CodeGenRegisters.h 29.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
#define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H

#include "InfoByHwMode.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/SetTheory.h"
#include <cassert>
#include <cstdint>
#include <deque>
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>

namespace llvm {

  class CodeGenRegBank;
  template <typename T, typename Vector, typename Set> class SetVector;

  /// Used to encode a step in a register lane mask transformation.
  /// Mask the bits specified in Mask, then rotate them Rol bits to the left
  /// assuming a wraparound at 32bits.
  struct MaskRolPair {
    LaneBitmask Mask;
    uint8_t RotateLeft;

    bool operator==(const MaskRolPair Other) const {
      return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
    }
    bool operator!=(const MaskRolPair Other) const {
      return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
    }
  };

  /// CodeGenSubRegIndex - Represents a sub-register index.
  class CodeGenSubRegIndex {
    Record *const TheDef;
    std::string Name;
    std::string Namespace;

  public:
    uint16_t Size;
    uint16_t Offset;
    const unsigned EnumValue;
    mutable LaneBitmask LaneMask;
    mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;

    /// A list of subregister indexes concatenated resulting in this
    /// subregister index. This is the reverse of CodeGenRegBank::ConcatIdx.
    SmallVector<CodeGenSubRegIndex*,4> ConcatenationOf;

    // Are all super-registers containing this SubRegIndex covered by their
    // sub-registers?
    bool AllSuperRegsCovered;
    // A subregister index is "artificial" if every subregister obtained
    // from applying this index is artificial. Artificial subregister
    // indexes are not used to create new register classes.
    bool Artificial;

    CodeGenSubRegIndex(Record *R, unsigned Enum);
    CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);

    const std::string &getName() const { return Name; }
    const std::string &getNamespace() const { return Namespace; }
    std::string getQualifiedName() const;

    // Map of composite subreg indices.
    typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
                     deref<std::less<>>>
        CompMap;

    // Returns the subreg index that results from composing this with Idx.
    // Returns NULL if this and Idx don't compose.
    CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
      CompMap::const_iterator I = Composed.find(Idx);
      return I == Composed.end() ? nullptr : I->second;
    }

    // Add a composite subreg index: this+A = B.
    // Return a conflicting composite, or NULL
    CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
                                     CodeGenSubRegIndex *B) {
      assert(A && B);
      std::pair<CompMap::iterator, bool> Ins =
        Composed.insert(std::make_pair(A, B));
      // Synthetic subreg indices that aren't contiguous (for instance ARM
      // register tuples) don't have a bit range, so it's OK to let
      // B->Offset == -1. For the other cases, accumulate the offset and set
      // the size here. Only do so if there is no offset yet though.
      if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
          (B->Offset == (uint16_t)-1)) {
        B->Offset = Offset + A->Offset;
        B->Size = A->Size;
      }
      return (Ins.second || Ins.first->second == B) ? nullptr
                                                    : Ins.first->second;
    }

    // Update the composite maps of components specified in 'ComposedOf'.
    void updateComponents(CodeGenRegBank&);

    // Return the map of composites.
    const CompMap &getComposites() const { return Composed; }

    // Compute LaneMask from Composed. Return LaneMask.
    LaneBitmask computeLaneMask() const;

    void setConcatenationOf(ArrayRef<CodeGenSubRegIndex*> Parts);

    /// Replaces subregister indexes in the `ConcatenationOf` list with
    /// list of subregisters they are composed of (if any). Do this recursively.
    void computeConcatTransitiveClosure();

    bool operator<(const CodeGenSubRegIndex &RHS) const {
      return this->EnumValue < RHS.EnumValue;
    }

  private:
    CompMap Composed;
  };

  /// CodeGenRegister - Represents a register definition.
  struct CodeGenRegister {
    Record *TheDef;
    unsigned EnumValue;
    unsigned CostPerUse;
    bool CoveredBySubRegs;
    bool HasDisjunctSubRegs;
    bool Artificial;

    // Map SubRegIndex -> Register.
    typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *,
                     deref<std::less<>>>
        SubRegMap;

    CodeGenRegister(Record *R, unsigned Enum);

    const StringRef getName() const;

