CodeGenSchedule.cpp
84.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate the machine model as described in
// the target description.
//
//===----------------------------------------------------------------------===//
#include "CodeGenSchedule.h"
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include <algorithm>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "subtarget-emitter"
#ifndef NDEBUG
static void dumpIdxVec(ArrayRef<unsigned> V) {
for (unsigned Idx : V)
dbgs() << Idx << ", ";
}
#endif
namespace {
// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
struct InstrsOp : public SetTheory::Operator {
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) override {
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
}
};
// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
struct InstRegexOp : public SetTheory::Operator {
const CodeGenTarget &Target;
InstRegexOp(const CodeGenTarget &t): Target(t) {}
/// Remove any text inside of parentheses from S.
static std::string removeParens(llvm::StringRef S) {
std::string Result;
unsigned Paren = 0;
// NB: We don't care about escaped parens here.
for (char C : S) {
switch (C) {
case '(':
++Paren;
break;
case ')':
--Paren;
break;
default:
if (Paren == 0)
Result += C;
}
}
return Result;
}
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) override {
ArrayRef<const CodeGenInstruction *> Instructions =
Target.getInstructionsByEnumValue();
unsigned NumGeneric = Target.getNumFixedInstructions();
unsigned NumPseudos = Target.getNumPseudoInstructions();
auto Generics = Instructions.slice(0, NumGeneric);
auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
StringInit *SI = dyn_cast<StringInit>(Arg);
if (!SI)
PrintFatalError(Loc, "instregex requires pattern string: " +
Expr->getAsString());
StringRef Original = SI->getValue();
// Extract a prefix that we can binary search on.
static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
auto FirstMeta = Original.find_first_of(RegexMetachars);
// Look for top-level | or ?. We cannot optimize them to binary search.
if (removeParens(Original).find_first_of("|?") != std::string::npos)
FirstMeta = 0;
Optional<Regex> Regexpr = None;
StringRef Prefix = Original.substr(0, FirstMeta);
StringRef PatStr = Original.substr(FirstMeta);
if (!PatStr.empty()) {
// For the rest use a python-style prefix match.
std::string pat = PatStr;
if (pat[0] != '^') {
pat.insert(0, "^(");
pat.insert(pat.end(), ')');
}
Regexpr = Regex(pat);
}
int NumMatches = 0;
// The generic opcodes are unsorted, handle them manually.
for (auto *Inst : Generics) {
StringRef InstName = Inst->TheDef->getName();
if (InstName.startswith(Prefix) &&
(!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
Elts.insert(Inst->TheDef);
NumMatches++;
}
}
// Target instructions are split into two ranges: pseudo instructions
// first, than non-pseudos. Each range is in lexicographical order
// sorted by name. Find the sub-ranges that start with our prefix.
struct Comp {
bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
return LHS->TheDef->getName() < RHS;
}
bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
return LHS < RHS->TheDef->getName() &&
!RHS->TheDef->getName().startswith(LHS);
}
};
auto Range1 =
std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
Prefix, Comp());
// For these ranges we know that instruction names start with the prefix.
// Check if there's a regex that needs to be checked.
const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
StringRef InstName = Inst->TheDef->getName();
if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
Elts.insert(Inst->TheDef);
NumMatches++;
}
};
std::for_each(Range1.first, Range1.second, HandleNonGeneric);
std::for_each(Range2.first, Range2.second, HandleNonGeneric);
if (0 == NumMatches)
PrintFatalError(Loc, "instregex has no matches: " + Original);
}
}
};
} // end anonymous namespace
/// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
const CodeGenTarget &TGT):
Records(RK), Target(TGT) {
Sets.addFieldExpander("InstRW", "Instrs");
// Allow Set evaluation to recognize the dags used in InstRW records:
// (instrs Op1, Op1...)
Sets.addOperator("instrs", std::make_unique<InstrsOp>());
Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
// Instantiate a CodeGenProcModel for each SchedMachineModel with the values
// that are explicitly referenced in tablegen records. Resources associated
// with each processor will be derived later. Populate ProcModelMap with the
// CodeGenProcModel instances.
collectProcModels();
// Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
// defined, and populate SchedReads and SchedWrites vectors. Implicit
// SchedReadWrites that represent sequences derived from expanded variant will
// be inferred later.
collectSchedRW();
// Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
// required by an instruction definition, and populate SchedClassIdxMap. Set
// NumItineraryClasses to the number of explicit itinerary classes referenced
// by instructions. Set NumInstrSchedClasses to the number of itinerary
// classes plus any classes implied by instructions that derive from class
// Sched and provide SchedRW list. This does not infer any new classes from
// SchedVariant.
collectSchedClasses();
// Find instruction itineraries for each processor. Sort and populate
// CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
// all itinerary classes to be discovered.
collectProcItins();
// Find ItinRW records for each processor and itinerary class.
// (For per-operand resources mapped to itinerary classes).
collectProcItinRW();
// Find UnsupportedFeatures records for each processor.
// (For per-operand resources mapped to itinerary classes).
collectProcUnsupportedFeatures();
// Infer new SchedClasses from SchedVariant.
inferSchedClasses();
// Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
// ProcResourceDefs.
