ObjCARCOpts.cpp 88.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file defines ObjC ARC optimizations. ARC stands for Automatic
/// Reference Counting and is a system for managing reference counts for objects
/// in Objective C.
///
/// The optimizations performed include elimination of redundant, partially
/// redundant, and inconsequential reference count operations, elimination of
/// redundant weak pointer operations, and numerous minor simplifications.
///
/// WARNING: This file knows about certain library functions. It recognizes them
/// by name, and hardwires knowledge of their semantics.
///
/// WARNING: This file knows about how certain Objective-C library functions are
/// used. Naive LLVM IR transformations which would otherwise be
/// behavior-preserving may break these assumptions.
//
//===----------------------------------------------------------------------===//

#include "ARCRuntimeEntryPoints.h"
#include "BlotMapVector.h"
#include "DependencyAnalysis.h"
#include "ObjCARC.h"
#include "ProvenanceAnalysis.h"
#include "PtrState.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
#include "llvm/Analysis/ObjCARCInstKind.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace llvm::objcarc;

#define DEBUG_TYPE "objc-arc-opts"

static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states",
    cl::Hidden,
    cl::desc("Maximum number of ptr states the optimizer keeps track of"),
    cl::init(4095));

/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
/// @{

/// This is similar to GetRCIdentityRoot but it stops as soon
/// as it finds a value with multiple uses.
static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
  // ConstantData (like ConstantPointerNull and UndefValue) is used across
  // modules.  It's never a single-use value.
  if (isa<ConstantData>(Arg))
    return nullptr;

  if (Arg->hasOneUse()) {
    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
      return FindSingleUseIdentifiedObject(BC->getOperand(0));
    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
      if (GEP->hasAllZeroIndices())
        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
    if (IsForwarding(GetBasicARCInstKind(Arg)))
      return FindSingleUseIdentifiedObject(
               cast<CallInst>(Arg)->getArgOperand(0));
    if (!IsObjCIdentifiedObject(Arg))
      return nullptr;
    return Arg;
  }

  // If we found an identifiable object but it has multiple uses, but they are
  // trivial uses, we can still consider this to be a single-use value.
  if (IsObjCIdentifiedObject(Arg)) {
    for (const User *U : Arg->users())
      if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
         return nullptr;

    return Arg;
  }

  return nullptr;
}

/// @}
///
/// \defgroup ARCOpt ARC Optimization.
/// @{

// TODO: On code like this:
//
// objc_retain(%x)
// stuff_that_cannot_release()
// objc_autorelease(%x)
// stuff_that_cannot_release()
// objc_retain(%x)
// stuff_that_cannot_release()
// objc_autorelease(%x)
//
// The second retain and autorelease can be deleted.

// TODO: It should be possible to delete
// objc_autoreleasePoolPush and objc_autoreleasePoolPop
// pairs if nothing is actually autoreleased between them. Also, autorelease
// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
// after inlining) can be turned into plain release calls.

// TODO: Critical-edge splitting. If the optimial insertion point is
// a critical edge, the current algorithm has to fail, because it doesn't
// know how to split edges. It should be possible to make the optimizer
// think in terms of edges, rather than blocks, and then split critical
// edges on demand.

// TODO: OptimizeSequences could generalized to be Interprocedural.

// TODO: Recognize that a bunch of other objc runtime calls have
// non-escaping arguments and non-releasing arguments, and may be
// non-autoreleasing.

// TODO: Sink autorelease calls as far as possible. Unfortunately we
// usually can't sink them past other calls, which would be the main
// case where it would be useful.

// TODO: The pointer returned from objc_loadWeakRetained is retained.

// TODO: Delete release+retain pairs (rare).

STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
STATISTIC(NumRets,        "Number of return value forwarding "
                          "retain+autoreleases eliminated");
STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
#ifndef NDEBUG
STATISTIC(NumRetainsBeforeOpt,
          "Number of retains before optimization");
STATISTIC(NumReleasesBeforeOpt,
          "Number of releases before optimization");
STATISTIC(NumRetainsAfterOpt,
          "Number of retains after optimization");
STATISTIC(NumReleasesAfterOpt,
          "Number of releases after optimization");
#endif

namespace {

  /// Per-BasicBlock state.
  class BBState {
    /// The number of unique control paths from the entry which can reach this
    /// block.
    unsigned TopDownPathCount = 0;

    /// The number of unique control paths to exits from this block.
    unsigned BottomUpPathCount = 0;

    /// The top-down traversal uses this to record information known about a
    /// pointer at the bottom of each block.
    BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;

    /// The bottom-up traversal uses this to record information known about a
    /// pointer at the top of each block.
    BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;

    /// Effective predecessors of the current block ignoring ignorable edges and
    /// ignored backedges.
    SmallVector<BasicBlock *, 2> Preds;

    /// Effective successors of the current block ignoring ignorable edges and
    /// ignored backedges.
    SmallVector<BasicBlock *, 2> Succs;

  public:
    static const unsigned OverflowOccurredValue;

    BBState() = default;

    using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
    using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;

    top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
    top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
    const_top_down_ptr_iterator top_down_ptr_begin() const {
      return PerPtrTopDown.begin();
    }
    const_top_down_ptr_iterator top_down_ptr_end() const {
      return PerPtrTopDown.end();
    }
    bool hasTopDownPtrs() const {
      return !PerPtrTopDown.empty();
    }

    unsigned top_down_ptr_list_size() const {
      return std::distance(top_down_ptr_begin(), top_down_ptr_end());
    }

    using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
    using const_bottom_up_ptr_iterator =
        decltype(PerPtrBottomUp)::const_iterator;

    bottom_up_ptr_iterator bottom_up_ptr_begin() {
      return PerPtrBottomUp.begin();
    }
    bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
    const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
      return PerPtrBottomUp.begin();
    }
    const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
      return PerPtrBottomUp.end();
    }
    bool hasBottomUpPtrs() const {
      return !PerPtrBottomUp.empty();
    }

    unsigned bottom_up_ptr_list_size() const {
      return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end());
    }

    /// Mark this block as being an entry block, which has one path from the
    /// entry by definition.
    void SetAsEntry() { TopDownPathCount = 1; }

    /// Mark this block as being an exit block, which has one path to an exit by
    /// definition.
    void SetAsExit()  { BottomUpPathCount = 1; }

    /// Attempt to find the PtrState object describing the top down state for
    /// pointer Arg. Return a new initialized PtrState describing the top down
    /// state for Arg if we do not find one.
    TopDownPtrState &getPtrTopDownState(const Value *Arg) {
      return PerPtrTopDown[Arg];
    }

    /// Attempt to find the PtrState object describing the bottom up state for
    /// pointer Arg. Return a new initialized PtrState describing the bottom up
    /// state for Arg if we do not find one.
    BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
      return PerPtrBottomUp[Arg];
    }

    /// Attempt to find the PtrState object describing the bottom up state for
    /// pointer Arg.
    bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
      return PerPtrBottomUp.find(Arg);
    }

    void clearBottomUpPointers() {
      PerPtrBottomUp.clear();
    }

    void clearTopDownPointers() {
      PerPtrTopDown.clear();
    }

    void InitFromPred(const BBState &Other);
    void InitFromSucc(const BBState &Other);
    void MergePred(const BBState &Other);
    void MergeSucc(const BBState &Other);

    /// Compute the number of possible unique paths from an entry to an exit
    /// which pass through this block. This is only valid after both the
    /// top-down and bottom-up traversals are complete.
    ///
    /// Returns true if overflow occurred. Returns false if overflow did not
    /// occur.
    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
      if (TopDownPathCount == OverflowOccurredValue ||
          BottomUpPathCount == OverflowOccurredValue)
        return true;
      unsigned long long Product =
        (unsigned long long)TopDownPathCount*BottomUpPathCount;
      // Overflow occurred if any of the upper bits of Product are set or if all
      // the lower bits of Product are all set.
      return (Product >> 32) ||
             ((PathCount = Product) == OverflowOccurredValue);
    }

    // Specialized CFG utilities.
    using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;

    edge_iterator pred_begin() const { return Preds.begin(); }
    edge_iterator pred_end() const { return Preds.end(); }
    edge_iterator succ_begin() const { return Succs.begin(); }
    edge_iterator succ_end() const { return Succs.end(); }

    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }

    bool isExit() const { return Succs.empty(); }
  };

} // end anonymous namespace

const unsigned BBState::OverflowOccurredValue = 0xffffffff;

namespace llvm {

raw_ostream &operator<<(raw_ostream &OS,
                        BBState &BBState) LLVM_ATTRIBUTE_UNUSED;

} // end namespace llvm

void BBState::InitFromPred(const BBState &Other) {
  PerPtrTopDown = Other.PerPtrTopDown;
  TopDownPathCount = Other.TopDownPathCount;
}

void BBState::InitFromSucc(const BBState &Other) {
  PerPtrBottomUp = Other.PerPtrBottomUp;
  BottomUpPathCount = Other.BottomUpPathCount;
}

