    if (auto *Sel = dyn_cast<SelectInst>(Op0)) {
      auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue());
      auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue());
      if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) {
        CmpT->setPredicate(CmpT->getInversePredicate());
        CmpF->setPredicate(CmpF->getInversePredicate());
        return replaceInstUsesWith(I, Sel);
      }
    }
  }

  if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
    return NewXor;

  return nullptr;
}