LLVM_DEBUG(
dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
collectProcResources();
// Collect optional processor description.
collectOptionalProcessorInfo();
// Check MCInstPredicate definitions.
checkMCInstPredicates();
// Check STIPredicate definitions.
checkSTIPredicates();
// Find STIPredicate definitions for each processor model, and construct
// STIPredicateFunction objects.
collectSTIPredicates();
checkCompleteness();
}
void CodeGenSchedModels::checkSTIPredicates() const {
DenseMap<StringRef, const Record *> Declarations;
// There cannot be multiple declarations with the same name.
const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
for (const Record *R : Decls) {
StringRef Name = R->getValueAsString("Name");
const auto It = Declarations.find(Name);
if (It == Declarations.end()) {
Declarations[Name] = R;
continue;
}
PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
PrintNote(It->second->getLoc(), "Previous declaration was here.");
PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
}
// Disallow InstructionEquivalenceClasses with an empty instruction list.
const RecVec Defs =
Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
for (const Record *R : Defs) {
RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
if (Opcodes.empty()) {
PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
"defined with an empty opcode list.");
}
}
}
// Used by function `processSTIPredicate` to construct a mask of machine
// instruction operands.
static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
APInt OperandMask;
if (Indices.empty())
return OperandMask;
int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
assert(MaxIndex >= 0 && "Invalid negative indices in input!");
OperandMask = OperandMask.zext(MaxIndex + 1);
for (const int64_t Index : Indices) {
assert(Index >= 0 && "Invalid negative indices!");
OperandMask.setBit(Index);
}
return OperandMask;
}
static void
processSTIPredicate(STIPredicateFunction &Fn,
const DenseMap<Record *, unsigned> &ProcModelMap) {
DenseMap<const Record *, unsigned> Opcode2Index;
using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
std::vector<OpcodeMapPair> OpcodeMappings;
std::vector<std::pair<APInt, APInt>> OpcodeMasks;
DenseMap<const Record *, unsigned> Predicate2Index;
unsigned NumUniquePredicates = 0;
// Number unique predicates and opcodes used by InstructionEquivalenceClass
// definitions. Each unique opcode will be associated with an OpcodeInfo
// object.
for (const Record *Def : Fn.getDefinitions()) {
RecVec Classes = Def->getValueAsListOfDefs("Classes");
for (const Record *EC : Classes) {
const Record *Pred = EC->getValueAsDef("Predicate");
if (Predicate2Index.find(Pred) == Predicate2Index.end())
Predicate2Index[Pred] = NumUniquePredicates++;
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
for (const Record *Opcode : Opcodes) {
if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
Opcode2Index[Opcode] = OpcodeMappings.size();
OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
}
}
}
}
// Initialize vector `OpcodeMasks` with default values. We want to keep track
// of which processors "use" which opcodes. We also want to be able to
// identify predicates that are used by different processors for a same
// opcode.
// This information is used later on by this algorithm to sort OpcodeMapping
// elements based on their processor and predicate sets.
OpcodeMasks.resize(OpcodeMappings.size());
APInt DefaultProcMask(ProcModelMap.size(), 0);
APInt DefaultPredMask(NumUniquePredicates, 0);
for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
// Construct a OpcodeInfo object for every unique opcode declared by an
// InstructionEquivalenceClass definition.
for (const Record *Def : Fn.getDefinitions()) {
RecVec Classes = Def->getValueAsListOfDefs("Classes");
const Record *SchedModel = Def->getValueAsDef("SchedModel");
unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
APInt ProcMask(ProcModelMap.size(), 0);
ProcMask.setBit(ProcIndex);
for (const Record *EC : Classes) {
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
std::vector<int64_t> OpIndices =
EC->getValueAsListOfInts("OperandIndices");
APInt OperandMask = constructOperandMask(OpIndices);
const Record *Pred = EC->getValueAsDef("Predicate");
APInt PredMask(NumUniquePredicates, 0);
PredMask.setBit(Predicate2Index[Pred]);
for (const Record *Opcode : Opcodes) {
unsigned OpcodeIdx = Opcode2Index[Opcode];
if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
std::string Message =
"Opcode " + Opcode->getName().str() +
" used by multiple InstructionEquivalenceClass definitions.";
PrintFatalError(EC->getLoc(), Message);
}
OpcodeMasks[OpcodeIdx].first |= ProcMask;
OpcodeMasks[OpcodeIdx].second |= PredMask;
OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
}
}
}
// Sort OpcodeMappings elements based on their CPU and predicate masks.
// As a last resort, order elements by opcode identifier.
llvm::sort(OpcodeMappings,
[&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
unsigned LhsIdx = Opcode2Index[Lhs.first];
unsigned RhsIdx = Opcode2Index[Rhs.first];
const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
unsigned LhsCountPopulation = Lhs.countPopulation();
unsigned RhsCountPopulation = Rhs.countPopulation();
return ((LhsCountPopulation < RhsCountPopulation) ||
((LhsCountPopulation == RhsCountPopulation) &&
(Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
};
if (LhsMasks.first != RhsMasks.first)
return LessThan(LhsMasks.first, RhsMasks.first);
if (LhsMasks.second != RhsMasks.second)
return LessThan(LhsMasks.second, RhsMasks.second);
return LhsIdx < RhsIdx;
});
// Now construct opcode groups. Groups are used by the SubtargetEmitter when
// expanding the body of a STIPredicate function. In particular, each opcode
// group is expanded into a sequence of labels in a switch statement.
// It identifies opcodes for which different processors define same predicates
// and same opcode masks.
for (OpcodeMapPair &Info : OpcodeMappings)
Fn.addOpcode(Info.first, std::move(Info.second));
}
void CodeGenSchedModels::collectSTIPredicates() {
// Map STIPredicateDecl records to elements of vector
// CodeGenSchedModels::STIPredicates.