/// The top-down traversal uses this to merge information about predecessors to
/// form the initial state for a new block.
void BBState::MergePred(const BBState &Other) {
  if (TopDownPathCount == OverflowOccurredValue)
    return;

  // Other.TopDownPathCount can be 0, in which case it is either dead or a
  // loop backedge. Loop backedges are special.
  TopDownPathCount += Other.TopDownPathCount;

  // In order to be consistent, we clear the top down pointers when by adding
  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
  // has not occurred.
  if (TopDownPathCount == OverflowOccurredValue) {
    clearTopDownPointers();
    return;
  }

  // Check for overflow. If we have overflow, fall back to conservative
  // behavior.
  if (TopDownPathCount < Other.TopDownPathCount) {
    TopDownPathCount = OverflowOccurredValue;
    clearTopDownPointers();
    return;
  }

  // For each entry in the other set, if our set has an entry with the same key,
  // merge the entries. Otherwise, copy the entry and merge it with an empty
  // entry.
  for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
       MI != ME; ++MI) {
    auto Pair = PerPtrTopDown.insert(*MI);
    Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
                             /*TopDown=*/true);
  }

  // For each entry in our set, if the other set doesn't have an entry with the
  // same key, force it to merge with an empty entry.
  for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
      MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
}

/// The bottom-up traversal uses this to merge information about successors to
/// form the initial state for a new block.
void BBState::MergeSucc(const BBState &Other) {
  if (BottomUpPathCount == OverflowOccurredValue)
    return;

  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
  // loop backedge. Loop backedges are special.
  BottomUpPathCount += Other.BottomUpPathCount;

  // In order to be consistent, we clear the top down pointers when by adding
  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
  // has not occurred.
  if (BottomUpPathCount == OverflowOccurredValue) {
    clearBottomUpPointers();
    return;
  }

  // Check for overflow. If we have overflow, fall back to conservative
  // behavior.
  if (BottomUpPathCount < Other.BottomUpPathCount) {
    BottomUpPathCount = OverflowOccurredValue;
    clearBottomUpPointers();
    return;
  }

  // For each entry in the other set, if our set has an entry with the
  // same key, merge the entries. Otherwise, copy the entry and merge
  // it with an empty entry.
  for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
       MI != ME; ++MI) {
    auto Pair = PerPtrBottomUp.insert(*MI);
    Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
                             /*TopDown=*/false);
  }

  // For each entry in our set, if the other set doesn't have an entry
  // with the same key, force it to merge with an empty entry.
  for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
       ++MI)
    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
      MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
}

raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
  // Dump the pointers we are tracking.
  OS << "    TopDown State:\n";
  if (!BBInfo.hasTopDownPtrs()) {
    LLVM_DEBUG(dbgs() << "        NONE!\n");
  } else {
    for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
         I != E; ++I) {
      const PtrState &P = I->second;
      OS << "        Ptr: " << *I->first
         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
         << "\n            ImpreciseRelease: "
           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
         << "            HasCFGHazards:    "
           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
         << "            KnownPositive:    "
           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
         << "            Seq:              "
         << P.GetSeq() << "\n";
    }
  }

  OS << "    BottomUp State:\n";
  if (!BBInfo.hasBottomUpPtrs()) {
    LLVM_DEBUG(dbgs() << "        NONE!\n");
  } else {
    for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
         I != E; ++I) {
      const PtrState &P = I->second;
      OS << "        Ptr: " << *I->first
         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
         << "\n            ImpreciseRelease: "
           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
         << "            HasCFGHazards:    "
           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
         << "            KnownPositive:    "
           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
         << "            Seq:              "
         << P.GetSeq() << "\n";
    }
  }

  return OS;
}

namespace {

  /// The main ARC optimization pass.
  class ObjCARCOpt : public FunctionPass {
    bool Changed;
    ProvenanceAnalysis PA;

    /// A cache of references to runtime entry point constants.
    ARCRuntimeEntryPoints EP;

    /// A cache of MDKinds that can be passed into other functions to propagate
    /// MDKind identifiers.
    ARCMDKindCache MDKindCache;

    /// A flag indicating whether this optimization pass should run.
    bool Run;

    /// A flag indicating whether the optimization that removes or moves
    /// retain/release pairs should be performed.
    bool DisableRetainReleasePairing = false;

    /// Flags which determine whether each of the interesting runtime functions
    /// is in fact used in the current function.
    unsigned UsedInThisFunction;

    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
                                   ARCInstKind &Class);
    void OptimizeIndividualCalls(Function &F);

    /// Optimize an individual call, optionally passing the
    /// GetArgRCIdentityRoot if it has already been computed.
    void OptimizeIndividualCallImpl(
        Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
        Instruction *Inst, ARCInstKind Class, const Value *Arg);

    /// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV.  If the
    /// optimization occurs, returns true to indicate that the caller should
    /// assume the instructions are dead.
    bool OptimizeInlinedAutoreleaseRVCall(
        Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
        Instruction *Inst, const Value *&Arg, ARCInstKind Class,
        Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg);

    void CheckForCFGHazards(const BasicBlock *BB,
                            DenseMap<const BasicBlock *, BBState> &BBStates,
                            BBState &MyStates) const;
    bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
                                  BlotMapVector<Value *, RRInfo> &Retains,
                                  BBState &MyStates);
    bool VisitBottomUp(BasicBlock *BB,
                       DenseMap<const BasicBlock *, BBState> &BBStates,
                       BlotMapVector<Value *, RRInfo> &Retains);
    bool VisitInstructionTopDown(Instruction *Inst,
                                 DenseMap<Value *, RRInfo> &Releases,
                                 BBState &MyStates);
    bool VisitTopDown(BasicBlock *BB,
                      DenseMap<const BasicBlock *, BBState> &BBStates,
                      DenseMap<Value *, RRInfo> &Releases);
    bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
               BlotMapVector<Value *, RRInfo> &Retains,
               DenseMap<Value *, RRInfo> &Releases);

    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
                   BlotMapVector<Value *, RRInfo> &Retains,
                   DenseMap<Value *, RRInfo> &Releases,
                   SmallVectorImpl<Instruction *> &DeadInsts, Module *M);

    bool
    PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
                             BlotMapVector<Value *, RRInfo> &Retains,
                             DenseMap<Value *, RRInfo> &Releases, Module *M,
                             Instruction * Retain,
                             SmallVectorImpl<Instruction *> &DeadInsts,
                             RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
                             Value *Arg, bool KnownSafe,
                             bool &AnyPairsCompletelyEliminated);

    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
                              BlotMapVector<Value *, RRInfo> &Retains,
                              DenseMap<Value *, RRInfo> &Releases, Module *M);

    void OptimizeWeakCalls(Function &F);

    bool OptimizeSequences(Function &F);

    void OptimizeReturns(Function &F);

#ifndef NDEBUG
    void GatherStatistics(Function &F, bool AfterOptimization = false);
#endif

    void getAnalysisUsage(AnalysisUsage &AU) const override;
    bool doInitialization(Module &M) override;
    bool runOnFunction(Function &F) override;
    void releaseMemory() override;

  public:
    static char ID;

    ObjCARCOpt() : FunctionPass(ID) {
      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
    }
  };

} // end anonymous namespace

char ObjCARCOpt::ID = 0;

INITIALIZE_PASS_BEGIN(ObjCARCOpt,
                      "objc-arc", "ObjC ARC optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_END(ObjCARCOpt,
                    "objc-arc", "ObjC ARC optimization", false, false)

Pass *llvm::createObjCARCOptPass() {
  return new ObjCARCOpt();
}

void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<ObjCARCAAWrapperPass>();
  AU.addRequired<AAResultsWrapperPass>();
  // ARC optimization doesn't currently split critical edges.
  AU.setPreservesCFG();
}

/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
/// not a return value.
bool
ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
  // Check for the argument being from an immediately preceding call or invoke.
  const Value *Arg = GetArgRCIdentityRoot(RetainRV);
  ImmutableCallSite CS(Arg);
  if (const Instruction *Call = CS.getInstruction()) {
    if (Call->getParent() == RetainRV->getParent()) {
      BasicBlock::const_iterator I(Call);
      ++I;
      while (IsNoopInstruction(&*I))
        ++I;
      if (&*I == RetainRV)
        return false;
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      BasicBlock *RetainRVParent = RetainRV->getParent();
      if (II->getNormalDest() == RetainRVParent) {
        BasicBlock::const_iterator I = RetainRVParent->begin();
        while (IsNoopInstruction(&*I))
          ++I;
        if (&*I == RetainRV)
          return false;
      }
    }
  }

  // Turn it to a plain objc_retain.
  Changed = true;
  ++NumPeeps;

  LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
                       "objc_retain since the operand is not a return value.\n"
                       "Old = "
                    << *RetainRV << "\n");

  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);

  LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");

  return false;
}

bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall(
    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
    Instruction *Inst, const Value *&Arg, ARCInstKind Class,
    Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) {
  // Must be in the same basic block.
  assert(Inst->getParent() == AutoreleaseRV->getParent());