    // Extract more information from TheDef. This is used to build an object
    // graph after all CodeGenRegister objects have been created.
    void buildObjectGraph(CodeGenRegBank&);

    // Lazily compute a map of all sub-registers.
    // This includes unique entries for all sub-sub-registers.
    const SubRegMap &computeSubRegs(CodeGenRegBank&);

    // Compute extra sub-registers by combining the existing sub-registers.
    void computeSecondarySubRegs(CodeGenRegBank&);

    // Add this as a super-register to all sub-registers after the sub-register
    // graph has been built.
    void computeSuperRegs(CodeGenRegBank&);

    const SubRegMap &getSubRegs() const {
      assert(SubRegsComplete && "Must precompute sub-registers");
      return SubRegs;
    }

    // Add sub-registers to OSet following a pre-order defined by the .td file.
    void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
                            CodeGenRegBank&) const;

    // Return the sub-register index naming Reg as a sub-register of this
    // register. Returns NULL if Reg is not a sub-register.
    CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
      return SubReg2Idx.lookup(Reg);
    }

    typedef std::vector<const CodeGenRegister*> SuperRegList;

    // Get the list of super-registers in topological order, small to large.
    // This is valid after computeSubRegs visits all registers during RegBank
    // construction.
    const SuperRegList &getSuperRegs() const {
      assert(SubRegsComplete && "Must precompute sub-registers");
      return SuperRegs;
    }

    // Get the list of ad hoc aliases. The graph is symmetric, so the list
    // contains all registers in 'Aliases', and all registers that mention this
    // register in 'Aliases'.
    ArrayRef<CodeGenRegister*> getExplicitAliases() const {
      return ExplicitAliases;
    }

    // Get the topological signature of this register. This is a small integer
    // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
    // identical sub-register structure. That is, they support the same set of
    // sub-register indices mapping to the same kind of sub-registers
    // (TopoSig-wise).
    unsigned getTopoSig() const {
      assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
      return TopoSig;
    }

    // List of register units in ascending order.
    typedef SparseBitVector<> RegUnitList;
    typedef SmallVector<LaneBitmask, 16> RegUnitLaneMaskList;

    // How many entries in RegUnitList are native?
    RegUnitList NativeRegUnits;

    // Get the list of register units.
    // This is only valid after computeSubRegs() completes.
    const RegUnitList &getRegUnits() const { return RegUnits; }

    ArrayRef<LaneBitmask> getRegUnitLaneMasks() const {
      return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
    }

    // Get the native register units. This is a prefix of getRegUnits().
    RegUnitList getNativeRegUnits() const {
      return NativeRegUnits;
    }

    void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
      RegUnitLaneMasks = LaneMasks;
    }

    // Inherit register units from subregisters.
    // Return true if the RegUnits changed.
    bool inheritRegUnits(CodeGenRegBank &RegBank);

    // Adopt a register unit for pressure tracking.
    // A unit is adopted iff its unit number is >= NativeRegUnits.count().
    void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }

    // Get the sum of this register's register unit weights.
    unsigned getWeight(const CodeGenRegBank &RegBank) const;

    // Canonically ordered set.
    typedef std::vector<const CodeGenRegister*> Vec;

  private:
    bool SubRegsComplete;
    bool SuperRegsComplete;
    unsigned TopoSig;

    // The sub-registers explicit in the .td file form a tree.
    SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
    SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;

    // Explicit ad hoc aliases, symmetrized to form an undirected graph.
    SmallVector<CodeGenRegister*, 8> ExplicitAliases;

    // Super-registers where this is the first explicit sub-register.
    SuperRegList LeadingSuperRegs;

    SubRegMap SubRegs;
    SuperRegList SuperRegs;
    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
    RegUnitList RegUnits;
    RegUnitLaneMaskList RegUnitLaneMasks;
  };

  inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
    return A.EnumValue < B.EnumValue;
  }

  inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
    return A.EnumValue == B.EnumValue;
  }

  class CodeGenRegisterClass {
    CodeGenRegister::Vec Members;
    // Allocation orders. Order[0] always contains all registers in Members.
    std::vector<SmallVector<Record*, 16>> Orders;
    // Bit mask of sub-classes including this, indexed by their EnumValue.
    BitVector SubClasses;
    // List of super-classes, topologocally ordered to have the larger classes
    // first.  This is the same as sorting by EnumValue.
    SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
    Record *TheDef;
    std::string Name;

