GuardWidening.cpp 32.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the guard widening pass.  The semantics of the
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
// more often that it did before the transform.  This optimization is called
// "widening" and can be used hoist and common runtime checks in situations like
// these:
//
//    %cmp0 = 7 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    %cmp1 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
//    ...
//
// =>
//
//    %cmp0 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    ...
//
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
// generic implementation of the same function, which will have the correct
// semantics from that point onward.  It is always _legal_ to deoptimize (so
// replacing %cmp0 with false is "correct"), though it may not always be
// profitable to do so.
//
// NB! This pass is a work in progress.  It hasn't been tuned to be "production
// ready" yet.  It is known to have quadriatic running time and will not scale
// to large numbers of guards
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GuardWidening.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/GuardUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <functional>

using namespace llvm;

#define DEBUG_TYPE "guard-widening"

STATISTIC(GuardsEliminated, "Number of eliminated guards");
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");

static cl::opt<bool>
    WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
                      cl::desc("Whether or not we should widen guards  "
                               "expressed as branches by widenable conditions"),
                      cl::init(true));

namespace {

// Get the condition of \p I. It can either be a guard or a conditional branch.
static Value *getCondition(Instruction *I) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    return GI->getArgOperand(0);
  }
  Value *Cond, *WC;
  BasicBlock *IfTrueBB, *IfFalseBB;
  if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
    return Cond;

  return cast<BranchInst>(I)->getCondition();
}

// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
// conditional branch.  
static void setCondition(Instruction *I, Value *NewCond) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    GI->setArgOperand(0, NewCond);
    return;
  }
  cast<BranchInst>(I)->setCondition(NewCond);
}

// Eliminates the guard instruction properly.
static void eliminateGuard(Instruction *GuardInst) {
  GuardInst->eraseFromParent();
  ++GuardsEliminated;
}

class GuardWideningImpl {
  DominatorTree &DT;
  PostDominatorTree *PDT;
  LoopInfo &LI;

  /// Together, these describe the region of interest.  This might be all of
  /// the blocks within a function, or only a given loop's blocks and preheader.
  DomTreeNode *Root;
  std::function<bool(BasicBlock*)> BlockFilter;

  /// The set of guards and conditional branches whose conditions have been
  /// widened into dominating guards.
  SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;

  /// The set of guards which have been widened to include conditions to other
  /// guards.
  DenseSet<Instruction *> WidenedGuards;

  /// Try to eliminate instruction \p Instr by widening it into an earlier
  /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
  /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
  /// maps BasicBlocks to the set of guards seen in that block.
  bool eliminateInstrViaWidening(
      Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
      const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
          GuardsPerBlock, bool InvertCondition = false);

  /// Used to keep track of which widening potential is more effective.
  enum WideningScore {
    /// Don't widen.
    WS_IllegalOrNegative,

    /// Widening is performance neutral as far as the cycles spent in check
    /// conditions goes (but can still help, e.g., code layout, having less
    /// deopt state).
    WS_Neutral,

    /// Widening is profitable.
    WS_Positive,

    /// Widening is very profitable.  Not significantly different from \c
    /// WS_Positive, except by the order.
    WS_VeryPositive
  };

  static StringRef scoreTypeToString(WideningScore WS);

  /// Compute the score for widening the condition in \p DominatedInstr
  /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
  /// inverted condition of the dominating guard.
  WideningScore computeWideningScore(Instruction *DominatedInstr,
                                     Instruction *DominatingGuard,
                                     bool InvertCond);

  /// Helper to check if \p V can be hoisted to \p InsertPos.
  bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
    SmallPtrSet<const Instruction *, 8> Visited;
    return isAvailableAt(V, InsertPos, Visited);
  }

  bool isAvailableAt(const Value *V, const Instruction *InsertPos,
                     SmallPtrSetImpl<const Instruction *> &Visited) const;

  /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
  /// isAvailableAt returned true.
  void makeAvailableAt(Value *V, Instruction *InsertPos) const;

  /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
  /// to generate an expression computing the logical AND of \p Cond0 and (\p
  /// Cond1 XOR \p InvertCondition).
  /// Return true if the expression computing the AND is only as
  /// expensive as computing one of the two. If \p InsertPt is true then
  /// actually generate the resulting expression, make it available at \p
  /// InsertPt and return it in \p Result (else no change to the IR is made).
  bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
                       Value *&Result, bool InvertCondition);