  // Must operate on the same root.
  Arg = GetArgRCIdentityRoot(Inst);
  AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV);
  if (Arg != AutoreleaseRVArg) {
    // If there isn't an exact match, check if we have equivalent PHIs.
    const PHINode *PN = dyn_cast<PHINode>(Arg);
    if (!PN)
      return false;

    SmallVector<const Value *, 4> ArgUsers;
    getEquivalentPHIs(*PN, ArgUsers);
    if (llvm::find(ArgUsers, AutoreleaseRVArg) == ArgUsers.end())
      return false;
  }

  // Okay, this is a match.  Merge them.
  ++NumPeeps;
  LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '"
                    << *AutoreleaseRV << "' paired with '" << *Inst << "'\n");

  // Delete the RV pair, starting with the AutoreleaseRV.
  AutoreleaseRV->replaceAllUsesWith(
      cast<CallInst>(AutoreleaseRV)->getArgOperand(0));
  EraseInstruction(AutoreleaseRV);
  if (Class == ARCInstKind::RetainRV) {
    // AutoreleaseRV and RetainRV cancel out.  Delete the RetainRV.
    Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
    EraseInstruction(Inst);
    return true;
  }

  // ClaimRV is a frontend peephole for RetainRV + Release.  Since the
  // AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release.
  assert(Class == ARCInstKind::ClaimRV);
  Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0);
  CallInst *Release = CallInst::Create(
      EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst);
  assert(IsAlwaysTail(ARCInstKind::ClaimRV) &&
         "Expected ClaimRV to be safe to tail call");
  Release->setTailCall();
  Inst->replaceAllUsesWith(CallArg);
  EraseInstruction(Inst);

  // Run the normal optimizations on Release.
  OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release,
                             Arg);
  return true;
}

/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
/// used as a return value.
void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
                                           Instruction *AutoreleaseRV,
                                           ARCInstKind &Class) {
  // Check for a return of the pointer value.
  const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);

  // If the argument is ConstantPointerNull or UndefValue, its other users
  // aren't actually interesting to look at.
  if (isa<ConstantData>(Ptr))
    return;

  SmallVector<const Value *, 2> Users;
  Users.push_back(Ptr);

  // Add PHIs that are equivalent to Ptr to Users.
  if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
    getEquivalentPHIs(*PN, Users);

  do {
    Ptr = Users.pop_back_val();
    for (const User *U : Ptr->users()) {
      if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
        return;
      if (isa<BitCastInst>(U))
        Users.push_back(U);
    }
  } while (!Users.empty());

  Changed = true;
  ++NumPeeps;

  LLVM_DEBUG(
      dbgs() << "Transforming objc_autoreleaseReturnValue => "
                "objc_autorelease since its operand is not used as a return "
                "value.\n"
                "Old = "
             << *AutoreleaseRV << "\n");

  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
  AutoreleaseRVCI->setCalledFunction(NewDecl);
  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
  Class = ARCInstKind::Autorelease;

  LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
}

namespace {
Instruction *
CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
                   const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
  SmallVector<OperandBundleDef, 1> OpBundles;
  for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
    auto Bundle = CI.getOperandBundleAt(I);
    // Funclets will be reassociated in the future.
    if (Bundle.getTagID() == LLVMContext::OB_funclet)
      continue;
    OpBundles.emplace_back(Bundle);
  }

  if (!BlockColors.empty()) {
    const ColorVector &CV = BlockColors.find(&BB)->second;
    assert(CV.size() == 1 && "non-unique color for block!");
    Instruction *EHPad = CV.front()->getFirstNonPHI();
    if (EHPad->isEHPad())
      OpBundles.emplace_back("funclet", EHPad);
  }

  return CallInst::Create(&CI, OpBundles);
}
}

/// Visit each call, one at a time, and make simplifications without doing any
/// additional analysis.
void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
  // Reset all the flags in preparation for recomputing them.
  UsedInThisFunction = 0;

  DenseMap<BasicBlock *, ColorVector> BlockColors;
  if (F.hasPersonalityFn() &&
      isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
    BlockColors = colorEHFunclets(F);

  // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired
  // with RetainRV and ClaimRV.
  Instruction *DelayedAutoreleaseRV = nullptr;
  const Value *DelayedAutoreleaseRVArg = nullptr;
  auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) {
    assert(!DelayedAutoreleaseRV || !AutoreleaseRV);
    DelayedAutoreleaseRV = AutoreleaseRV;
    DelayedAutoreleaseRVArg = nullptr;
  };
  auto optimizeDelayedAutoreleaseRV = [&]() {
    if (!DelayedAutoreleaseRV)
      return;
    OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV,
                               ARCInstKind::AutoreleaseRV,
                               DelayedAutoreleaseRVArg);
    setDelayedAutoreleaseRV(nullptr);
  };
  auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) {
    // Nothing to delay, but we may as well skip the logic below.
    if (!DelayedAutoreleaseRV)
      return true;

    // If we hit the end of the basic block we're not going to find an RV-pair.
    // Stop delaying.
    if (NonARCInst->isTerminator())
      return false;

    // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and
    // ClaimRV, it's probably safe to skip over even opaque function calls
    // here since OptimizeInlinedAutoreleaseRVCall will confirm that they
    // have the same RCIdentityRoot.  However, what really matters is
    // skipping instructions or intrinsics that the inliner could leave behind;
    // be conservative for now and don't skip over opaque calls, which could
    // potentially include other ARC calls.
    auto *CB = dyn_cast<CallBase>(NonARCInst);
    if (!CB)
      return true;
    return CB->getIntrinsicID() != Intrinsic::not_intrinsic;
  };

  // Visit all objc_* calls in F.
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
    Instruction *Inst = &*I++;

    ARCInstKind Class = GetBasicARCInstKind(Inst);

    // Skip this loop if this instruction isn't itself an ARC intrinsic.
    const Value *Arg = nullptr;
    switch (Class) {
    default:
      optimizeDelayedAutoreleaseRV();
      break;
    case ARCInstKind::CallOrUser:
    case ARCInstKind::User:
    case ARCInstKind::None:
      // This is a non-ARC instruction.  If we're delaying an AutoreleaseRV,
      // check if it's safe to skip over it; if not, optimize the AutoreleaseRV
      // now.
      if (!shouldDelayAutoreleaseRV(Inst))
        optimizeDelayedAutoreleaseRV();
      continue;
    case ARCInstKind::AutoreleaseRV:
      optimizeDelayedAutoreleaseRV();
      setDelayedAutoreleaseRV(Inst);
      continue;
    case ARCInstKind::RetainRV:
    case ARCInstKind::ClaimRV:
      if (DelayedAutoreleaseRV) {
        // We have a potential RV pair.  Check if they cancel out.
        if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class,
                                             DelayedAutoreleaseRV,
                                             DelayedAutoreleaseRVArg)) {
          setDelayedAutoreleaseRV(nullptr);
          continue;
        }
        optimizeDelayedAutoreleaseRV();
      }
      break;
    }

    OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg);
  }

  // Catch the final delayed AutoreleaseRV.
  optimizeDelayedAutoreleaseRV();
}

void ObjCARCOpt::OptimizeIndividualCallImpl(
    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
    Instruction *Inst, ARCInstKind Class, const Value *Arg) {
  LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");

  // Some of the ARC calls can be deleted if their arguments are global
  // variables that are inert in ARC.
  if (IsNoopOnGlobal(Class)) {
    Value *Opnd = Inst->getOperand(0);
    if (auto *GV = dyn_cast<GlobalVariable>(Opnd->stripPointerCasts()))
      if (GV->hasAttribute("objc_arc_inert")) {
        if (!Inst->getType()->isVoidTy())
          Inst->replaceAllUsesWith(Opnd);
        Inst->eraseFromParent();
        return;
      }
  }

  switch (Class) {
  default:
    break;

  // Delete no-op casts. These function calls have special semantics, but
  // the semantics are entirely implemented via lowering in the front-end,
  // so by the time they reach the optimizer, they are just no-op calls
  // which return their argument.
  //
  // There are gray areas here, as the ability to cast reference-counted
  // pointers to raw void* and back allows code to break ARC assumptions,
  // however these are currently considered to be unimportant.
  case ARCInstKind::NoopCast:
    Changed = true;
    ++NumNoops;
    LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
    EraseInstruction(Inst);
    return;

  // If the pointer-to-weak-pointer is null, it's undefined behavior.
  case ARCInstKind::StoreWeak:
  case ARCInstKind::LoadWeak:
  case ARCInstKind::LoadWeakRetained:
  case ARCInstKind::InitWeak:
  case ARCInstKind::DestroyWeak: {
    CallInst *CI = cast<CallInst>(Inst);
    if (IsNullOrUndef(CI->getArgOperand(0))) {
      Changed = true;
      Type *Ty = CI->getArgOperand(0)->getType();
      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
                    Constant::getNullValue(Ty), CI);
      Value *NewValue = UndefValue::get(CI->getType());
      LLVM_DEBUG(
          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
                    "\nOld = "
                 << *CI << "\nNew = " << *NewValue << "\n");
      CI->replaceAllUsesWith(NewValue);
      CI->eraseFromParent();
      return;
    }
    break;
  }
  case ARCInstKind::CopyWeak:
  case ARCInstKind::MoveWeak: {
    CallInst *CI = cast<CallInst>(Inst);
    if (IsNullOrUndef(CI->getArgOperand(0)) ||
        IsNullOrUndef(CI->getArgOperand(1))) {
      Changed = true;
      Type *Ty = CI->getArgOperand(0)->getType();
      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
                    Constant::getNullValue(Ty), CI);