    // For a synthesized class, inherit missing properties from the nearest
    // super-class.
    void inheritProperties(CodeGenRegBank&);

    // Map SubRegIndex -> sub-class.  This is the largest sub-class where all
    // registers have a SubRegIndex sub-register.
    DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
        SubClassWithSubReg;

    // Map SubRegIndex -> set of super-reg classes.  This is all register
    // classes SuperRC such that:
    //
    //   R:SubRegIndex in this RC for all R in SuperRC.
    //
    DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
        SuperRegClasses;

    // Bit vector of TopoSigs for the registers in this class. This will be
    // very sparse on regular architectures.
    BitVector TopoSigs;

  public:
    unsigned EnumValue;
    StringRef Namespace;
    SmallVector<ValueTypeByHwMode, 4> VTs;
    RegSizeInfoByHwMode RSI;
    int CopyCost;
    bool Allocatable;
    StringRef AltOrderSelect;
    uint8_t AllocationPriority;
    /// Contains the combination of the lane masks of all subregisters.
    LaneBitmask LaneMask;
    /// True if there are at least 2 subregisters which do not interfere.
    bool HasDisjunctSubRegs;
    bool CoveredBySubRegs;
    /// A register class is artificial if all its members are artificial.
    bool Artificial;

    // Return the Record that defined this class, or NULL if the class was
    // created by TableGen.
    Record *getDef() const { return TheDef; }

    const std::string &getName() const { return Name; }
    std::string getQualifiedName() const;
    ArrayRef<ValueTypeByHwMode> getValueTypes() const { return VTs; }
    unsigned getNumValueTypes() const { return VTs.size(); }

    bool hasType(const ValueTypeByHwMode &VT) const {
      return std::find(VTs.begin(), VTs.end(), VT) != VTs.end();
    }

    const ValueTypeByHwMode &getValueTypeNum(unsigned VTNum) const {
      if (VTNum < VTs.size())
        return VTs[VTNum];
      llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
    }

    // Return true if this this class contains the register.
    bool contains(const CodeGenRegister*) const;

    // Returns true if RC is a subclass.
    // RC is a sub-class of this class if it is a valid replacement for any
    // instruction operand where a register of this classis required. It must
    // satisfy these conditions:
    //
    // 1. All RC registers are also in this.
    // 2. The RC spill size must not be smaller than our spill size.
    // 3. RC spill alignment must be compatible with ours.
    //
    bool hasSubClass(const CodeGenRegisterClass *RC) const {
      return SubClasses.test(RC->EnumValue);
    }

    // getSubClassWithSubReg - Returns the largest sub-class where all
    // registers have a SubIdx sub-register.
    CodeGenRegisterClass *
    getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
      return SubClassWithSubReg.lookup(SubIdx);
    }

    /// Find largest subclass where all registers have SubIdx subregisters in
    /// SubRegClass and the largest subregister class that contains those
    /// subregisters without (as far as possible) also containing additional registers.
    ///
    /// This can be used to find a suitable pair of classes for subregister copies.
    /// \return std::pair<SubClass, SubRegClass> where SubClass is a SubClass is
    /// a class where every register has SubIdx and SubRegClass is a class where
    /// every register is covered by the SubIdx subregister of SubClass.
    Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
    getMatchingSubClassWithSubRegs(CodeGenRegBank &RegBank,
                                   const CodeGenSubRegIndex *SubIdx) const;

    void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
                               CodeGenRegisterClass *SubRC) {
      SubClassWithSubReg[SubIdx] = SubRC;
    }

    // getSuperRegClasses - Returns a bit vector of all register classes
    // containing only SubIdx super-registers of this class.
    void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
                            BitVector &Out) const;

    // addSuperRegClass - Add a class containing only SubIdx super-registers.
    void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
                          CodeGenRegisterClass *SuperRC) {
      SuperRegClasses[SubIdx].insert(SuperRC);
    }

    // getSubClasses - Returns a constant BitVector of subclasses indexed by
    // EnumValue.
    // The SubClasses vector includes an entry for this class.
    const BitVector &getSubClasses() const { return SubClasses; }