  /// Represents a range check of the form \c Base + \c Offset u< \c Length,
  /// with the constraint that \c Length is not negative.  \c CheckInst is the
  /// pre-existing instruction in the IR that computes the result of this range
  /// check.
  class RangeCheck {
    const Value *Base;
    const ConstantInt *Offset;
    const Value *Length;
    ICmpInst *CheckInst;

  public:
    explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
                        const Value *Length, ICmpInst *CheckInst)
        : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}

    void setBase(const Value *NewBase) { Base = NewBase; }
    void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }

    const Value *getBase() const { return Base; }
    const ConstantInt *getOffset() const { return Offset; }
    const APInt &getOffsetValue() const { return getOffset()->getValue(); }
    const Value *getLength() const { return Length; };
    ICmpInst *getCheckInst() const { return CheckInst; }

    void print(raw_ostream &OS, bool PrintTypes = false) {
      OS << "Base: ";
      Base->printAsOperand(OS, PrintTypes);
      OS << " Offset: ";
      Offset->printAsOperand(OS, PrintTypes);
      OS << " Length: ";
      Length->printAsOperand(OS, PrintTypes);
    }

    LLVM_DUMP_METHOD void dump() {
      print(dbgs());
      dbgs() << "\n";
    }
  };

  /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
  /// append them to \p Checks.  Returns true on success, may clobber \c Checks
  /// on failure.
  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
    SmallPtrSet<const Value *, 8> Visited;
    return parseRangeChecks(CheckCond, Checks, Visited);
  }

  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
                        SmallPtrSetImpl<const Value *> &Visited);

  /// Combine the checks in \p Checks into a smaller set of checks and append
  /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
  /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
  /// and \p CombinedChecks on success and on failure.
  bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
                          SmallVectorImpl<RangeCheck> &CombinedChecks) const;

  /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
  /// computing only one of the two expressions?
  bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
    Value *ResultUnused;
    return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
                           InvertCond);
  }

  /// If \p InvertCondition is false, Widen \p ToWiden to fail if
  /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
  /// true (in addition to whatever it is already checking).
  void widenGuard(Instruction *ToWiden, Value *NewCondition,
                  bool InvertCondition) {
    Value *Result;
    
    widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
                    InvertCondition);
    if (isGuardAsWidenableBranch(ToWiden)) {
      setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
      return;
    }
    setCondition(ToWiden, Result);
  }

public:

  explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
                             LoopInfo &LI, DomTreeNode *Root,
                             std::function<bool(BasicBlock*)> BlockFilter)
    : DT(DT), PDT(PDT), LI(LI), Root(Root), BlockFilter(BlockFilter)
        {}

  /// The entry point for this pass.
  bool run();
};
}

static bool isSupportedGuardInstruction(const Instruction *Insn) {
  if (isGuard(Insn))
    return true;
  if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
    return true;
  return false;
}

bool GuardWideningImpl::run() {
  DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
  bool Changed = false;
  for (auto DFI = df_begin(Root), DFE = df_end(Root);
       DFI != DFE; ++DFI) {
    auto *BB = (*DFI)->getBlock();
    if (!BlockFilter(BB))
      continue;

    auto &CurrentList = GuardsInBlock[BB];

    for (auto &I : *BB)
      if (isSupportedGuardInstruction(&I))
        CurrentList.push_back(cast<Instruction>(&I));

    for (auto *II : CurrentList)
      Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
  }

  assert(EliminatedGuardsAndBranches.empty() || Changed);
  for (auto *I : EliminatedGuardsAndBranches)
    if (!WidenedGuards.count(I)) {
      assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
      if (isSupportedGuardInstruction(I))
        eliminateGuard(I);
      else {
        assert(isa<BranchInst>(I) &&
               "Eliminated something other than guard or branch?");
        ++CondBranchEliminated;
      }
    }

  return Changed;
}

bool GuardWideningImpl::eliminateInstrViaWidening(
    Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
    const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
        GuardsInBlock, bool InvertCondition) {
  // Ignore trivial true or false conditions. These instructions will be
  // trivially eliminated by any cleanup pass. Do not erase them because other
  // guards can possibly be widened into them.
  if (isa<ConstantInt>(getCondition(Instr)))
    return false;

  Instruction *BestSoFar = nullptr;
  auto BestScoreSoFar = WS_IllegalOrNegative;