      Value *NewValue = UndefValue::get(CI->getType());
      LLVM_DEBUG(
          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
                    "\nOld = "
                 << *CI << "\nNew = " << *NewValue << "\n");

      CI->replaceAllUsesWith(NewValue);
      CI->eraseFromParent();
      return;
    }
    break;
  }
  case ARCInstKind::RetainRV:
    if (OptimizeRetainRVCall(F, Inst))
      return;
    break;
  case ARCInstKind::AutoreleaseRV:
    OptimizeAutoreleaseRVCall(F, Inst, Class);
    break;
  }

  // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
  if (IsAutorelease(Class) && Inst->use_empty()) {
    CallInst *Call = cast<CallInst>(Inst);
    const Value *Arg = Call->getArgOperand(0);
    Arg = FindSingleUseIdentifiedObject(Arg);
    if (Arg) {
      Changed = true;
      ++NumAutoreleases;

      // Create the declaration lazily.
      LLVMContext &C = Inst->getContext();

      Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
      CallInst *NewCall =
          CallInst::Create(Decl, Call->getArgOperand(0), "", Call);
      NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
                           MDNode::get(C, None));

      LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
                           "since x is otherwise unused.\nOld: "
                        << *Call << "\nNew: " << *NewCall << "\n");

      EraseInstruction(Call);
      Inst = NewCall;
      Class = ARCInstKind::Release;
    }
  }

  // For functions which can never be passed stack arguments, add
  // a tail keyword.
  if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) {
    Changed = true;
    LLVM_DEBUG(
        dbgs() << "Adding tail keyword to function since it can never be "
                  "passed stack args: "
               << *Inst << "\n");
    cast<CallInst>(Inst)->setTailCall();
  }

  // Ensure that functions that can never have a "tail" keyword due to the
  // semantics of ARC truly do not do so.
  if (IsNeverTail(Class)) {
    Changed = true;
    LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
                      << "\n");
    cast<CallInst>(Inst)->setTailCall(false);
  }

  // Set nounwind as needed.
  if (IsNoThrow(Class)) {
    Changed = true;
    LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
                      << "\n");
    cast<CallInst>(Inst)->setDoesNotThrow();
  }

  // Note: This catches instructions unrelated to ARC.
  if (!IsNoopOnNull(Class)) {
    UsedInThisFunction |= 1 << unsigned(Class);
    return;
  }

  // If we haven't already looked up the root, look it up now.
  if (!Arg)
    Arg = GetArgRCIdentityRoot(Inst);

  // ARC calls with null are no-ops. Delete them.
  if (IsNullOrUndef(Arg)) {
    Changed = true;
    ++NumNoops;
    LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
                      << "\n");
    EraseInstruction(Inst);
    return;
  }

  // Keep track of which of retain, release, autorelease, and retain_block
  // are actually present in this function.
  UsedInThisFunction |= 1 << unsigned(Class);

  // If Arg is a PHI, and one or more incoming values to the
  // PHI are null, and the call is control-equivalent to the PHI, and there
  // are no relevant side effects between the PHI and the call, and the call
  // is not a release that doesn't have the clang.imprecise_release tag, the
  // call could be pushed up to just those paths with non-null incoming
  // values. For now, don't bother splitting critical edges for this.
  if (Class == ARCInstKind::Release &&
      !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
    return;

  SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
  Worklist.push_back(std::make_pair(Inst, Arg));
  do {
    std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
    Inst = Pair.first;
    Arg = Pair.second;

    const PHINode *PN = dyn_cast<PHINode>(Arg);
    if (!PN)
      continue;

    // Determine if the PHI has any null operands, or any incoming
    // critical edges.
    bool HasNull = false;
    bool HasCriticalEdges = false;
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
      if (IsNullOrUndef(Incoming))
        HasNull = true;
      else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() !=
               1) {
        HasCriticalEdges = true;
        break;
      }
    }
    // If we have null operands and no critical edges, optimize.
    if (HasCriticalEdges)
      continue;
    if (!HasNull)
      continue;

    SmallPtrSet<Instruction *, 4> DependingInstructions;
    SmallPtrSet<const BasicBlock *, 4> Visited;

    // Check that there is nothing that cares about the reference
    // count between the call and the phi.
    switch (Class) {
    case ARCInstKind::Retain:
    case ARCInstKind::RetainBlock:
      // These can always be moved up.
      break;
    case ARCInstKind::Release:
      // These can't be moved across things that care about the retain
      // count.
      FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst,
                       DependingInstructions, Visited, PA);
      break;
    case ARCInstKind::Autorelease:
      // These can't be moved across autorelease pool scope boundaries.
      FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst,
                       DependingInstructions, Visited, PA);
      break;
    case ARCInstKind::ClaimRV:
    case ARCInstKind::RetainRV:
    case ARCInstKind::AutoreleaseRV:
      // Don't move these; the RV optimization depends on the autoreleaseRV
      // being tail called, and the retainRV being immediately after a call
      // (which might still happen if we get lucky with codegen layout, but
      // it's not worth taking the chance).
      continue;
    default:
      llvm_unreachable("Invalid dependence flavor");
    }

    if (DependingInstructions.size() != 1)
      continue;
    if (*DependingInstructions.begin() != PN)
      continue;

    Changed = true;
    ++NumPartialNoops;
    // Clone the call into each predecessor that has a non-null value.
    CallInst *CInst = cast<CallInst>(Inst);
    Type *ParamTy = CInst->getArgOperand(0)->getType();
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
      if (IsNullOrUndef(Incoming))
        continue;
      Value *Op = PN->getIncomingValue(i);
      Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
      CallInst *Clone = cast<CallInst>(
          CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors));
      if (Op->getType() != ParamTy)
        Op = new BitCastInst(Op, ParamTy, "", InsertPos);
      Clone->setArgOperand(0, Op);
      Clone->insertBefore(InsertPos);

      LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n"
                                                   "And inserting clone at "
                        << *InsertPos << "\n");
      Worklist.push_back(std::make_pair(Clone, Incoming));
    }
    // Erase the original call.
    LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
    EraseInstruction(CInst);
  } while (!Worklist.empty());
}

/// If we have a top down pointer in the S_Use state, make sure that there are
/// no CFG hazards by checking the states of various bottom up pointers.
static void CheckForUseCFGHazard(const Sequence SuccSSeq,
                                 const bool SuccSRRIKnownSafe,
                                 TopDownPtrState &S,
                                 bool &SomeSuccHasSame,
                                 bool &AllSuccsHaveSame,
                                 bool &NotAllSeqEqualButKnownSafe,
                                 bool &ShouldContinue) {
  switch (SuccSSeq) {
  case S_CanRelease: {
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
      S.ClearSequenceProgress();
      break;
    }
    S.SetCFGHazardAfflicted(true);
    ShouldContinue = true;
    break;
  }
  case S_Use:
    SomeSuccHasSame = true;
    break;
  case S_Stop:
  case S_Release:
  case S_MovableRelease:
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
      AllSuccsHaveSame = false;
    else
      NotAllSeqEqualButKnownSafe = true;
    break;
  case S_Retain:
    llvm_unreachable("bottom-up pointer in retain state!");
  case S_None:
    llvm_unreachable("This should have been handled earlier.");
  }
}

/// If we have a Top Down pointer in the S_CanRelease state, make sure that
/// there are no CFG hazards by checking the states of various bottom up
/// pointers.
static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
                                        const bool SuccSRRIKnownSafe,
                                        TopDownPtrState &S,
                                        bool &SomeSuccHasSame,
                                        bool &AllSuccsHaveSame,
                                        bool &NotAllSeqEqualButKnownSafe) {
  switch (SuccSSeq) {
  case S_CanRelease:
    SomeSuccHasSame = true;
    break;
  case S_Stop:
  case S_Release:
  case S_MovableRelease:
  case S_Use:
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
      AllSuccsHaveSame = false;
    else
      NotAllSeqEqualButKnownSafe = true;
    break;
  case S_Retain:
    llvm_unreachable("bottom-up pointer in retain state!");
  case S_None:
    llvm_unreachable("This should have been handled earlier.");
  }
}

/// Check for critical edges, loop boundaries, irreducible control flow, or
/// other CFG structures where moving code across the edge would result in it
/// being executed more.
void
ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
                               DenseMap<const BasicBlock *, BBState> &BBStates,
                               BBState &MyStates) const {
  // If any top-down local-use or possible-dec has a succ which is earlier in
  // the sequence, forget it.
  for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
       I != E; ++I) {
    TopDownPtrState &S = I->second;
    const Sequence Seq = I->second.GetSeq();

