LoopSimplify.cpp
35.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs several transformations to transform natural loops into a
// simpler form, which makes subsequent analyses and transformations simpler and
// more effective.
//
// Loop pre-header insertion guarantees that there is a single, non-critical
// entry edge from outside of the loop to the loop header. This simplifies a
// number of analyses and transformations, such as LICM.
//
// Loop exit-block insertion guarantees that all exit blocks from the loop
// (blocks which are outside of the loop that have predecessors inside of the
// loop) only have predecessors from inside of the loop (and are thus dominated
// by the loop header). This simplifies transformations such as store-sinking
// that are built into LICM.
//
// This pass also guarantees that loops will have exactly one backedge.
//
// Indirectbr instructions introduce several complications. If the loop
// contains or is entered by an indirectbr instruction, it may not be possible
// to transform the loop and make these guarantees. Client code should check
// that these conditions are true before relying on them.
//
// Similar complications arise from callbr instructions, particularly in
// asm-goto where blockaddress expressions are used.
//
// Note that the simplifycfg pass will clean up blocks which are split out but
// end up being unnecessary, so usage of this pass should not pessimize
// generated code.
//
// This pass obviously modifies the CFG, but updates loop information and
// dominator information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-simplify"
STATISTIC(NumNested , "Number of nested loops split out");
// If the block isn't already, move the new block to right after some 'outside
// block' block. This prevents the preheader from being placed inside the loop
// body, e.g. when the loop hasn't been rotated.
static void placeSplitBlockCarefully(BasicBlock *NewBB,
SmallVectorImpl<BasicBlock *> &SplitPreds,
Loop *L) {
// Check to see if NewBB is already well placed.
Function::iterator BBI = --NewBB->getIterator();
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
if (&*BBI == SplitPreds[i])
return;
}
// If it isn't already after an outside block, move it after one. This is
// always good as it makes the uncond branch from the outside block into a
// fall-through.
// Figure out *which* outside block to put this after. Prefer an outside
// block that neighbors a BB actually in the loop.
BasicBlock *FoundBB = nullptr;
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
Function::iterator BBI = SplitPreds[i]->getIterator();
if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
FoundBB = SplitPreds[i];
break;
}
}
// If our heuristic for a *good* bb to place this after doesn't find
// anything, just pick something. It's likely better than leaving it within
// the loop.
if (!FoundBB)
FoundBB = SplitPreds[0];
NewBB->moveAfter(FoundBB);
}
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
/// preheader, this method is called to insert one. This method has two phases:
/// preheader insertion and analysis updating.
///
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
BasicBlock *Header = L->getHeader();
// Compute the set of predecessors of the loop that are not in the loop.
SmallVector<BasicBlock*, 8> OutsideBlocks;
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P)) { // Coming in from outside the loop?
// If the loop is branched to from an indirect terminator, we won't
// be able to fully transform the loop, because it prohibits
// edge splitting.
if (P->getTerminator()->isIndirectTerminator())
return nullptr;
// Keep track of it.
OutsideBlocks.push_back(P);
}
}
// Split out the loop pre-header.
BasicBlock *PreheaderBB;
PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
LI, MSSAU, PreserveLCSSA);
if (!PreheaderBB)
return nullptr;
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
<< PreheaderBB->getName() << "\n");
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
return PreheaderBB;
}
/// Add the specified block, and all of its predecessors, to the specified set,
/// if it's not already in there. Stop predecessor traversal when we reach
/// StopBlock.
static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
std::set<BasicBlock*> &Blocks) {
SmallVector<BasicBlock *, 8> Worklist;
Worklist.push_back(InputBB);
do {
BasicBlock *BB = Worklist.pop_back_val();
if (Blocks.insert(BB).second && BB != StopBlock)
// If BB is not already processed and it is not a stop block then
// insert its predecessor in the work list
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
BasicBlock *WBB = *I;
Worklist.push_back(WBB);
}
} while (!Worklist.empty());
}
/// The first part of loop-nestification is to find a PHI node that tells
/// us how to partition the loops.
static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
AssumptionCache *AC) {
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
continue;
}
// Scan this PHI node looking for a use of the PHI node by itself.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == PN &&
L->contains(PN->getIncomingBlock(i)))
// We found something tasty to remove.
return PN;
}
return nullptr;
}
/// If this loop has multiple backedges, try to pull one of them out into
/// a nested loop.
///
/// This is important for code that looks like
/// this:
///
/// Loop:
/// ...
/// br cond, Loop, Next
/// ...