  // In the set of dominating guards, find the one we can merge GuardInst with
  // for the most profit.
  for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
    auto *CurBB = DFSI.getPath(i)->getBlock();
    if (!BlockFilter(CurBB))
      break;
    assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
    const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;

    auto I = GuardsInCurBB.begin();
    auto E = Instr->getParent() == CurBB
                 ? std::find(GuardsInCurBB.begin(), GuardsInCurBB.end(), Instr)
                 : GuardsInCurBB.end();

#ifndef NDEBUG
    {
      unsigned Index = 0;
      for (auto &I : *CurBB) {
        if (Index == GuardsInCurBB.size())
          break;
        if (GuardsInCurBB[Index] == &I)
          Index++;
      }
      assert(Index == GuardsInCurBB.size() &&
             "Guards expected to be in order!");
    }
#endif

    assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");

    for (auto *Candidate : make_range(I, E)) {
      auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
      LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
                        << " and " << *getCondition(Candidate) << " is "
                        << scoreTypeToString(Score) << "\n");
      if (Score > BestScoreSoFar) {
        BestScoreSoFar = Score;
        BestSoFar = Candidate;
      }
    }
  }

  if (BestScoreSoFar == WS_IllegalOrNegative) {
    LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
    return false;
  }

  assert(BestSoFar != Instr && "Should have never visited same guard!");
  assert(DT.dominates(BestSoFar, Instr) && "Should be!");

  LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
                    << " with score " << scoreTypeToString(BestScoreSoFar)
                    << "\n");
  widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
  auto NewGuardCondition = InvertCondition
                               ? ConstantInt::getFalse(Instr->getContext())
                               : ConstantInt::getTrue(Instr->getContext());
  setCondition(Instr, NewGuardCondition);
  EliminatedGuardsAndBranches.push_back(Instr);
  WidenedGuards.insert(BestSoFar);
  return true;
}

GuardWideningImpl::WideningScore
GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
                                        Instruction *DominatingGuard,
                                        bool InvertCond) {
  Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
  Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
  bool HoistingOutOfLoop = false;

  if (DominatingGuardLoop != DominatedInstrLoop) {
    // Be conservative and don't widen into a sibling loop.  TODO: If the
    // sibling is colder, we should consider allowing this.
    if (DominatingGuardLoop &&
        !DominatingGuardLoop->contains(DominatedInstrLoop))
      return WS_IllegalOrNegative;

    HoistingOutOfLoop = true;
  }

  if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
    return WS_IllegalOrNegative;

  // If the guard was conditional executed, it may never be reached
  // dynamically.  There are two potential downsides to hoisting it out of the
  // conditionally executed region: 1) we may spuriously deopt without need and
  // 2) we have the extra cost of computing the guard condition in the common
  // case.  At the moment, we really only consider the second in our heuristic
  // here.  TODO: evaluate cost model for spurious deopt
  // NOTE: As written, this also lets us hoist right over another guard which
  // is essentially just another spelling for control flow.
  if (isWideningCondProfitable(getCondition(DominatedInstr),
                               getCondition(DominatingGuard), InvertCond))
    return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;

  if (HoistingOutOfLoop)
    return WS_Positive;

  // Returns true if we might be hoisting above explicit control flow.  Note
  // that this completely ignores implicit control flow (guards, calls which
  // throw, etc...).  That choice appears arbitrary.
  auto MaybeHoistingOutOfIf = [&]() {
    auto *DominatingBlock = DominatingGuard->getParent();
    auto *DominatedBlock = DominatedInstr->getParent();
    if (isGuardAsWidenableBranch(DominatingGuard))
      DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);

    // Same Block?
    if (DominatedBlock == DominatingBlock)
      return false;
    // Obvious successor (common loop header/preheader case)
    if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
      return false;
    // TODO: diamond, triangle cases
    if (!PDT) return true;
    return !PDT->dominates(DominatedBlock, DominatingBlock);
  };

  return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
}

bool GuardWideningImpl::isAvailableAt(
    const Value *V, const Instruction *Loc,
    SmallPtrSetImpl<const Instruction *> &Visited) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
    return true;

  if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
      Inst->mayReadFromMemory())
    return false;

  Visited.insert(Inst);

  // We only want to go _up_ the dominance chain when recursing.
  assert(!isa<PHINode>(Loc) &&
         "PHIs should return false for isSafeToSpeculativelyExecute");
  assert(DT.isReachableFromEntry(Inst->getParent()) &&
         "We did a DFS from the block entry!");
  return all_of(Inst->operands(),
                [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
}

void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc))
    return;

  assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
         !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");

  for (Value *Op : Inst->operands())
    makeAvailableAt(Op, Loc);