    // We only care about S_Retain, S_CanRelease, and S_Use.
    if (Seq == S_None)
      continue;

    // Make sure that if extra top down states are added in the future that this
    // code is updated to handle it.
    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
           "Unknown top down sequence state.");

    const Value *Arg = I->first;
    bool SomeSuccHasSame = false;
    bool AllSuccsHaveSame = true;
    bool NotAllSeqEqualButKnownSafe = false;

    for (const BasicBlock *Succ : successors(BB)) {
      // If VisitBottomUp has pointer information for this successor, take
      // what we know about it.
      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
          BBStates.find(Succ);
      assert(BBI != BBStates.end());
      const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
      const Sequence SuccSSeq = SuccS.GetSeq();

      // If bottom up, the pointer is in an S_None state, clear the sequence
      // progress since the sequence in the bottom up state finished
      // suggesting a mismatch in between retains/releases. This is true for
      // all three cases that we are handling here: S_Retain, S_Use, and
      // S_CanRelease.
      if (SuccSSeq == S_None) {
        S.ClearSequenceProgress();
        continue;
      }

      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
      // checks.
      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();

      // *NOTE* We do not use Seq from above here since we are allowing for
      // S.GetSeq() to change while we are visiting basic blocks.
      switch(S.GetSeq()) {
      case S_Use: {
        bool ShouldContinue = false;
        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
                             ShouldContinue);
        if (ShouldContinue)
          continue;
        break;
      }
      case S_CanRelease:
        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
                                    SomeSuccHasSame, AllSuccsHaveSame,
                                    NotAllSeqEqualButKnownSafe);
        break;
      case S_Retain:
      case S_None:
      case S_Stop:
      case S_Release:
      case S_MovableRelease:
        break;
      }
    }

    // If the state at the other end of any of the successor edges
    // matches the current state, require all edges to match. This
    // guards against loops in the middle of a sequence.
    if (SomeSuccHasSame && !AllSuccsHaveSame) {
      S.ClearSequenceProgress();
    } else if (NotAllSeqEqualButKnownSafe) {
      // If we would have cleared the state foregoing the fact that we are known
      // safe, stop code motion. This is because whether or not it is safe to
      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
      // are allowed to perform code motion.
      S.SetCFGHazardAfflicted(true);
    }
  }
}

bool ObjCARCOpt::VisitInstructionBottomUp(
    Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
    BBState &MyStates) {
  bool NestingDetected = false;
  ARCInstKind Class = GetARCInstKind(Inst);
  const Value *Arg = nullptr;

  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");

  switch (Class) {
  case ARCInstKind::Release: {
    Arg = GetArgRCIdentityRoot(Inst);

    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
    NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
    break;
  }
  case ARCInstKind::RetainBlock:
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
    // objc_retainBlocks to objc_retains. Thus at this point any
    // objc_retainBlocks that we see are not optimizable.
    break;
  case ARCInstKind::Retain:
  case ARCInstKind::RetainRV: {
    Arg = GetArgRCIdentityRoot(Inst);
    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
    if (S.MatchWithRetain()) {
      // Don't do retain+release tracking for ARCInstKind::RetainRV, because
      // it's better to let it remain as the first instruction after a call.
      if (Class != ARCInstKind::RetainRV) {
        LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
        Retains[Inst] = S.GetRRInfo();
      }
      S.ClearSequenceProgress();
    }
    // A retain moving bottom up can be a use.
    break;
  }
  case ARCInstKind::AutoreleasepoolPop:
    // Conservatively, clear MyStates for all known pointers.
    MyStates.clearBottomUpPointers();
    return NestingDetected;
  case ARCInstKind::AutoreleasepoolPush:
  case ARCInstKind::None:
    // These are irrelevant.
    return NestingDetected;
  default:
    break;
  }

  // Consider any other possible effects of this instruction on each
  // pointer being tracked.
  for (auto MI = MyStates.bottom_up_ptr_begin(),
            ME = MyStates.bottom_up_ptr_end();
       MI != ME; ++MI) {
    const Value *Ptr = MI->first;
    if (Ptr == Arg)
      continue; // Handled above.
    BottomUpPtrState &S = MI->second;

    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
      continue;

    S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
  }

  return NestingDetected;
}

bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
                               DenseMap<const BasicBlock *, BBState> &BBStates,
                               BlotMapVector<Value *, RRInfo> &Retains) {
  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");

  bool NestingDetected = false;
  BBState &MyStates = BBStates[BB];

  // Merge the states from each successor to compute the initial state
  // for the current block.
  BBState::edge_iterator SI(MyStates.succ_begin()),
                         SE(MyStates.succ_end());
  if (SI != SE) {
    const BasicBlock *Succ = *SI;
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
    assert(I != BBStates.end());
    MyStates.InitFromSucc(I->second);
    ++SI;
    for (; SI != SE; ++SI) {
      Succ = *SI;
      I = BBStates.find(Succ);
      assert(I != BBStates.end());
      MyStates.MergeSucc(I->second);
    }
  }

  LLVM_DEBUG(dbgs() << "Before:\n"
                    << BBStates[BB] << "\n"
                    << "Performing Dataflow:\n");

  // Visit all the instructions, bottom-up.
  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
    Instruction *Inst = &*std::prev(I);

    // Invoke instructions are visited as part of their successors (below).
    if (isa<InvokeInst>(Inst))
      continue;

    LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n");

    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);

    // Bail out if the number of pointers being tracked becomes too large so
    // that this pass can complete in a reasonable amount of time.
    if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) {
      DisableRetainReleasePairing = true;
      return false;
    }
  }

  // If there's a predecessor with an invoke, visit the invoke as if it were
  // part of this block, since we can't insert code after an invoke in its own
  // block, and we don't want to split critical edges.
  for (BBState::edge_iterator PI(MyStates.pred_begin()),
       PE(MyStates.pred_end()); PI != PE; ++PI) {
    BasicBlock *Pred = *PI;
    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
  }

  LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");

  return NestingDetected;
}

bool
ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
                                    DenseMap<Value *, RRInfo> &Releases,
                                    BBState &MyStates) {
  bool NestingDetected = false;
  ARCInstKind Class = GetARCInstKind(Inst);
  const Value *Arg = nullptr;

  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");

  switch (Class) {
  case ARCInstKind::RetainBlock:
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
    // objc_retainBlocks to objc_retains. Thus at this point any
    // objc_retainBlocks that we see are not optimizable. We need to break since
    // a retain can be a potential use.
    break;
  case ARCInstKind::Retain:
  case ARCInstKind::RetainRV: {
    Arg = GetArgRCIdentityRoot(Inst);
    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
    NestingDetected |= S.InitTopDown(Class, Inst);
    // A retain can be a potential use; proceed to the generic checking
    // code below.
    break;
  }
  case ARCInstKind::Release: {
    Arg = GetArgRCIdentityRoot(Inst);
    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
    // Try to form a tentative pair in between this release instruction and the
    // top down pointers that we are tracking.
    if (S.MatchWithRelease(MDKindCache, Inst)) {
      // If we succeed, copy S's RRInfo into the Release -> {Retain Set
      // Map}. Then we clear S.
      LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
      Releases[Inst] = S.GetRRInfo();
      S.ClearSequenceProgress();
    }
    break;
  }
  case ARCInstKind::AutoreleasepoolPop:
    // Conservatively, clear MyStates for all known pointers.
    MyStates.clearTopDownPointers();
    return false;
  case ARCInstKind::AutoreleasepoolPush:
  case ARCInstKind::None:
    // These can not be uses of
    return false;
  default:
    break;
  }

  // Consider any other possible effects of this instruction on each
  // pointer being tracked.
  for (auto MI = MyStates.top_down_ptr_begin(),
            ME = MyStates.top_down_ptr_end();
       MI != ME; ++MI) {
    const Value *Ptr = MI->first;
    if (Ptr == Arg)
      continue; // Handled above.
    TopDownPtrState &S = MI->second;
    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
      continue;

    S.HandlePotentialUse(Inst, Ptr, PA, Class);
  }

  return NestingDetected;
}

bool
ObjCARCOpt::VisitTopDown(BasicBlock *BB,
                         DenseMap<const BasicBlock *, BBState> &BBStates,
                         DenseMap<Value *, RRInfo> &Releases) {
  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
  bool NestingDetected = false;
  BBState &MyStates = BBStates[BB];

  // Merge the states from each predecessor to compute the initial state
  // for the current block.
  BBState::edge_iterator PI(MyStates.pred_begin()),
                         PE(MyStates.pred_end());
  if (PI != PE) {
    const BasicBlock *Pred = *PI;
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
    assert(I != BBStates.end());
    MyStates.InitFromPred(I->second);
    ++PI;
    for (; PI != PE; ++PI) {
      Pred = *PI;
      I = BBStates.find(Pred);
      assert(I != BBStates.end());
      MyStates.MergePred(I->second);
    }
  }