DenseMap<const Record *, unsigned> Decl2Index;
RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
for (const Record *R : RV) {
const Record *Decl = R->getValueAsDef("Declaration");
const auto It = Decl2Index.find(Decl);
if (It == Decl2Index.end()) {
Decl2Index[Decl] = STIPredicates.size();
STIPredicateFunction Predicate(Decl);
Predicate.addDefinition(R);
STIPredicates.emplace_back(std::move(Predicate));
continue;
}
STIPredicateFunction &PreviousDef = STIPredicates[It->second];
PreviousDef.addDefinition(R);
}
for (STIPredicateFunction &Fn : STIPredicates)
processSTIPredicate(Fn, ProcModelMap);
}
void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
const llvm::APInt &OperandMask,
const Record *Predicate) {
auto It = llvm::find_if(
Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
return P.Predicate == Predicate && P.OperandMask == OperandMask;
});
if (It == Predicates.end()) {
Predicates.emplace_back(CpuMask, OperandMask, Predicate);
return;
}
It->ProcModelMask |= CpuMask;
}
void CodeGenSchedModels::checkMCInstPredicates() const {
RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
if (MCPredicates.empty())
return;
// A target cannot have multiple TIIPredicate definitions with a same name.
llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
for (const Record *TIIPred : MCPredicates) {
StringRef Name = TIIPred->getValueAsString("FunctionName");
StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
if (It == TIIPredicates.end()) {
TIIPredicates[Name] = TIIPred;
continue;
}
PrintError(TIIPred->getLoc(),
"TIIPredicate " + Name + " is multiply defined.");
PrintNote(It->second->getLoc(),
" Previous definition of " + Name + " was here.");
PrintFatalError(TIIPred->getLoc(),
"Found conflicting definitions of TIIPredicate.");
}
}
void CodeGenSchedModels::collectRetireControlUnits() {
RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
for (Record *RCU : Units) {
CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
if (PM.RetireControlUnit) {
PrintError(RCU->getLoc(),
"Expected a single RetireControlUnit definition");
PrintNote(PM.RetireControlUnit->getLoc(),
"Previous definition of RetireControlUnit was here");
}
PM.RetireControlUnit = RCU;
}
}
void CodeGenSchedModels::collectLoadStoreQueueInfo() {
RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
for (Record *Queue : Queues) {
CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
if (Queue->isSubClassOf("LoadQueue")) {
if (PM.LoadQueue) {
PrintError(Queue->getLoc(),
"Expected a single LoadQueue definition");
PrintNote(PM.LoadQueue->getLoc(),
"Previous definition of LoadQueue was here");
}
PM.LoadQueue = Queue;
}
if (Queue->isSubClassOf("StoreQueue")) {
if (PM.StoreQueue) {
PrintError(Queue->getLoc(),
"Expected a single StoreQueue definition");
PrintNote(PM.LoadQueue->getLoc(),
"Previous definition of StoreQueue was here");
}
PM.StoreQueue = Queue;
}
}
}
/// Collect optional processor information.
void CodeGenSchedModels::collectOptionalProcessorInfo() {
// Find register file definitions for each processor.
collectRegisterFiles();
// Collect processor RetireControlUnit descriptors if available.
collectRetireControlUnits();
// Collect information about load/store queues.
collectLoadStoreQueueInfo();
checkCompleteness();
}
/// Gather all processor models.
void CodeGenSchedModels::collectProcModels() {
RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
llvm::sort(ProcRecords, LessRecordFieldName());
// Reserve space because we can. Reallocation would be ok.
ProcModels.reserve(ProcRecords.size()+1);
// Use idx=0 for NoModel/NoItineraries.
Record *NoModelDef = Records.getDef("NoSchedModel");
Record *NoItinsDef = Records.getDef("NoItineraries");
ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
ProcModelMap[NoModelDef] = 0;
// For each processor, find a unique machine model.
LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
for (Record *ProcRecord : ProcRecords)
addProcModel(ProcRecord);
}
/// Get a unique processor model based on the defined MachineModel and
/// ProcessorItineraries.
void CodeGenSchedModels::addProcModel(Record *ProcDef) {
Record *ModelKey = getModelOrItinDef(ProcDef);
if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
return;
std::string Name = ModelKey->getName();
if (ModelKey->isSubClassOf("SchedMachineModel")) {
Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
}
else {
// An itinerary is defined without a machine model. Infer a new model.
if (!ModelKey->getValueAsListOfDefs("IID").empty())
Name = Name + "Model";
ProcModels.emplace_back(ProcModels.size(), Name,
ProcDef->getValueAsDef("SchedModel"), ModelKey);
}
LLVM_DEBUG(ProcModels.back().dump());
}
// Recursively find all reachable SchedReadWrite records.
static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
SmallPtrSet<Record*, 16> &RWSet) {
if (!RWSet.insert(RWDef).second)
return;
RWDefs.push_back(RWDef);
// Reads don't currently have sequence records, but it can be added later.
if (RWDef->isSubClassOf("WriteSequence")) {
RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
for (Record *WSRec : Seq)
scanSchedRW(WSRec, RWDefs, RWSet);
}
else if (RWDef->isSubClassOf("SchedVariant")) {
// Visit each variant (guarded by a different predicate).
RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
for (Record *Variant : Vars) {
// Visit each RW in the sequence selected by the current variant.
RecVec Selected = Variant->getValueAsListOfDefs("Selected");
for (Record *SelDef : Selected)
scanSchedRW(SelDef, RWDefs, RWSet);
}
}
}
// Collect and sort all SchedReadWrites reachable via tablegen records.