/// br cond2, Loop, Out
///
/// To identify this common case, we look at the PHI nodes in the header of the
/// loop. PHI nodes with unchanging values on one backedge correspond to values
/// that change in the "outer" loop, but not in the "inner" loop.
///
/// If we are able to separate out a loop, return the new outer loop that was
/// created.
///
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, bool PreserveLCSSA,
AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
// Don't try to separate loops without a preheader.
if (!Preheader)
return nullptr;
// The header is not a landing pad; preheader insertion should ensure this.
BasicBlock *Header = L->getHeader();
assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
if (!PN) return nullptr; // No known way to partition.
// Pull out all predecessors that have varying values in the loop. This
// handles the case when a PHI node has multiple instances of itself as
// arguments.
SmallVector<BasicBlock*, 8> OuterLoopPreds;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) != PN ||
!L->contains(PN->getIncomingBlock(i))) {
// We can't split indirect control flow edges.
if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
return nullptr;
OuterLoopPreds.push_back(PN->getIncomingBlock(i));
}
}
LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
// If ScalarEvolution is around and knows anything about values in
// this loop, tell it to forget them, because we're about to
// substantially change it.
if (SE)
SE->forgetLoop(L);
BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
DT, LI, MSSAU, PreserveLCSSA);
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
// Create the new outer loop.
Loop *NewOuter = LI->AllocateLoop();
// Change the parent loop to use the outer loop as its child now.
if (Loop *Parent = L->getParentLoop())
Parent->replaceChildLoopWith(L, NewOuter);
else
LI->changeTopLevelLoop(L, NewOuter);
// L is now a subloop of our outer loop.
NewOuter->addChildLoop(L);
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
NewOuter->addBlockEntry(*I);
// Now reset the header in L, which had been moved by
// SplitBlockPredecessors for the outer loop.
L->moveToHeader(Header);
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
std::set<BasicBlock*> BlocksInL;
for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
BasicBlock *P = *PI;
if (DT->dominates(Header, P))
addBlockAndPredsToSet(P, Header, BlocksInL);
}
// Scan all of the loop children of L, moving them to OuterLoop if they are
// not part of the inner loop.
const std::vector<Loop*> &SubLoops = L->getSubLoops();
for (size_t I = 0; I != SubLoops.size(); )
if (BlocksInL.count(SubLoops[I]->getHeader()))
++I; // Loop remains in L
else
NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
SmallVector<BasicBlock *, 8> OuterLoopBlocks;
OuterLoopBlocks.push_back(NewBB);
// Now that we know which blocks are in L and which need to be moved to
// OuterLoop, move any blocks that need it.
for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
BasicBlock *BB = L->getBlocks()[i];
if (!BlocksInL.count(BB)) {
// Move this block to the parent, updating the exit blocks sets
L->removeBlockFromLoop(BB);
if ((*LI)[BB] == L) {
LI->changeLoopFor(BB, NewOuter);
OuterLoopBlocks.push_back(BB);
}
--i;
}
}
// Split edges to exit blocks from the inner loop, if they emerged in the
// process of separating the outer one.
formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
if (PreserveLCSSA) {
// Fix LCSSA form for L. Some values, which previously were only used inside
// L, can now be used in NewOuter loop. We need to insert phi-nodes for them
// in corresponding exit blocks.
// We don't need to form LCSSA recursively, because there cannot be uses
// inside a newly created loop of defs from inner loops as those would
// already be a use of an LCSSA phi node.
formLCSSA(*L, *DT, LI, SE);
assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
"LCSSA is broken after separating nested loops!");
}
return NewOuter;
}
/// This method is called when the specified loop has more than one
/// backedge in it.
///
/// If this occurs, revector all of these backedges to target a new basic block
/// and have that block branch to the loop header. This ensures that loops
/// have exactly one backedge.
static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU) {
assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
// Get information about the loop
BasicBlock *Header = L->getHeader();
Function *F = Header->getParent();
// Unique backedge insertion currently depends on having a preheader.
if (!Preheader)
return nullptr;
// The header is not an EH pad; preheader insertion should ensure this.
assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
// Figure out which basic blocks contain back-edges to the loop header.
std::vector<BasicBlock*> BackedgeBlocks;
for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
BasicBlock *P = *I;
// Indirect edges cannot be split, so we must fail if we find one.
if (P->getTerminator()->isIndirectTerminator())
return nullptr;
if (P != Preheader) BackedgeBlocks.push_back(P);
}
// Create and insert the new backedge block...
BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
Header->getName() + ".backedge", F);
BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
<< BEBlock->getName() << "\n");
// Move the new backedge block to right after the last backedge block.
Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
// Now that the block has been inserted into the function, create PHI nodes in
// the backedge block which correspond to any PHI nodes in the header block.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
PN->getName()+".be", BETerminator);
// Loop over the PHI node, moving all entries except the one for the
// preheader over to the new PHI node.
unsigned PreheaderIdx = ~0U;
bool HasUniqueIncomingValue = true;
Value *UniqueValue = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *IBB = PN->getIncomingBlock(i);
Value *IV = PN->getIncomingValue(i);
if (IBB == Preheader) {
PreheaderIdx = i;
} else {
NewPN->addIncoming(IV, IBB);
if (HasUniqueIncomingValue) {
if (!UniqueValue)
UniqueValue = IV;
else if (UniqueValue != IV)
HasUniqueIncomingValue = false;
}
}
}
// Delete all of the incoming values from the old PN except the preheader's
assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
if (PreheaderIdx != 0) {
PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
}
// Nuke all entries except the zero'th.
for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
PN->removeIncomingValue(e-i, false);
// Finally, add the newly constructed PHI node as the entry for the BEBlock.
PN->addIncoming(NewPN, BEBlock);
// As an optimization, if all incoming values in the new PhiNode (which is a
// subset of the incoming values of the old PHI node) have the same value,
// eliminate the PHI Node.
if (HasUniqueIncomingValue) {
NewPN->replaceAllUsesWith(UniqueValue);
BEBlock->getInstList().erase(NewPN);
}
}
// Now that all of the PHI nodes have been inserted and adjusted, modify the
// backedge blocks to jump to the BEBlock instead of the header.
// If one of the backedges has llvm.loop metadata attached, we remove
// it from the backedge and add it to BEBlock.
unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
MDNode *LoopMD = nullptr;
for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
Instruction *TI = BackedgeBlocks[i]->getTerminator();
if (!LoopMD)
LoopMD = TI->getMetadata(LoopMDKind);
TI->setMetadata(LoopMDKind, nullptr);
TI->replaceSuccessorWith(Header, BEBlock);
}
BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
//===--- Update all analyses which we must preserve now -----------------===//
// Update Loop Information - we know that this block is now in the current
// loop and all parent loops.
L->addBasicBlockToLoop(BEBlock, *LI);
// Update dominator information
DT->splitBlock(BEBlock);
if (MSSAU)
MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
BEBlock);
return BEBlock;
}
/// Simplify one loop and queue further loops for simplification.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, AssumptionCache *AC,
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
bool Changed = false;
if (MSSAU && VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
ReprocessLoop:
// Check to see that no blocks (other than the header) in this loop have
// predecessors that are not in the loop. This is not valid for natural
// loops, but can occur if the blocks are unreachable. Since they are
// unreachable we can just shamelessly delete those CFG edges!
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
if (*BB == L->getHeader()) continue;
SmallPtrSet<BasicBlock*, 4> BadPreds;
for (pred_iterator PI = pred_begin(*BB),
PE = pred_end(*BB); PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P))
BadPreds.insert(P);
}
// Delete each unique out-of-loop (and thus dead) predecessor.
for (BasicBlock *P : BadPreds) {
LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
<< P->getName() << "\n");
// Zap the dead pred's terminator and replace it with unreachable.
Instruction *TI = P->getTerminator();
changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
/*DTU=*/nullptr, MSSAU);
Changed = true;
}
}
if (MSSAU && VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
// If there are exiting blocks with branches on undef, resolve the undef in
// the direction which will exit the loop. This will help simplify loop
// trip count computations.
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks)
if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
if (BI->isConditional()) {
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
LLVM_DEBUG(dbgs()
<< "LoopSimplify: Resolving \"br i1 undef\" to exit in "
<< ExitingBlock->getName() << "\n");
BI->setCondition(ConstantInt::get(Cond->getType(),
!L->contains(BI->getSuccessor(0))));
Changed = true;
}
}
// Does the loop already have a preheader? If so, don't insert one.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
if (Preheader)
Changed = true;
}
// Next, check to make sure that all exit nodes of the loop only have
// predecessors that are inside of the loop. This check guarantees that the
// loop preheader/header will dominate the exit blocks. If the exit block has
// predecessors from outside of the loop, split the edge now.
if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
Changed = true;
if (MSSAU && VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
// If the header has more than two predecessors at this point (from the
// preheader and from multiple backedges), we must adjust the loop.