  LLVM_DEBUG(dbgs() << "Before:\n"
                    << BBStates[BB] << "\n"
                    << "Performing Dataflow:\n");

  // Visit all the instructions, top-down.
  for (Instruction &Inst : *BB) {
    LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n");

    NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);

    // Bail out if the number of pointers being tracked becomes too large so
    // that this pass can complete in a reasonable amount of time.
    if (MyStates.top_down_ptr_list_size() > MaxPtrStates) {
      DisableRetainReleasePairing = true;
      return false;
    }
  }

  LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
                    << BBStates[BB] << "\n\n");
  CheckForCFGHazards(BB, BBStates, MyStates);
  LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
  return NestingDetected;
}

static void
ComputePostOrders(Function &F,
                  SmallVectorImpl<BasicBlock *> &PostOrder,
                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
                  unsigned NoObjCARCExceptionsMDKind,
                  DenseMap<const BasicBlock *, BBState> &BBStates) {
  /// The visited set, for doing DFS walks.
  SmallPtrSet<BasicBlock *, 16> Visited;

  // Do DFS, computing the PostOrder.
  SmallPtrSet<BasicBlock *, 16> OnStack;
  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;

  // Functions always have exactly one entry block, and we don't have
  // any other block that we treat like an entry block.
  BasicBlock *EntryBB = &F.getEntryBlock();
  BBState &MyStates = BBStates[EntryBB];
  MyStates.SetAsEntry();
  Instruction *EntryTI = EntryBB->getTerminator();
  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
  Visited.insert(EntryBB);
  OnStack.insert(EntryBB);
  do {
  dfs_next_succ:
    BasicBlock *CurrBB = SuccStack.back().first;
    succ_iterator SE(CurrBB->getTerminator(), false);

    while (SuccStack.back().second != SE) {
      BasicBlock *SuccBB = *SuccStack.back().second++;
      if (Visited.insert(SuccBB).second) {
        SuccStack.push_back(
            std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator())));
        BBStates[CurrBB].addSucc(SuccBB);
        BBState &SuccStates = BBStates[SuccBB];
        SuccStates.addPred(CurrBB);
        OnStack.insert(SuccBB);
        goto dfs_next_succ;
      }

      if (!OnStack.count(SuccBB)) {
        BBStates[CurrBB].addSucc(SuccBB);
        BBStates[SuccBB].addPred(CurrBB);
      }
    }
    OnStack.erase(CurrBB);
    PostOrder.push_back(CurrBB);
    SuccStack.pop_back();
  } while (!SuccStack.empty());

  Visited.clear();

  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
  // Functions may have many exits, and there also blocks which we treat
  // as exits due to ignored edges.
  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
  for (BasicBlock &ExitBB : F) {
    BBState &MyStates = BBStates[&ExitBB];
    if (!MyStates.isExit())
      continue;

    MyStates.SetAsExit();

    PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
    Visited.insert(&ExitBB);
    while (!PredStack.empty()) {
    reverse_dfs_next_succ:
      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
      while (PredStack.back().second != PE) {
        BasicBlock *BB = *PredStack.back().second++;
        if (Visited.insert(BB).second) {
          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
          goto reverse_dfs_next_succ;
        }
      }
      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
    }
  }
}

// Visit the function both top-down and bottom-up.
bool ObjCARCOpt::Visit(Function &F,
                       DenseMap<const BasicBlock *, BBState> &BBStates,
                       BlotMapVector<Value *, RRInfo> &Retains,
                       DenseMap<Value *, RRInfo> &Releases) {
  // Use reverse-postorder traversals, because we magically know that loops
  // will be well behaved, i.e. they won't repeatedly call retain on a single
  // pointer without doing a release. We can't use the ReversePostOrderTraversal
  // class here because we want the reverse-CFG postorder to consider each
  // function exit point, and we want to ignore selected cycle edges.
  SmallVector<BasicBlock *, 16> PostOrder;
  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
                    MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
                    BBStates);

  // Use reverse-postorder on the reverse CFG for bottom-up.
  bool BottomUpNestingDetected = false;
  for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) {
    BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
    if (DisableRetainReleasePairing)
      return false;
  }

  // Use reverse-postorder for top-down.
  bool TopDownNestingDetected = false;
  for (BasicBlock *BB : llvm::reverse(PostOrder)) {
    TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
    if (DisableRetainReleasePairing)
      return false;
  }

  return TopDownNestingDetected && BottomUpNestingDetected;
}

/// Move the calls in RetainsToMove and ReleasesToMove.
void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
                           RRInfo &ReleasesToMove,
                           BlotMapVector<Value *, RRInfo> &Retains,
                           DenseMap<Value *, RRInfo> &Releases,
                           SmallVectorImpl<Instruction *> &DeadInsts,
                           Module *M) {
  Type *ArgTy = Arg->getType();
  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));

  LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");

  // Insert the new retain and release calls.
  for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
    Value *MyArg = ArgTy == ParamTy ? Arg :
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
    Call->setDoesNotThrow();
    Call->setTailCall();

    LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
                      << "\n"
                         "At insertion point: "
                      << *InsertPt << "\n");
  }
  for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
    Value *MyArg = ArgTy == ParamTy ? Arg :
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
    // Attach a clang.imprecise_release metadata tag, if appropriate.
    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
      Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
    Call->setDoesNotThrow();
    if (ReleasesToMove.IsTailCallRelease)
      Call->setTailCall();

    LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
                      << "\n"
                         "At insertion point: "
                      << *InsertPt << "\n");
  }

  // Delete the original retain and release calls.
  for (Instruction *OrigRetain : RetainsToMove.Calls) {
    Retains.blot(OrigRetain);
    DeadInsts.push_back(OrigRetain);
    LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
  }
  for (Instruction *OrigRelease : ReleasesToMove.Calls) {
    Releases.erase(OrigRelease);
    DeadInsts.push_back(OrigRelease);
    LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
  }
}

bool ObjCARCOpt::PairUpRetainsAndReleases(
    DenseMap<const BasicBlock *, BBState> &BBStates,
    BlotMapVector<Value *, RRInfo> &Retains,
    DenseMap<Value *, RRInfo> &Releases, Module *M,
    Instruction *Retain,
    SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
    RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
    bool &AnyPairsCompletelyEliminated) {
  // If a pair happens in a region where it is known that the reference count
  // is already incremented, we can similarly ignore possible decrements unless
  // we are dealing with a retainable object with multiple provenance sources.
  bool KnownSafeTD = true, KnownSafeBU = true;
  bool CFGHazardAfflicted = false;

  // Connect the dots between the top-down-collected RetainsToMove and
  // bottom-up-collected ReleasesToMove to form sets of related calls.
  // This is an iterative process so that we connect multiple releases
  // to multiple retains if needed.
  unsigned OldDelta = 0;
  unsigned NewDelta = 0;
  unsigned OldCount = 0;
  unsigned NewCount = 0;
  bool FirstRelease = true;
  for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
    SmallVector<Instruction *, 4> NewReleases;
    for (Instruction *NewRetain : NewRetains) {
      auto It = Retains.find(NewRetain);
      assert(It != Retains.end());
      const RRInfo &NewRetainRRI = It->second;
      KnownSafeTD &= NewRetainRRI.KnownSafe;
      CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
      for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
        auto Jt = Releases.find(NewRetainRelease);
        if (Jt == Releases.end())
          return false;
        const RRInfo &NewRetainReleaseRRI = Jt->second;

        // If the release does not have a reference to the retain as well,
        // something happened which is unaccounted for. Do not do anything.
        //
        // This can happen if we catch an additive overflow during path count
        // merging.
        if (!NewRetainReleaseRRI.Calls.count(NewRetain))
          return false;

        if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
          // If we overflow when we compute the path count, don't remove/move
          // anything.
          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
          unsigned PathCount = BBState::OverflowOccurredValue;
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
            return false;
          assert(PathCount != BBState::OverflowOccurredValue &&
                 "PathCount at this point can not be "
                 "OverflowOccurredValue.");
          OldDelta -= PathCount;

          // Merge the ReleaseMetadata and IsTailCallRelease values.
          if (FirstRelease) {
            ReleasesToMove.ReleaseMetadata =
              NewRetainReleaseRRI.ReleaseMetadata;
            ReleasesToMove.IsTailCallRelease =
              NewRetainReleaseRRI.IsTailCallRelease;
            FirstRelease = false;
          } else {
            if (ReleasesToMove.ReleaseMetadata !=
                NewRetainReleaseRRI.ReleaseMetadata)
              ReleasesToMove.ReleaseMetadata = nullptr;
            if (ReleasesToMove.IsTailCallRelease !=
                NewRetainReleaseRRI.IsTailCallRelease)
              ReleasesToMove.IsTailCallRelease = false;
          }