// More may be inferred later when inferring new SchedClasses from variants.
void CodeGenSchedModels::collectSchedRW() {
// Reserve idx=0 for invalid writes/reads.
SchedWrites.resize(1);
SchedReads.resize(1);
SmallPtrSet<Record*, 16> RWSet;
// Find all SchedReadWrites referenced by instruction defs.
RecVec SWDefs, SRDefs;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
Record *SchedDef = Inst->TheDef;
if (SchedDef->isValueUnset("SchedRW"))
continue;
RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
for (Record *RW : RWs) {
if (RW->isSubClassOf("SchedWrite"))
scanSchedRW(RW, SWDefs, RWSet);
else {
assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RW, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by InstRW.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
for (Record *InstRWDef : InstRWDefs) {
// For all OperandReadWrites.
RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
scanSchedRW(RWDef, SWDefs, RWSet);
else {
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RWDef, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by ItinRW.
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
for (Record *ItinRWDef : ItinRWDefs) {
// For all OperandReadWrites.
RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
scanSchedRW(RWDef, SWDefs, RWSet);
else {
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RWDef, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
// for the loop below that initializes Alias vectors.
RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
llvm::sort(AliasDefs, LessRecord());
for (Record *ADef : AliasDefs) {
Record *MatchDef = ADef->getValueAsDef("MatchRW");
Record *AliasDef = ADef->getValueAsDef("AliasRW");
if (MatchDef->isSubClassOf("SchedWrite")) {
if (!AliasDef->isSubClassOf("SchedWrite"))
PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
scanSchedRW(AliasDef, SWDefs, RWSet);
}
else {
assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
if (!AliasDef->isSubClassOf("SchedRead"))
PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
scanSchedRW(AliasDef, SRDefs, RWSet);
}
}
// Sort and add the SchedReadWrites directly referenced by instructions or
// itinerary resources. Index reads and writes in separate domains.
llvm::sort(SWDefs, LessRecord());
for (Record *SWDef : SWDefs) {
assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
SchedWrites.emplace_back(SchedWrites.size(), SWDef);
}
llvm::sort(SRDefs, LessRecord());
for (Record *SRDef : SRDefs) {
assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
SchedReads.emplace_back(SchedReads.size(), SRDef);
}
// Initialize WriteSequence vectors.
for (CodeGenSchedRW &CGRW : SchedWrites) {
if (!CGRW.IsSequence)
continue;
findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
/*IsRead=*/false);
}
// Initialize Aliases vectors.
for (Record *ADef : AliasDefs) {
Record *AliasDef = ADef->getValueAsDef("AliasRW");
getSchedRW(AliasDef).IsAlias = true;
Record *MatchDef = ADef->getValueAsDef("MatchRW");
CodeGenSchedRW &RW = getSchedRW(MatchDef);
if (RW.IsAlias)
PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
RW.Aliases.push_back(ADef);
}
LLVM_DEBUG(
dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
dbgs() << WIdx << ": ";
SchedWrites[WIdx].dump();
dbgs() << '\n';
} for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
++RIdx) {
dbgs() << RIdx << ": ";
SchedReads[RIdx].dump();
dbgs() << '\n';
} RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
for (Record *RWDef
: RWDefs) {
if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
StringRef Name = RWDef->getName();
if (Name != "NoWrite" && Name != "ReadDefault")
dbgs() << "Unused SchedReadWrite " << Name << '\n';
}
});
}
/// Compute a SchedWrite name from a sequence of writes.
std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
std::string Name("(");
for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
if (I != Seq.begin())
Name += '_';
Name += getSchedRW(*I, IsRead).Name;
}
Name += ')';
return Name;
}
unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
bool IsRead) const {
const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
const auto I = find_if(
RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}
bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
for (const CodeGenSchedRW &Read : SchedReads) {
Record *ReadDef = Read.TheDef;
if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
continue;
RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
if (is_contained(ValidWrites, WriteDef)) {
return true;
}
}
return false;
}
static void splitSchedReadWrites(const RecVec &RWDefs,
RecVec &WriteDefs, RecVec &ReadDefs) {
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
WriteDefs.push_back(RWDef);
else {
assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
ReadDefs.push_back(RWDef);
}
}
}
// Split the SchedReadWrites defs and call findRWs for each list.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
IdxVec &Writes, IdxVec &Reads) const {
RecVec WriteDefs;
RecVec ReadDefs;
splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
findRWs(WriteDefs, Writes, false);
findRWs(ReadDefs, Reads, true);
}
// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
bool IsRead) const {
for (Record *RWDef : RWDefs) {
unsigned Idx = getSchedRWIdx(RWDef, IsRead);
assert(Idx && "failed to collect SchedReadWrite");
RWs.push_back(Idx);
}
}
void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
bool IsRead) const {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (!SchedRW.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
for (int i = 0; i < Repeat; ++i) {
for (unsigned I : SchedRW.Sequence) {
expandRWSequence(I, RWSeq, IsRead);
}
}
}
// Expand a SchedWrite as a sequence following any aliases that coincide with
// the given processor model.
void CodeGenSchedModels::expandRWSeqForProc(
unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
const CodeGenProcModel &ProcModel) const {
const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
Record *AliasDef = nullptr;
for (const Record *Rec : SchedWrite.Aliases) {
const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
if (Rec->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = Rec->getValueAsDef("SchedModel");
if (&getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef) {
expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
RWSeq, IsRead,ProcModel);
return;
}
if (!SchedWrite.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
for (int I = 0, E = Repeat; I < E; ++I) {
for (unsigned Idx : SchedWrite.Sequence) {
expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
}
}
}
// Find the existing SchedWrite that models this sequence of writes.
unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
bool IsRead) {
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
return makeArrayRef(RW.Sequence) == Seq;
});
// Index zero reserved for invalid RW.