BasicBlock *LoopLatch = L->getLoopLatch();
if (!LoopLatch) {
// If this is really a nested loop, rip it out into a child loop. Don't do
// this for loops with a giant number of backedges, just factor them into a
// common backedge instead.
if (L->getNumBackEdges() < 8) {
if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
PreserveLCSSA, AC, MSSAU)) {
++NumNested;
// Enqueue the outer loop as it should be processed next in our
// depth-first nest walk.
Worklist.push_back(OuterL);
// This is a big restructuring change, reprocess the whole loop.
Changed = true;
// GCC doesn't tail recursion eliminate this.
// FIXME: It isn't clear we can't rely on LLVM to TRE this.
goto ReprocessLoop;
}
}
// If we either couldn't, or didn't want to, identify nesting of the loops,
// insert a new block that all backedges target, then make it jump to the
// loop header.
LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
if (LoopLatch)
Changed = true;
}
if (MSSAU && VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Scan over the PHI nodes in the loop header. Since they now have only two
// incoming values (the loop is canonicalized), we may have simplified the PHI
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
if (SE) SE->forgetValue(PN);
if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
}
}
// If this loop has multiple exits and the exits all go to the same
// block, attempt to merge the exits. This helps several passes, such
// as LoopRotation, which do not support loops with multiple exits.
// SimplifyCFG also does this (and this code uses the same utility
// function), however this code is loop-aware, where SimplifyCFG is
// not. That gives it the advantage of being able to hoist
// loop-invariant instructions out of the way to open up more
// opportunities, and the disadvantage of having the responsibility
// to preserve dominator information.
auto HasUniqueExitBlock = [&]() {
BasicBlock *UniqueExit = nullptr;
for (auto *ExitingBB : ExitingBlocks)
for (auto *SuccBB : successors(ExitingBB)) {
if (L->contains(SuccBB))
continue;
if (!UniqueExit)
UniqueExit = SuccBB;
else if (UniqueExit != SuccBB)
return false;
}
return true;
};
if (HasUniqueExitBlock()) {
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BasicBlock *ExitingBlock = ExitingBlocks[i];
if (!ExitingBlock->getSinglePredecessor()) continue;
BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (!BI || !BI->isConditional()) continue;
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
if (!CI || CI->getParent() != ExitingBlock) continue;
// Attempt to hoist out all instructions except for the
// comparison and the branch.
bool AllInvariant = true;
bool AnyInvariant = false;
for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
Instruction *Inst = &*I++;
if (Inst == CI)
continue;
if (!L->makeLoopInvariant(
Inst, AnyInvariant,
Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
AllInvariant = false;
break;
}
}
if (AnyInvariant) {
Changed = true;
// The loop disposition of all SCEV expressions that depend on any
// hoisted values have also changed.
if (SE)
SE->forgetLoopDispositions(L);
}
if (!AllInvariant) continue;
// The block has now been cleared of all instructions except for
// a comparison and a conditional branch. SimplifyCFG may be able
// to fold it now.
if (!FoldBranchToCommonDest(BI, MSSAU))
continue;
// Success. The block is now dead, so remove it from the loop,
// update the dominator tree and delete it.
LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
<< ExitingBlock->getName() << "\n");
assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
Changed = true;
LI->removeBlock(ExitingBlock);
DomTreeNode *Node = DT->getNode(ExitingBlock);
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
Node->getChildren();
while (!Children.empty()) {
DomTreeNode *Child = Children.front();
DT->changeImmediateDominator(Child, Node->getIDom());
}
DT->eraseNode(ExitingBlock);
if (MSSAU) {
SmallSetVector<BasicBlock *, 8> ExitBlockSet;
ExitBlockSet.insert(ExitingBlock);
MSSAU->removeBlocks(ExitBlockSet);
}
BI->getSuccessor(0)->removePredecessor(
ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
BI->getSuccessor(1)->removePredecessor(
ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
ExitingBlock->eraseFromParent();
}
}
// Changing exit conditions for blocks may affect exit counts of this loop and
// any of its paretns, so we must invalidate the entire subtree if we've made
// any changes.
if (Changed && SE)
SE->forgetTopmostLoop(L);
if (MSSAU && VerifyMemorySSA)
MSSAU->getMemorySSA()->verifyMemorySSA();
return Changed;
}
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, AssumptionCache *AC,
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
bool Changed = false;
#ifndef NDEBUG
// If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
// form.
if (PreserveLCSSA) {
assert(DT && "DT not available.");
assert(LI && "LI not available.");
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
"Requested to preserve LCSSA, but it's already broken.");
}
#endif
// Worklist maintains our depth-first queue of loops in this nest to process.