          // Collect the optimal insertion points.
          if (!KnownSafe)
            for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
              if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
                // If we overflow when we compute the path count, don't
                // remove/move anything.
                const BBState &RIPBBState = BBStates[RIP->getParent()];
                PathCount = BBState::OverflowOccurredValue;
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
                  return false;
                assert(PathCount != BBState::OverflowOccurredValue &&
                       "PathCount at this point can not be "
                       "OverflowOccurredValue.");
                NewDelta -= PathCount;
              }
            }
          NewReleases.push_back(NewRetainRelease);
        }
      }
    }
    NewRetains.clear();
    if (NewReleases.empty()) break;

    // Back the other way.
    for (Instruction *NewRelease : NewReleases) {
      auto It = Releases.find(NewRelease);
      assert(It != Releases.end());
      const RRInfo &NewReleaseRRI = It->second;
      KnownSafeBU &= NewReleaseRRI.KnownSafe;
      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
      for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
        auto Jt = Retains.find(NewReleaseRetain);
        if (Jt == Retains.end())
          return false;
        const RRInfo &NewReleaseRetainRRI = Jt->second;

        // If the retain does not have a reference to the release as well,
        // something happened which is unaccounted for. Do not do anything.
        //
        // This can happen if we catch an additive overflow during path count
        // merging.
        if (!NewReleaseRetainRRI.Calls.count(NewRelease))
          return false;

        if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
          // If we overflow when we compute the path count, don't remove/move
          // anything.
          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
          unsigned PathCount = BBState::OverflowOccurredValue;
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
            return false;
          assert(PathCount != BBState::OverflowOccurredValue &&
                 "PathCount at this point can not be "
                 "OverflowOccurredValue.");
          OldDelta += PathCount;
          OldCount += PathCount;

          // Collect the optimal insertion points.
          if (!KnownSafe)
            for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
              if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
                // If we overflow when we compute the path count, don't
                // remove/move anything.
                const BBState &RIPBBState = BBStates[RIP->getParent()];

                PathCount = BBState::OverflowOccurredValue;
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
                  return false;
                assert(PathCount != BBState::OverflowOccurredValue &&
                       "PathCount at this point can not be "
                       "OverflowOccurredValue.");
                NewDelta += PathCount;
                NewCount += PathCount;
              }
            }
          NewRetains.push_back(NewReleaseRetain);
        }
      }
    }
    if (NewRetains.empty()) break;
  }

  // We can only remove pointers if we are known safe in both directions.
  bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
  if (UnconditionallySafe) {
    RetainsToMove.ReverseInsertPts.clear();
    ReleasesToMove.ReverseInsertPts.clear();
    NewCount = 0;
  } else {
    // Determine whether the new insertion points we computed preserve the
    // balance of retain and release calls through the program.
    // TODO: If the fully aggressive solution isn't valid, try to find a
    // less aggressive solution which is.
    if (NewDelta != 0)
      return false;

    // At this point, we are not going to remove any RR pairs, but we still are
    // able to move RR pairs. If one of our pointers is afflicted with
    // CFGHazards, we cannot perform such code motion so exit early.
    const bool WillPerformCodeMotion =
        !RetainsToMove.ReverseInsertPts.empty() ||
        !ReleasesToMove.ReverseInsertPts.empty();
    if (CFGHazardAfflicted && WillPerformCodeMotion)
      return false;
  }

  // Determine whether the original call points are balanced in the retain and
  // release calls through the program. If not, conservatively don't touch
  // them.
  // TODO: It's theoretically possible to do code motion in this case, as
  // long as the existing imbalances are maintained.
  if (OldDelta != 0)
    return false;

  Changed = true;
  assert(OldCount != 0 && "Unreachable code?");
  NumRRs += OldCount - NewCount;
  // Set to true if we completely removed any RR pairs.
  AnyPairsCompletelyEliminated = NewCount == 0;

  // We can move calls!
  return true;
}

/// Identify pairings between the retains and releases, and delete and/or move
/// them.
bool ObjCARCOpt::PerformCodePlacement(
    DenseMap<const BasicBlock *, BBState> &BBStates,
    BlotMapVector<Value *, RRInfo> &Retains,
    DenseMap<Value *, RRInfo> &Releases, Module *M) {
  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");

  bool AnyPairsCompletelyEliminated = false;
  SmallVector<Instruction *, 8> DeadInsts;

  // Visit each retain.
  for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
                                                      E = Retains.end();
       I != E; ++I) {
    Value *V = I->first;
    if (!V) continue; // blotted

    Instruction *Retain = cast<Instruction>(V);

    LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");

    Value *Arg = GetArgRCIdentityRoot(Retain);

    // If the object being released is in static or stack storage, we know it's
    // not being managed by ObjC reference counting, so we can delete pairs
    // regardless of what possible decrements or uses lie between them.
    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);

    // A constant pointer can't be pointing to an object on the heap. It may
    // be reference-counted, but it won't be deleted.
    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
      if (const GlobalVariable *GV =
            dyn_cast<GlobalVariable>(
              GetRCIdentityRoot(LI->getPointerOperand())))
        if (GV->isConstant())
          KnownSafe = true;

    // Connect the dots between the top-down-collected RetainsToMove and
    // bottom-up-collected ReleasesToMove to form sets of related calls.
    RRInfo RetainsToMove, ReleasesToMove;

    bool PerformMoveCalls = PairUpRetainsAndReleases(
        BBStates, Retains, Releases, M, Retain, DeadInsts,
        RetainsToMove, ReleasesToMove, Arg, KnownSafe,
        AnyPairsCompletelyEliminated);

    if (PerformMoveCalls) {
      // Ok, everything checks out and we're all set. Let's move/delete some
      // code!
      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
                Retains, Releases, DeadInsts, M);
    }
  }

  // Now that we're done moving everything, we can delete the newly dead
  // instructions, as we no longer need them as insert points.
  while (!DeadInsts.empty())
    EraseInstruction(DeadInsts.pop_back_val());

  return AnyPairsCompletelyEliminated;
}

/// Weak pointer optimizations.
void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");

  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
  // itself because it uses AliasAnalysis and we need to do provenance
  // queries instead.
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
    Instruction *Inst = &*I++;

    LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");

    ARCInstKind Class = GetBasicARCInstKind(Inst);
    if (Class != ARCInstKind::LoadWeak &&
        Class != ARCInstKind::LoadWeakRetained)
      continue;

    // Delete objc_loadWeak calls with no users.
    if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
      Inst->eraseFromParent();
      continue;
    }

    // TODO: For now, just look for an earlier available version of this value
    // within the same block. Theoretically, we could do memdep-style non-local
    // analysis too, but that would want caching. A better approach would be to
    // use the technique that EarlyCSE uses.
    inst_iterator Current = std::prev(I);
    BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
    for (BasicBlock::iterator B = CurrentBB->begin(),
                              J = Current.getInstructionIterator();
         J != B; --J) {
      Instruction *EarlierInst = &*std::prev(J);
      ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
      switch (EarlierClass) {
      case ARCInstKind::LoadWeak:
      case ARCInstKind::LoadWeakRetained: {
        // If this is loading from the same pointer, replace this load's value
        // with that one.
        CallInst *Call = cast<CallInst>(Inst);
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
        Value *Arg = Call->getArgOperand(0);
        Value *EarlierArg = EarlierCall->getArgOperand(0);
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
        case MustAlias:
          Changed = true;
          // If the load has a builtin retain, insert a plain retain for it.
          if (Class == ARCInstKind::LoadWeakRetained) {
            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
            CI->setTailCall();
          }
          // Zap the fully redundant load.
          Call->replaceAllUsesWith(EarlierCall);
          Call->eraseFromParent();
          goto clobbered;
        case MayAlias:
        case PartialAlias:
          goto clobbered;
        case NoAlias:
          break;
        }
        break;
      }
      case ARCInstKind::StoreWeak:
      case ARCInstKind::InitWeak: {
        // If this is storing to the same pointer and has the same size etc.
        // replace this load's value with the stored value.
        CallInst *Call = cast<CallInst>(Inst);
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
        Value *Arg = Call->getArgOperand(0);
        Value *EarlierArg = EarlierCall->getArgOperand(0);
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
        case MustAlias:
          Changed = true;
          // If the load has a builtin retain, insert a plain retain for it.
          if (Class == ARCInstKind::LoadWeakRetained) {
            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
            CI->setTailCall();
          }
          // Zap the fully redundant load.
          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
          Call->eraseFromParent();
          goto clobbered;
        case MayAlias:
        case PartialAlias:
          goto clobbered;
        case NoAlias:
          break;
        }
        break;
      }
      case ARCInstKind::MoveWeak:
      case ARCInstKind::CopyWeak:
        // TOOD: Grab the copied value.
        goto clobbered;
      case ARCInstKind::AutoreleasepoolPush:
      case ARCInstKind::None:
      case ARCInstKind::IntrinsicUser:
      case ARCInstKind::User:
        // Weak pointers are only modified through the weak entry points
        // (and arbitrary calls, which could call the weak entry points).
        break;
      default:
        // Anything else could modify the weak pointer.
        goto clobbered;
      }
    }
  clobbered:;
  }