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}
/// Add this ReadWrite if it doesn't already exist.
unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
bool IsRead) {
assert(!Seq.empty() && "cannot insert empty sequence");
if (Seq.size() == 1)
return Seq.back();
unsigned Idx = findRWForSequence(Seq, IsRead);
if (Idx)
return Idx;
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
unsigned RWIdx = RWVec.size();
CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
RWVec.push_back(SchedRW);
return RWIdx;
}
/// Visit all the instruction definitions for this target to gather and
/// enumerate the itinerary classes. These are the explicitly specified
/// SchedClasses. More SchedClasses may be inferred.
void CodeGenSchedModels::collectSchedClasses() {
// NoItinerary is always the first class at Idx=0
assert(SchedClasses.empty() && "Expected empty sched class");
SchedClasses.emplace_back(0, "NoInstrModel",
Records.getDef("NoItinerary"));
SchedClasses.back().ProcIndices.push_back(0);
// Create a SchedClass for each unique combination of itinerary class and
// SchedRW list.
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
IdxVec Writes, Reads;
if (!Inst->TheDef->isValueUnset("SchedRW"))
findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
// ProcIdx == 0 indicates the class applies to all processors.
unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
InstrClassMap[Inst->TheDef] = SCIdx;
}
// Create classes for InstRW defs.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
llvm::sort(InstRWDefs, LessRecord());
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
for (Record *RWDef : InstRWDefs)
createInstRWClass(RWDef);
NumInstrSchedClasses = SchedClasses.size();
bool EnableDump = false;
LLVM_DEBUG(EnableDump = true);
if (!EnableDump)
return;
LLVM_DEBUG(
dbgs()
<< "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
StringRef InstName = Inst->TheDef->getName();
unsigned SCIdx = getSchedClassIdx(*Inst);
if (!SCIdx) {
LLVM_DEBUG({
if (!Inst->hasNoSchedulingInfo)
dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
});
continue;
}
CodeGenSchedClass &SC = getSchedClass(SCIdx);
if (SC.ProcIndices[0] != 0)
PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
"must not be subtarget specific.");
IdxVec ProcIndices;
if (SC.ItinClassDef->getName() != "NoItinerary") {
ProcIndices.push_back(0);
dbgs() << "Itinerary for " << InstName << ": "
<< SC.ItinClassDef->getName() << '\n';
}
if (!SC.Writes.empty()) {
ProcIndices.push_back(0);
LLVM_DEBUG({
dbgs() << "SchedRW machine model for " << InstName;
for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
++WI)
dbgs() << " " << SchedWrites[*WI].Name;
for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
dbgs() << " " << SchedReads[*RI].Name;
dbgs() << '\n';
});
}
const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
for (Record *RWDef : RWDefs) {
const CodeGenProcModel &ProcModel =
getProcModel(RWDef->getValueAsDef("SchedModel"));
ProcIndices.push_back(ProcModel.Index);
LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
<< InstName);
IdxVec Writes;
IdxVec Reads;
findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
LLVM_DEBUG({
for (unsigned WIdx : Writes)
dbgs() << " " << SchedWrites[WIdx].Name;
for (unsigned RIdx : Reads)
dbgs() << " " << SchedReads[RIdx].Name;
dbgs() << '\n';
});
}
// If ProcIndices contains zero, the class applies to all processors.
LLVM_DEBUG({
if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
for (const CodeGenProcModel &PM : ProcModels) {
if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
dbgs() << "No machine model for " << Inst->TheDef->getName()
<< " on processor " << PM.ModelName << '\n';
}
}
});
}
}
// Get the SchedClass index for an instruction.
unsigned
CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
return InstrClassMap.lookup(Inst.TheDef);
}
std::string
CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads) {
std::string Name;
if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
Name = ItinClassDef->getName();
for (unsigned Idx : OperWrites) {
if (!Name.empty())
Name += '_';
Name += SchedWrites[Idx].Name;
}
for (unsigned Idx : OperReads) {
Name += '_';
Name += SchedReads[Idx].Name;
}
return Name;
}
std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
std::string Name;
for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
if (I != InstDefs.begin())
Name += '_';
Name += (*I)->getName();
}
return Name;
}
/// Add an inferred sched class from an itinerary class and per-operand list of
/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
/// processors that may utilize this class.
unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads,
ArrayRef<unsigned> ProcIndices) {
assert(!ProcIndices.empty() && "expect at least one ProcIdx");
auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
};
auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
IdxVec PI;
std::set_union(SchedClasses[Idx].ProcIndices.begin(),
SchedClasses[Idx].ProcIndices.end(),
ProcIndices.begin(), ProcIndices.end(),
std::back_inserter(PI));
SchedClasses[Idx].ProcIndices = std::move(PI);
return Idx;
}
Idx = SchedClasses.size();
SchedClasses.emplace_back(Idx,
createSchedClassName(ItinClassDef, OperWrites,
OperReads),
ItinClassDef);
CodeGenSchedClass &SC = SchedClasses.back();
SC.Writes = OperWrites;
SC.Reads = OperReads;
SC.ProcIndices = ProcIndices;
return Idx;
}
// Create classes for each set of opcodes that are in the same InstReadWrite
// definition across all processors.
void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
// ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
// intersects with an existing class via a previous InstRWDef. Instrs that do
// not intersect with an existing class refer back to their former class as
// determined from ItinDef or SchedRW.
SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
// Sort Instrs into sets.
const RecVec *InstDefs = Sets.expand(InstRWDef);
if (InstDefs->empty())
PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
for (Record *InstDef : *InstDefs) {
InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
if (Pos == InstrClassMap.end())
PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
unsigned SCIdx = Pos->second;
ClassInstrs[SCIdx].push_back(InstDef);
}
// For each set of Instrs, create a new class if necessary, and map or remap
// the Instrs to it.
for (auto &Entry : ClassInstrs) {
unsigned OldSCIdx = Entry.first;
ArrayRef<Record*> InstDefs = Entry.second;
// If the all instrs in the current class are accounted for, then leave
// them mapped to their old class.
if (OldSCIdx) {
const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
if (!RWDefs.empty()) {
const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
unsigned OrigNumInstrs =
count_if(*OrigInstDefs, [&](Record *OIDef) {
return InstrClassMap[OIDef] == OldSCIdx;
});
if (OrigNumInstrs == InstDefs.size()) {
assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
"expected a generic SchedClass");
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
// Make sure we didn't already have a InstRW containing this
// instruction on this model.
for (Record *RWD : RWDefs) {
if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
for (Record *Inst : InstDefs) {
PrintFatalError
(InstRWDef->getLoc(),
"Overlapping InstRW definition for \"" +
Inst->getName() +
"\" also matches previous \"" +
RWD->getValue("Instrs")->getValue()->getAsString() +
"\".");
}
}
}
LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
<< SchedClasses[OldSCIdx].Name << " on "
<< RWModelDef->getName() << "\n");
SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
continue;
}
}
}
unsigned SCIdx = SchedClasses.size();
SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
CodeGenSchedClass &SC = SchedClasses.back();
LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
<< InstRWDef->getValueAsDef("SchedModel")->getName()
<< "\n");
// Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
SC.Writes = SchedClasses[OldSCIdx].Writes;
SC.Reads = SchedClasses[OldSCIdx].Reads;
SC.ProcIndices.push_back(0);
// If we had an old class, copy it's InstRWs to this new class.
if (OldSCIdx) {
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
for (Record *InstDef : InstDefs) {
PrintFatalError
(InstRWDef->getLoc(),
"Overlapping InstRW definition for \"" +
InstDef->getName() +
"\" also matches previous \"" +
OldRWDef->getValue("Instrs")->getValue()->getAsString() +
"\".");
}
}
assert(OldRWDef != InstRWDef &&
"SchedClass has duplicate InstRW def");
SC.InstRWs.push_back(OldRWDef);
}
}
// Map each Instr to this new class.
for (Record *InstDef : InstDefs)
InstrClassMap[InstDef] = SCIdx;
SC.InstRWs.push_back(InstRWDef);
}
}
// True if collectProcItins found anything.
bool CodeGenSchedModels::hasItineraries() const {
for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
if (PM.hasItineraries())
return true;
return false;
}
// Gather the processor itineraries.
void CodeGenSchedModels::collectProcItins() {
LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
for (CodeGenProcModel &ProcModel : ProcModels) {
if (!ProcModel.hasItineraries())
continue;
RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
// Populate ItinDefList with Itinerary records.
ProcModel.ItinDefList.resize(NumInstrSchedClasses);
// Insert each itinerary data record in the correct position within
// the processor model's ItinDefList.
for (Record *ItinData : ItinRecords) {
const Record *ItinDef = ItinData->getValueAsDef("TheClass");
bool FoundClass = false;
for (const CodeGenSchedClass &SC :
make_range(schedClassBegin(), schedClassEnd())) {
// Multiple SchedClasses may share an itinerary. Update all of them.
if (SC.ItinClassDef == ItinDef) {
ProcModel.ItinDefList[SC.Index] = ItinData;
FoundClass = true;
}
}
if (!FoundClass) {
LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
<< " missing class for itinerary "
<< ItinDef->getName() << '\n');
}
}
// Check for missing itinerary entries.
assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
LLVM_DEBUG(
for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
if (!ProcModel.ItinDefList[i])
dbgs() << ProcModel.ItinsDef->getName()
<< " missing itinerary for class " << SchedClasses[i].Name
<< '\n';
});
}
}
// Gather the read/write types for each itinerary class.
void CodeGenSchedModels::collectProcItinRW() {
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
llvm::sort(ItinRWDefs, LessRecord());
for (Record *RWDef : ItinRWDefs) {
if (!RWDef->getValueInit("SchedModel")->isComplete())
PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
Record *ModelDef = RWDef->getValueAsDef("SchedModel");
ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
if (I == ProcModelMap.end()) {
PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
+ ModelDef->getName());
}
ProcModels[I->second].ItinRWDefs.push_back(RWDef);
}
}
// Gather the unsupported features for processor models.
void CodeGenSchedModels::collectProcUnsupportedFeatures() {
for (CodeGenProcModel &ProcModel : ProcModels) {
for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
}
}
}
/// Infer new classes from existing classes. In the process, this may create new
/// SchedWrites from sequences of existing SchedWrites.
void CodeGenSchedModels::inferSchedClasses() {
LLVM_DEBUG(
dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
// Visit all existing classes and newly created classes.
for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
if (SchedClasses[Idx].ItinClassDef)
inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
if (!SchedClasses[Idx].InstRWs.empty())
inferFromInstRWs(Idx);
if (!SchedClasses[Idx].Writes.empty()) {
inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
Idx, SchedClasses[Idx].ProcIndices);
}
assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
"too many SchedVariants");
}
}
/// Infer classes from per-processor itinerary resources.