    // getSuperClasses - Returns a list of super classes ordered by EnumValue.
    // The array does not include an entry for this class.
    ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
      return SuperClasses;
    }

    // Returns an ordered list of class members.
    // The order of registers is the same as in the .td file.
    // No = 0 is the default allocation order, No = 1 is the first alternative.
    ArrayRef<Record*> getOrder(unsigned No = 0) const {
        return Orders[No];
    }

    // Return the total number of allocation orders available.
    unsigned getNumOrders() const { return Orders.size(); }

    // Get the set of registers.  This set contains the same registers as
    // getOrder(0).
    const CodeGenRegister::Vec &getMembers() const { return Members; }

    // Get a bit vector of TopoSigs present in this register class.
    const BitVector &getTopoSigs() const { return TopoSigs; }

    // Populate a unique sorted list of units from a register set.
    void buildRegUnitSet(const CodeGenRegBank &RegBank,
                         std::vector<unsigned> &RegUnits) const;

    CodeGenRegisterClass(CodeGenRegBank&, Record *R);

    // A key representing the parts of a register class used for forming
    // sub-classes.  Note the ordering provided by this key is not the same as
    // the topological order used for the EnumValues.
    struct Key {
      const CodeGenRegister::Vec *Members;
      RegSizeInfoByHwMode RSI;

      Key(const CodeGenRegister::Vec *M, const RegSizeInfoByHwMode &I)
        : Members(M), RSI(I) {}

      Key(const CodeGenRegisterClass &RC)
        : Members(&RC.getMembers()), RSI(RC.RSI) {}

      // Lexicographical order of (Members, RegSizeInfoByHwMode).
      bool operator<(const Key&) const;
    };

    // Create a non-user defined register class.
    CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);

    // Called by CodeGenRegBank::CodeGenRegBank().
    static void computeSubClasses(CodeGenRegBank&);
  };

  // Register units are used to model interference and register pressure.
  // Every register is assigned one or more register units such that two
  // registers overlap if and only if they have a register unit in common.
  //
  // Normally, one register unit is created per leaf register. Non-leaf
  // registers inherit the units of their sub-registers.
  struct RegUnit {
    // Weight assigned to this RegUnit for estimating register pressure.
    // This is useful when equalizing weights in register classes with mixed
    // register topologies.
    unsigned Weight;

    // Each native RegUnit corresponds to one or two root registers. The full
    // set of registers containing this unit can be computed as the union of
    // these two registers and their super-registers.
    const CodeGenRegister *Roots[2];

    // Index into RegClassUnitSets where we can find the list of UnitSets that
    // contain this unit.
    unsigned RegClassUnitSetsIdx;
    // A register unit is artificial if at least one of its roots is
    // artificial.
    bool Artificial;

    RegUnit() : Weight(0), RegClassUnitSetsIdx(0), Artificial(false) {
      Roots[0] = Roots[1] = nullptr;
    }

    ArrayRef<const CodeGenRegister*> getRoots() const {
      assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
      return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
    }
  };

  // Each RegUnitSet is a sorted vector with a name.
  struct RegUnitSet {
    typedef std::vector<unsigned>::const_iterator iterator;

    std::string Name;
    std::vector<unsigned> Units;
    unsigned Weight = 0; // Cache the sum of all unit weights.
    unsigned Order = 0;  // Cache the sort key.

    RegUnitSet() = default;
  };

  // Base vector for identifying TopoSigs. The contents uniquely identify a
  // TopoSig, only computeSuperRegs needs to know how.
  typedef SmallVector<unsigned, 16> TopoSigId;

  // CodeGenRegBank - Represent a target's registers and the relations between
  // them.
  class CodeGenRegBank {
    SetTheory Sets;

    const CodeGenHwModes &CGH;

    std::deque<CodeGenSubRegIndex> SubRegIndices;
    DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;

    CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);

    typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
                     CodeGenSubRegIndex*> ConcatIdxMap;
    ConcatIdxMap ConcatIdx;

    // Registers.
    std::deque<CodeGenRegister> Registers;
    StringMap<CodeGenRegister*> RegistersByName;
    DenseMap<Record*, CodeGenRegister*> Def2Reg;
    unsigned NumNativeRegUnits;

    std::map<TopoSigId, unsigned> TopoSigs;