SmallVector<Loop *, 4> Worklist;
Worklist.push_back(L);
// Walk the worklist from front to back, pushing newly found sub loops onto
// the back. This will let us process loops from back to front in depth-first
// order. We can use this simple process because loops form a tree.
for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
Loop *L2 = Worklist[Idx];
Worklist.append(L2->begin(), L2->end());
}
while (!Worklist.empty())
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
AC, MSSAU, PreserveLCSSA);
return Changed;
}
namespace {
struct LoopSimplify : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
LoopSimplify() : FunctionPass(ID) {
initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
// We need loop information to identify the loops...
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addPreservedID(LCSSAID);
AU.addPreserved<DependenceAnalysisWrapperPass>();
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
AU.addPreserved<BranchProbabilityInfoWrapperPass>();
if (EnableMSSALoopDependency)
AU.addPreserved<MemorySSAWrapperPass>();
}
/// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
void verifyAnalysis() const override;
};
}
char LoopSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
"Canonicalize natural loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
"Canonicalize natural loops", false, false)
// Publicly exposed interface to pass...
char &llvm::LoopSimplifyID = LoopSimplify::ID;
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
/// it in any convenient order) inserting preheaders...
///
bool LoopSimplify::runOnFunction(Function &F) {
bool Changed = false;
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
MemorySSA *MSSA = nullptr;
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (EnableMSSALoopDependency) {
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
if (MSSAAnalysis) {
MSSA = &MSSAAnalysis->getMSSA();
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
}
}
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
#ifndef NDEBUG
if (PreserveLCSSA) {
bool InLCSSA = all_of(
*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
assert(InLCSSA && "LCSSA is broken after loop-simplify.");
}
#endif
return Changed;
}
PreservedAnalyses LoopSimplifyPass::run(Function &F,
FunctionAnalysisManager &AM) {
bool Changed = false;
LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (MSSAAnalysis) {
auto *MSSA = &MSSAAnalysis->getMSSA();
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
}
// Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
// after simplifying the loops. MemorySSA is preserved if it exists.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Changed |=
simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<BasicAA>();
PA.preserve<GlobalsAA>();
PA.preserve<SCEVAA>();
PA.preserve<ScalarEvolutionAnalysis>();
PA.preserve<DependenceAnalysis>();
if (MSSAAnalysis)
PA.preserve<MemorySSAAnalysis>();
// BPI maps conditional terminators to probabilities, LoopSimplify can insert
// blocks, but it does so only by splitting existing blocks and edges. This
// results in the interesting property that all new terminators inserted are
// unconditional branches which do not appear in BPI. All deletions are
// handled via ValueHandle callbacks w/in BPI.
PA.preserve<BranchProbabilityAnalysis>();
return PA;
}
// FIXME: Restore this code when we re-enable verification in verifyAnalysis
// below.
#if 0
static void verifyLoop(Loop *L) {
// Verify subloops.
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
verifyLoop(*I);
// It used to be possible to just assert L->isLoopSimplifyForm(), however
// with the introduction of indirectbr, there are now cases where it's
// not possible to transform a loop as necessary. We can at least check
// that there is an indirectbr near any time there's trouble.
// Indirectbr can interfere with preheader and unique backedge insertion.
if (!L->getLoopPreheader() || !L->getLoopLatch()) {
bool HasIndBrPred = false;
for (pred_iterator PI = pred_begin(L->getHeader()),
PE = pred_end(L->getHeader()); PI != PE; ++PI)
if (isa<IndirectBrInst>((*PI)->getTerminator())) {
HasIndBrPred = true;
break;
}
assert(HasIndBrPred &&
"LoopSimplify has no excuse for missing loop header info!");
(void)HasIndBrPred;
}
// Indirectbr can interfere with exit block canonicalization.
if (!L->hasDedicatedExits()) {
bool HasIndBrExiting = false;
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
HasIndBrExiting = true;
break;
}
}
assert(HasIndBrExiting &&
"LoopSimplify has no excuse for missing exit block info!");
(void)HasIndBrExiting;
}
}
#endif
void LoopSimplify::verifyAnalysis() const {
// FIXME: This routine is being called mid-way through the loop pass manager
// as loop passes destroy this analysis. That's actually fine, but we have no
// way of expressing that here. Once all of the passes that destroy this are
// hoisted out of the loop pass manager we can add back verification here.
#if 0
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
verifyLoop(*I);
#endif
}