void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
unsigned FromClassIdx) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (const Record *Rec : PM.ItinRWDefs) {
RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
continue;
if (HasMatch)
PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
inferFromRW(Writes, Reads, FromClassIdx, PIdx);
}
}
}
/// Infer classes from per-processor InstReadWrite definitions.
void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
Record *Rec = SchedClasses[SCIdx].InstRWs[I];
const RecVec *InstDefs = Sets.expand(Rec);
RecIter II = InstDefs->begin(), IE = InstDefs->end();
for (; II != IE; ++II) {
if (InstrClassMap[*II] == SCIdx)
break;
}
// If this class no longer has any instructions mapped to it, it has become
// irrelevant.
if (II == IE)
continue;
IdxVec Writes, Reads;
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
}
}
namespace {
// Helper for substituteVariantOperand.
struct TransVariant {
Record *VarOrSeqDef; // Variant or sequence.
unsigned RWIdx; // Index of this variant or sequence's matched type.
unsigned ProcIdx; // Processor model index or zero for any.
unsigned TransVecIdx; // Index into PredTransitions::TransVec.
TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
};
// Associate a predicate with the SchedReadWrite that it guards.
// RWIdx is the index of the read/write variant.
struct PredCheck {
bool IsRead;
unsigned RWIdx;
Record *Predicate;
PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
};
// A Predicate transition is a list of RW sequences guarded by a PredTerm.
struct PredTransition {
// A predicate term is a conjunction of PredChecks.
SmallVector<PredCheck, 4> PredTerm;
SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
SmallVector<unsigned, 4> ProcIndices;
};
// Encapsulate a set of partially constructed transitions.
// The results are built by repeated calls to substituteVariants.
class PredTransitions {
CodeGenSchedModels &SchedModels;
public:
std::vector<PredTransition> TransVec;
PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
bool IsRead, unsigned StartIdx);
void substituteVariants(const PredTransition &Trans);
#ifndef NDEBUG
void dump() const;
#endif
private:
bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
void getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants);
void pushVariant(const TransVariant &VInfo, bool IsRead);
};
} // end anonymous namespace
// Return true if this predicate is mutually exclusive with a PredTerm. This
// degenerates into checking if the predicate is mutually exclusive with any
// predicate in the Term's conjunction.
//
// All predicates associated with a given SchedRW are considered mutually
// exclusive. This should work even if the conditions expressed by the
// predicates are not exclusive because the predicates for a given SchedWrite
// are always checked in the order they are defined in the .td file. Later
// conditions implicitly negate any prior condition.
bool PredTransitions::mutuallyExclusive(Record *PredDef,
ArrayRef<PredCheck> Term) {
for (const PredCheck &PC: Term) {
if (PC.Predicate == PredDef)
return false;
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
if (any_of(Variants, [PredDef](const Record *R) {
return R->getValueAsDef("Predicate") == PredDef;
}))
return true;
}
return false;
}
static bool hasAliasedVariants(const CodeGenSchedRW &RW,
CodeGenSchedModels &SchedModels) {
if (RW.HasVariants)
return true;
for (Record *Alias : RW.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
if (AliasRW.HasVariants)
return true;
if (AliasRW.IsSequence) {
IdxVec ExpandedRWs;
SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
for (unsigned SI : ExpandedRWs) {
if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
SchedModels))
return true;
}
}
}
return false;
}
static bool hasVariant(ArrayRef<PredTransition> Transitions,
CodeGenSchedModels &SchedModels) {
for (const PredTransition &PTI : Transitions) {
for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
for (unsigned WI : WSI)
if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
return true;
for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
for (unsigned RI : RSI)
if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
return true;
}
return false;
}
// Populate IntersectingVariants with any variants or aliased sequences of the
// given SchedRW whose processor indices and predicates are not mutually
// exclusive with the given transition.
void PredTransitions::getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants) {
bool GenericRW = false;
std::vector<TransVariant> Variants;
if (SchedRW.HasVariants) {
unsigned VarProcIdx = 0;
if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
// Push each variant. Assign TransVecIdx later.
const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
for (Record *VarDef : VarDefs)
Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
if (VarProcIdx == 0)
GenericRW = true;
}
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
AI != AE; ++AI) {
// If either the SchedAlias itself or the SchedReadWrite that it aliases
// to is defined within a processor model, constrain all variants to
// that processor.
unsigned AliasProcIdx = 0;
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
if (AliasRW.HasVariants) {
const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
for (Record *VD : VarDefs)
Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
}
if (AliasRW.IsSequence)
Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
if (AliasProcIdx == 0)
GenericRW = true;
}
for (TransVariant &Variant : Variants) {
// Don't expand variants if the processor models don't intersect.
// A zero processor index means any processor.
SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
if (ProcIndices[0] && Variant.ProcIdx) {
unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
Variant.ProcIdx);
if (!Cnt)
continue;
if (Cnt > 1) {
const CodeGenProcModel &PM =
*(SchedModels.procModelBegin() + Variant.ProcIdx);
PrintFatalError(Variant.VarOrSeqDef->getLoc(),
"Multiple variants defined for processor " +
PM.ModelName +
" Ensure only one SchedAlias exists per RW.");
}
}
if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
continue;
}
if (IntersectingVariants.empty()) {
// The first variant builds on the existing transition.
Variant.TransVecIdx = TransIdx;
IntersectingVariants.push_back(Variant);
}
else {
// Push another copy of the current transition for more variants.