    // Includes native (0..NumNativeRegUnits-1) and adopted register units.
    SmallVector<RegUnit, 8> RegUnits;

    // Register classes.
    std::list<CodeGenRegisterClass> RegClasses;
    DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
    typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
    RCKeyMap Key2RC;

    // Remember each unique set of register units. Initially, this contains a
    // unique set for each register class. Simliar sets are coalesced with
    // pruneUnitSets and new supersets are inferred during computeRegUnitSets.
    std::vector<RegUnitSet> RegUnitSets;

    // Map RegisterClass index to the index of the RegUnitSet that contains the
    // class's units and any inferred RegUnit supersets.
    //
    // NOTE: This could grow beyond the number of register classes when we map
    // register units to lists of unit sets. If the list of unit sets does not
    // already exist for a register class, we create a new entry in this vector.
    std::vector<std::vector<unsigned>> RegClassUnitSets;

    // Give each register unit set an order based on sorting criteria.
    std::vector<unsigned> RegUnitSetOrder;

    // Keep track of synthesized definitions generated in TupleExpander.
    std::vector<std::unique_ptr<Record>> SynthDefs;

    // Add RC to *2RC maps.
    void addToMaps(CodeGenRegisterClass*);

    // Create a synthetic sub-class if it is missing.
    CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
                                              const CodeGenRegister::Vec *Membs,
                                              StringRef Name);

    // Infer missing register classes.
    void computeInferredRegisterClasses();
    void inferCommonSubClass(CodeGenRegisterClass *RC);
    void inferSubClassWithSubReg(CodeGenRegisterClass *RC);

    void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
      inferMatchingSuperRegClass(RC, RegClasses.begin());
    }

    void inferMatchingSuperRegClass(
        CodeGenRegisterClass *RC,
        std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);

    // Iteratively prune unit sets.
    void pruneUnitSets();

    // Compute a weight for each register unit created during getSubRegs.
    void computeRegUnitWeights();

    // Create a RegUnitSet for each RegClass and infer superclasses.
    void computeRegUnitSets();

    // Populate the Composite map from sub-register relationships.
    void computeComposites();

    // Compute a lane mask for each sub-register index.
    void computeSubRegLaneMasks();

    /// Computes a lane mask for each register unit enumerated by a physical
    /// register.
    void computeRegUnitLaneMasks();

  public:
    CodeGenRegBank(RecordKeeper&, const CodeGenHwModes&);

    SetTheory &getSets() { return Sets; }

    const CodeGenHwModes &getHwModes() const { return CGH; }

    // Sub-register indices. The first NumNamedIndices are defined by the user
    // in the .td files. The rest are synthesized such that all sub-registers
    // have a unique name.
    const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
      return SubRegIndices;
    }

    // Find a SubRegIndex form its Record def.
    CodeGenSubRegIndex *getSubRegIdx(Record*);

    // Find or create a sub-register index representing the A+B composition.
    CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
                                                CodeGenSubRegIndex *B);

    // Find or create a sub-register index representing the concatenation of
    // non-overlapping sibling indices.
    CodeGenSubRegIndex *
      getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);

    const std::deque<CodeGenRegister> &getRegisters() const {
      return Registers;
    }

    const StringMap<CodeGenRegister *> &getRegistersByName() const {
      return RegistersByName;
    }

    // Find a register from its Record def.
    CodeGenRegister *getReg(Record*);

    // Get a Register's index into the Registers array.
    unsigned getRegIndex(const CodeGenRegister *Reg) const {
      return Reg->EnumValue - 1;
    }

    // Return the number of allocated TopoSigs. The first TopoSig representing
    // leaf registers is allocated number 0.
    unsigned getNumTopoSigs() const {
      return TopoSigs.size();
    }

    // Find or create a TopoSig for the given TopoSigId.
    // This function is only for use by CodeGenRegister::computeSuperRegs().
    // Others should simply use Reg->getTopoSig().
    unsigned getTopoSig(const TopoSigId &Id) {
      return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
    }