  Inst->moveBefore(Loc);
}

bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
                                        Instruction *InsertPt, Value *&Result,
                                        bool InvertCondition) {
  using namespace llvm::PatternMatch;

  {
    // L >u C0 && L >u C1  ->  L >u max(C0, C1)
    ConstantInt *RHS0, *RHS1;
    Value *LHS;
    ICmpInst::Predicate Pred0, Pred1;
    if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
        match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
      if (InvertCondition)
        Pred1 = ICmpInst::getInversePredicate(Pred1);

      ConstantRange CR0 =
          ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
      ConstantRange CR1 =
          ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());

      // SubsetIntersect is a subset of the actual mathematical intersection of
      // CR0 and CR1, while SupersetIntersect is a superset of the actual
      // mathematical intersection.  If these two ConstantRanges are equal, then
      // we know we were able to represent the actual mathematical intersection
      // of CR0 and CR1, and can use the same to generate an icmp instruction.
      //
      // Given what we're doing here and the semantics of guards, it would
      // actually be correct to just use SubsetIntersect, but that may be too
      // aggressive in cases we care about.
      auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
      auto SupersetIntersect = CR0.intersectWith(CR1);

      APInt NewRHSAP;
      CmpInst::Predicate Pred;
      if (SubsetIntersect == SupersetIntersect &&
          SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
        if (InsertPt) {
          ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
          Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
        }
        return true;
      }
    }
  }

  {
    SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
    // TODO: Support InvertCondition case?
    if (!InvertCondition &&
        parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
        combineRangeChecks(Checks, CombinedChecks)) {
      if (InsertPt) {
        Result = nullptr;
        for (auto &RC : CombinedChecks) {
          makeAvailableAt(RC.getCheckInst(), InsertPt);
          if (Result)
            Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
                                               InsertPt);
          else
            Result = RC.getCheckInst();
        }
        assert(Result && "Failed to find result value");
        Result->setName("wide.chk");
      }
      return true;
    }
  }

  // Base case -- just logical-and the two conditions together.

  if (InsertPt) {
    makeAvailableAt(Cond0, InsertPt);
    makeAvailableAt(Cond1, InsertPt);
    if (InvertCondition)
      Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
    Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
  }

  // We were not able to compute Cond0 AND Cond1 for the price of one.
  return false;
}

bool GuardWideningImpl::parseRangeChecks(
    Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallPtrSetImpl<const Value *> &Visited) {
  if (!Visited.insert(CheckCond).second)
    return true;

  using namespace llvm::PatternMatch;

  {
    Value *AndLHS, *AndRHS;
    if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
      return parseRangeChecks(AndLHS, Checks) &&
             parseRangeChecks(AndRHS, Checks);
  }

  auto *IC = dyn_cast<ICmpInst>(CheckCond);
  if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
      (IC->getPredicate() != ICmpInst::ICMP_ULT &&
       IC->getPredicate() != ICmpInst::ICMP_UGT))
    return false;

  const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
  if (IC->getPredicate() == ICmpInst::ICMP_UGT)
    std::swap(CmpLHS, CmpRHS);

  auto &DL = IC->getModule()->getDataLayout();

  GuardWideningImpl::RangeCheck Check(
      CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
      CmpRHS, IC);

  if (!isKnownNonNegative(Check.getLength(), DL))
    return false;

  // What we have in \c Check now is a correct interpretation of \p CheckCond.
  // Try to see if we can move some constant offsets into the \c Offset field.

  bool Changed;
  auto &Ctx = CheckCond->getContext();

  do {
    Value *OpLHS;
    ConstantInt *OpRHS;
    Changed = false;

#ifndef NDEBUG
    auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
    assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
           "Unreachable instruction?");
#endif

    if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      Check.setBase(OpLHS);
      APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
      Check.setOffset(ConstantInt::get(Ctx, NewOffset));
      Changed = true;
    } else if (match(Check.getBase(),
                     m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      KnownBits Known = computeKnownBits(OpLHS, DL);
      if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
        Check.setBase(OpLHS);
        APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
        Check.setOffset(ConstantInt::get(Ctx, NewOffset));
        Changed = true;
      }
    }
  } while (Changed);

  Checks.push_back(Check);
  return true;
}

bool GuardWideningImpl::combineRangeChecks(
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
  unsigned OldCount = Checks.size();
  while (!Checks.empty()) {
    // Pick all of the range checks with a specific base and length, and try to
    // merge them.
    const Value *CurrentBase = Checks.front().getBase();
    const Value *CurrentLength = Checks.front().getLength();

    SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;

    auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
      return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
    };

    copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
    Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end());

    assert(CurrentChecks.size() != 0 && "We know we have at least one!");

    if (CurrentChecks.size() < 3) {
      RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(),
                            CurrentChecks.end());
      continue;
    }

    // CurrentChecks.size() will typically be 3 here, but so far there has been
    // no need to hard-code that fact.

    llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
                                  const GuardWideningImpl::RangeCheck &RHS) {
      return LHS.getOffsetValue().slt(RHS.getOffsetValue());
    });

    // Note: std::sort should not invalidate the ChecksStart iterator.

    const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
    const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();

    unsigned BitWidth = MaxOffset->getValue().getBitWidth();
    if ((MaxOffset->getValue() - MinOffset->getValue())
            .ugt(APInt::getSignedMinValue(BitWidth)))
      return false;

    APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
    const APInt &HighOffset = MaxOffset->getValue();
    auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
      return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
    };

    if (MaxDiff.isMinValue() ||
        !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(),
                     OffsetOK))
      return false;

    // We have a series of f+1 checks as:
    //
    //   I+k_0 u< L   ... Chk_0
    //   I+k_1 u< L   ... Chk_1
    //   ...
    //   I+k_f u< L   ... Chk_f
    //
    //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
    //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
    //          k_f != k_0                             ... Precond_2
    //
    // Claim:
    //   Chk_0 AND Chk_f  implies all the other checks
    //
    // Informal proof sketch:
    //
    // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
    // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
    // thus I+k_f is the greatest unsigned value in that range.
    //
    // This combined with Ckh_(f+1) shows that everything in that range is u< L.
    // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
    // lie in [I+k_0,I+k_f], this proving our claim.
    //
    // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
    // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
    // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
    // range by definition, and the latter case is impossible:
    //
    //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
    //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    //
    // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
    // with 'x' above) to be at least >u INT_MIN.

    RangeChecksOut.emplace_back(CurrentChecks.front());
    RangeChecksOut.emplace_back(CurrentChecks.back());
  }

  assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
  return RangeChecksOut.size() != OldCount;
}

#ifndef NDEBUG
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
  switch (WS) {
  case WS_IllegalOrNegative:
    return "IllegalOrNegative";
  case WS_Neutral:
    return "Neutral";
  case WS_Positive:
    return "Positive";
  case WS_VeryPositive:
    return "VeryPositive";
  }

  llvm_unreachable("Fully covered switch above!");
}
#endif

PreservedAnalyses GuardWideningPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  if (!GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(),
                         [](BasicBlock*) { return true; } ).run())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
                                         LoopStandardAnalysisResults &AR,
                                         LPMUpdater &U) {
  BasicBlock *RootBB = L.getLoopPredecessor();
  if (!RootBB)
    RootBB = L.getHeader();
  auto BlockFilter = [&](BasicBlock *BB) {
    return BB == RootBB || L.contains(BB);
  };
  if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.DT.getNode(RootBB),
                         BlockFilter).run())
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}

namespace {
struct GuardWideningLegacyPass : public FunctionPass {
  static char ID;

  GuardWideningLegacyPass() : FunctionPass(ID) {
    initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    return GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(),
                         [](BasicBlock*) { return true; } ).run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
  }
};

/// Same as above, but restricted to a single loop at a time.  Can be
/// scheduled with other loop passes w/o breaking out of LPM
struct LoopGuardWideningLegacyPass : public LoopPass {
  static char ID;

  LoopGuardWideningLegacyPass() : LoopPass(ID) {
    initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
    BasicBlock *RootBB = L->getLoopPredecessor();
    if (!RootBB)
      RootBB = L->getHeader();
    auto BlockFilter = [&](BasicBlock *BB) {
      return BB == RootBB || L->contains(BB);
    };
    return GuardWideningImpl(DT, PDT, LI,
                             DT.getNode(RootBB), BlockFilter).run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    getLoopAnalysisUsage(AU);
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }
};
}

char GuardWideningLegacyPass::ID = 0;
char LoopGuardWideningLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                    false, false)

INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
                      "Widen guards (within a single loop, as a loop pass)",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
                    "Widen guards (within a single loop, as a loop pass)",
                    false, false)

FunctionPass *llvm::createGuardWideningPass() {
  return new GuardWideningLegacyPass();
}

Pass *llvm::createLoopGuardWideningPass() {
  return new LoopGuardWideningLegacyPass();
}