  // Then, for each destroyWeak with an alloca operand, check to see if
  // the alloca and all its users can be zapped.
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
    Instruction *Inst = &*I++;
    ARCInstKind Class = GetBasicARCInstKind(Inst);
    if (Class != ARCInstKind::DestroyWeak)
      continue;

    CallInst *Call = cast<CallInst>(Inst);
    Value *Arg = Call->getArgOperand(0);
    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
      for (User *U : Alloca->users()) {
        const Instruction *UserInst = cast<Instruction>(U);
        switch (GetBasicARCInstKind(UserInst)) {
        case ARCInstKind::InitWeak:
        case ARCInstKind::StoreWeak:
        case ARCInstKind::DestroyWeak:
          continue;
        default:
          goto done;
        }
      }
      Changed = true;
      for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
        CallInst *UserInst = cast<CallInst>(*UI++);
        switch (GetBasicARCInstKind(UserInst)) {
        case ARCInstKind::InitWeak:
        case ARCInstKind::StoreWeak:
          // These functions return their second argument.
          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
          break;
        case ARCInstKind::DestroyWeak:
          // No return value.
          break;
        default:
          llvm_unreachable("alloca really is used!");
        }
        UserInst->eraseFromParent();
      }
      Alloca->eraseFromParent();
    done:;
    }
  }
}

/// Identify program paths which execute sequences of retains and releases which
/// can be eliminated.
bool ObjCARCOpt::OptimizeSequences(Function &F) {
  // Releases, Retains - These are used to store the results of the main flow
  // analysis. These use Value* as the key instead of Instruction* so that the
  // map stays valid when we get around to rewriting code and calls get
  // replaced by arguments.
  DenseMap<Value *, RRInfo> Releases;
  BlotMapVector<Value *, RRInfo> Retains;

  // This is used during the traversal of the function to track the
  // states for each identified object at each block.
  DenseMap<const BasicBlock *, BBState> BBStates;

  // Analyze the CFG of the function, and all instructions.
  bool NestingDetected = Visit(F, BBStates, Retains, Releases);

  if (DisableRetainReleasePairing)
    return false;

  // Transform.
  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
                                                           Releases,
                                                           F.getParent());

  return AnyPairsCompletelyEliminated && NestingDetected;
}

/// Check if there is a dependent call earlier that does not have anything in
/// between the Retain and the call that can affect the reference count of their
/// shared pointer argument. Note that Retain need not be in BB.
static bool
HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
                             SmallPtrSetImpl<Instruction *> &DepInsts,
                             SmallPtrSetImpl<const BasicBlock *> &Visited,
                             ProvenanceAnalysis &PA) {
  FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
                   DepInsts, Visited, PA);
  if (DepInsts.size() != 1)
    return false;

  auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());

  // Check that the pointer is the return value of the call.
  if (!Call || Arg != Call)
    return false;

  // Check that the call is a regular call.
  ARCInstKind Class = GetBasicARCInstKind(Call);
  return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call;
}

/// Find a dependent retain that precedes the given autorelease for which there
/// is nothing in between the two instructions that can affect the ref count of
/// Arg.
static CallInst *
FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
                                  Instruction *Autorelease,
                                  SmallPtrSetImpl<Instruction *> &DepInsts,
                                  SmallPtrSetImpl<const BasicBlock *> &Visited,
                                  ProvenanceAnalysis &PA) {
  FindDependencies(CanChangeRetainCount, Arg,
                   BB, Autorelease, DepInsts, Visited, PA);
  if (DepInsts.size() != 1)
    return nullptr;

  auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());

  // Check that we found a retain with the same argument.
  if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
      GetArgRCIdentityRoot(Retain) != Arg) {
    return nullptr;
  }

  return Retain;
}

/// Look for an ``autorelease'' instruction dependent on Arg such that there are
/// no instructions dependent on Arg that need a positive ref count in between
/// the autorelease and the ret.
static CallInst *
FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
                                       ReturnInst *Ret,
                                       SmallPtrSetImpl<Instruction *> &DepInsts,
                                       SmallPtrSetImpl<const BasicBlock *> &V,
                                       ProvenanceAnalysis &PA) {
  FindDependencies(NeedsPositiveRetainCount, Arg,
                   BB, Ret, DepInsts, V, PA);
  if (DepInsts.size() != 1)
    return nullptr;

  auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
  if (!Autorelease)
    return nullptr;
  ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
  if (!IsAutorelease(AutoreleaseClass))
    return nullptr;
  if (GetArgRCIdentityRoot(Autorelease) != Arg)
    return nullptr;

  return Autorelease;
}

/// Look for this pattern:
/// \code
///    %call = call i8* @something(...)
///    %2 = call i8* @objc_retain(i8* %call)
///    %3 = call i8* @objc_autorelease(i8* %2)
///    ret i8* %3
/// \endcode
/// And delete the retain and autorelease.
void ObjCARCOpt::OptimizeReturns(Function &F) {
  if (!F.getReturnType()->isPointerTy())
    return;

  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");

  SmallPtrSet<Instruction *, 4> DependingInstructions;
  SmallPtrSet<const BasicBlock *, 4> Visited;
  for (BasicBlock &BB: F) {
    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
    if (!Ret)
      continue;

    LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");

    const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));

    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
    // dependent on Arg such that there are no instructions dependent on Arg
    // that need a positive ref count in between the autorelease and Ret.
    CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath(
        Arg, &BB, Ret, DependingInstructions, Visited, PA);
    DependingInstructions.clear();
    Visited.clear();

    if (!Autorelease)
      continue;

    CallInst *Retain = FindPredecessorRetainWithSafePath(
        Arg, Autorelease->getParent(), Autorelease, DependingInstructions,
        Visited, PA);
    DependingInstructions.clear();
    Visited.clear();

    if (!Retain)
      continue;

    // Check that there is nothing that can affect the reference count
    // between the retain and the call.  Note that Retain need not be in BB.
    bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
                                                          DependingInstructions,
                                                          Visited, PA);
    DependingInstructions.clear();
    Visited.clear();

    if (!HasSafePathToCall)
      continue;

    // If so, we can zap the retain and autorelease.
    Changed = true;
    ++NumRets;
    LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
                      << "\n");
    EraseInstruction(Retain);
    EraseInstruction(Autorelease);
  }
}

#ifndef NDEBUG
void
ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
  Statistic &NumRetains =
      AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
  Statistic &NumReleases =
      AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;

  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
    Instruction *Inst = &*I++;
    switch (GetBasicARCInstKind(Inst)) {
    default:
      break;
    case ARCInstKind::Retain:
      ++NumRetains;
      break;
    case ARCInstKind::Release:
      ++NumReleases;
      break;
    }
  }
}
#endif

bool ObjCARCOpt::doInitialization(Module &M) {
  if (!EnableARCOpts)
    return false;

  // If nothing in the Module uses ARC, don't do anything.
  Run = ModuleHasARC(M);
  if (!Run)
    return false;

  // Intuitively, objc_retain and others are nocapture, however in practice
  // they are not, because they return their argument value. And objc_release
  // calls finalizers which can have arbitrary side effects.
  MDKindCache.init(&M);

  // Initialize our runtime entry point cache.
  EP.init(&M);

  return false;
}

bool ObjCARCOpt::runOnFunction(Function &F) {
  if (!EnableARCOpts)
    return false;

  // If nothing in the Module uses ARC, don't do anything.
  if (!Run)
    return false;

  Changed = false;

  LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
                    << " >>>"
                       "\n");

  PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults());

#ifndef NDEBUG
  if (AreStatisticsEnabled()) {
    GatherStatistics(F, false);
  }
#endif

  // This pass performs several distinct transformations. As a compile-time aid
  // when compiling code that isn't ObjC, skip these if the relevant ObjC
  // library functions aren't declared.

  // Preliminary optimizations. This also computes UsedInThisFunction.
  OptimizeIndividualCalls(F);

  // Optimizations for weak pointers.
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
                            (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
                            (1 << unsigned(ARCInstKind::StoreWeak)) |
                            (1 << unsigned(ARCInstKind::InitWeak)) |
                            (1 << unsigned(ARCInstKind::CopyWeak)) |
                            (1 << unsigned(ARCInstKind::MoveWeak)) |
                            (1 << unsigned(ARCInstKind::DestroyWeak))))
    OptimizeWeakCalls(F);

  // Optimizations for retain+release pairs.
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
                            (1 << unsigned(ARCInstKind::RetainRV)) |
                            (1 << unsigned(ARCInstKind::RetainBlock))))
    if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
      // Run OptimizeSequences until it either stops making changes or
      // no retain+release pair nesting is detected.
      while (OptimizeSequences(F)) {}

  // Optimizations if objc_autorelease is used.
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
                            (1 << unsigned(ARCInstKind::AutoreleaseRV))))
    OptimizeReturns(F);

  // Gather statistics after optimization.
#ifndef NDEBUG
  if (AreStatisticsEnabled()) {
    GatherStatistics(F, true);
  }
#endif

  LLVM_DEBUG(dbgs() << "\n");

  return Changed;
}

void ObjCARCOpt::releaseMemory() {
  PA.clear();
}

/// @}
///