    // Create a native register unit that is associated with one or two root
    // registers.
    unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
      RegUnits.resize(RegUnits.size() + 1);
      RegUnit &RU = RegUnits.back();
      RU.Roots[0] = R0;
      RU.Roots[1] = R1;
      RU.Artificial = R0->Artificial;
      if (R1)
        RU.Artificial |= R1->Artificial;
      return RegUnits.size() - 1;
    }

    // Create a new non-native register unit that can be adopted by a register
    // to increase its pressure. Note that NumNativeRegUnits is not increased.
    unsigned newRegUnit(unsigned Weight) {
      RegUnits.resize(RegUnits.size() + 1);
      RegUnits.back().Weight = Weight;
      return RegUnits.size() - 1;
    }

    // Native units are the singular unit of a leaf register. Register aliasing
    // is completely characterized by native units. Adopted units exist to give
    // register additional weight but don't affect aliasing.
    bool isNativeUnit(unsigned RUID) const {
      return RUID < NumNativeRegUnits;
    }

    unsigned getNumNativeRegUnits() const {
      return NumNativeRegUnits;
    }

    RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
    const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }

    std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }

    const std::list<CodeGenRegisterClass> &getRegClasses() const {
      return RegClasses;
    }

    // Find a register class from its def.
    CodeGenRegisterClass *getRegClass(Record*);

    /// getRegisterClassForRegister - Find the register class that contains the
    /// specified physical register.  If the register is not in a register
    /// class, return null. If the register is in multiple classes, and the
    /// classes have a superset-subset relationship and the same set of types,
    /// return the superclass.  Otherwise return null.
    const CodeGenRegisterClass* getRegClassForRegister(Record *R);

    // Analog of TargetRegisterInfo::getMinimalPhysRegClass. Unlike
    // getRegClassForRegister, this tries to find the smallest class containing
    // the physical register. If \p VT is specified, it will only find classes
    // with a matching type
    const CodeGenRegisterClass *
    getMinimalPhysRegClass(Record *RegRecord, ValueTypeByHwMode *VT = nullptr);

    // Get the sum of unit weights.
    unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
      unsigned Weight = 0;
      for (std::vector<unsigned>::const_iterator
             I = Units.begin(), E = Units.end(); I != E; ++I)
        Weight += getRegUnit(*I).Weight;
      return Weight;
    }

    unsigned getRegSetIDAt(unsigned Order) const {
      return RegUnitSetOrder[Order];
    }

    const RegUnitSet &getRegSetAt(unsigned Order) const {
      return RegUnitSets[RegUnitSetOrder[Order]];
    }

    // Increase a RegUnitWeight.
    void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
      getRegUnit(RUID).Weight += Inc;
    }

    // Get the number of register pressure dimensions.
    unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }

    // Get a set of register unit IDs for a given dimension of pressure.
    const RegUnitSet &getRegPressureSet(unsigned Idx) const {
      return RegUnitSets[Idx];
    }

    // The number of pressure set lists may be larget than the number of
    // register classes if some register units appeared in a list of sets that
    // did not correspond to an existing register class.
    unsigned getNumRegClassPressureSetLists() const {
      return RegClassUnitSets.size();
    }

    // Get a list of pressure set IDs for a register class. Liveness of a
    // register in this class impacts each pressure set in this list by the
    // weight of the register. An exact solution requires all registers in a
    // class to have the same class, but it is not strictly guaranteed.
    ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
      return RegClassUnitSets[RCIdx];
    }

    // Computed derived records such as missing sub-register indices.
    void computeDerivedInfo();

    // Compute the set of registers completely covered by the registers in Regs.
    // The returned BitVector will have a bit set for each register in Regs,
    // all sub-registers, and all super-registers that are covered by the
    // registers in Regs.
    //
    // This is used to compute the mask of call-preserved registers from a list
    // of callee-saves.
    BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);

    // Bit mask of lanes that cover their registers. A sub-register index whose
    // LaneMask is contained in CoveringLanes will be completely covered by
    // another sub-register with the same or larger lane mask.
    LaneBitmask CoveringLanes;

    // Helper function for printing debug information. Handles artificial
    // (non-native) reg units.
    void printRegUnitName(unsigned Unit) const;
  };

} // end namespace llvm

#endif // LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H