Variant.TransVecIdx = TransVec.size();
IntersectingVariants.push_back(Variant);
TransVec.push_back(TransVec[TransIdx]);
}
}
if (GenericRW && IntersectingVariants.empty()) {
PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
"a matching predicate on any processor");
}
}
// Push the Reads/Writes selected by this variant onto the PredTransition
// specified by VInfo.
void PredTransitions::
pushVariant(const TransVariant &VInfo, bool IsRead) {
PredTransition &Trans = TransVec[VInfo.TransVecIdx];
// If this operand transition is reached through a processor-specific alias,
// then the whole transition is specific to this processor.
if (VInfo.ProcIdx != 0)
Trans.ProcIndices.assign(1, VInfo.ProcIdx);
IdxVec SelectedRWs;
if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
}
else {
assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
"variant must be a SchedVariant or aliased WriteSequence");
SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
}
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
? Trans.ReadSequences : Trans.WriteSequences;
if (SchedRW.IsVariadic) {
unsigned OperIdx = RWSequences.size()-1;
// Make N-1 copies of this transition's last sequence.
RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
RWSequences[OperIdx]);
// Push each of the N elements of the SelectedRWs onto a copy of the last
// sequence (split the current operand into N operands).
// Note that write sequences should be expanded within this loop--the entire
// sequence belongs to a single operand.
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
RWI != RWE; ++RWI, ++OperIdx) {
IdxVec ExpandedRWs;
if (IsRead)
ExpandedRWs.push_back(*RWI);
else
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
ExpandedRWs.begin(), ExpandedRWs.end());
}
assert(OperIdx == RWSequences.size() && "missed a sequence");
}
else {
// Push this transition's expanded sequence onto this transition's last
// sequence (add to the current operand's sequence).
SmallVectorImpl<unsigned> &Seq = RWSequences.back();
IdxVec ExpandedRWs;
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
RWI != RWE; ++RWI) {
if (IsRead)
ExpandedRWs.push_back(*RWI);
else
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
}
Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
}
}
// RWSeq is a sequence of all Reads or all Writes for the next read or write
// operand. StartIdx is an index into TransVec where partial results
// starts. RWSeq must be applied to all transitions between StartIdx and the end
// of TransVec.
void PredTransitions::substituteVariantOperand(
const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
// Visit each original RW within the current sequence.
for (SmallVectorImpl<unsigned>::const_iterator
RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
// Push this RW on all partial PredTransitions or distribute variants.
// New PredTransitions may be pushed within this loop which should not be
// revisited (TransEnd must be loop invariant).
for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
TransIdx != TransEnd; ++TransIdx) {
// In the common case, push RW onto the current operand's sequence.
if (!hasAliasedVariants(SchedRW, SchedModels)) {
if (IsRead)
TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
else
TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
continue;
}
// Distribute this partial PredTransition across intersecting variants.
// This will push a copies of TransVec[TransIdx] on the back of TransVec.
std::vector<TransVariant> IntersectingVariants;
getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
// Now expand each variant on top of its copy of the transition.
for (std::vector<TransVariant>::const_iterator
IVI = IntersectingVariants.begin(),
IVE = IntersectingVariants.end();
IVI != IVE; ++IVI) {
pushVariant(*IVI, IsRead);
}
}
}
}
// For each variant of a Read/Write in Trans, substitute the sequence of
// Read/Writes guarded by the variant. This is exponential in the number of
// variant Read/Writes, but in practice detection of mutually exclusive
// predicates should result in linear growth in the total number variants.
//
// This is one step in a breadth-first search of nested variants.
void PredTransitions::substituteVariants(const PredTransition &Trans) {
// Build up a set of partial results starting at the back of
// PredTransitions. Remember the first new transition.
unsigned StartIdx = TransVec.size();
TransVec.emplace_back();
TransVec.back().PredTerm = Trans.PredTerm;
TransVec.back().ProcIndices = Trans.ProcIndices;
// Visit each original write sequence.
for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
WSI != WSE; ++WSI) {
// Push a new (empty) write sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->WriteSequences.emplace_back();
}
substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
}
// Visit each original read sequence.
for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
RSI != RSE; ++RSI) {
// Push a new (empty) read sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->ReadSequences.emplace_back();
}
substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
}
}
// Create a new SchedClass for each variant found by inferFromRW. Pass
static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
unsigned FromClassIdx,
CodeGenSchedModels &SchedModels) {
// For each PredTransition, create a new CodeGenSchedTransition, which usually
// requires creating a new SchedClass.
for (ArrayRef<PredTransition>::iterator
I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
IdxVec OperWritesVariant;
transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
[&SchedModels](ArrayRef<unsigned> WS) {
return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
});
IdxVec OperReadsVariant;
transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
[&SchedModels](ArrayRef<unsigned> RS) {
return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
});
CodeGenSchedTransition SCTrans;
SCTrans.ToClassIdx =
SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
OperReadsVariant, I->ProcIndices);
SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
// The final PredTerm is unique set of predicates guarding the transition.
RecVec Preds;
transform(I->PredTerm, std::back_inserter(Preds),
[](const PredCheck &P) {
return P.Predicate;
});
Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
SCTrans.PredTerm = std::move(Preds);
SchedModels.getSchedClass(FromClassIdx)
.Transitions.push_back(std::move(SCTrans));
}
}
// Create new SchedClasses for the given ReadWrite list. If any of the
// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
// of the ReadWrite list, following Aliases if necessary.
void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads,
unsigned FromClassIdx,
ArrayRef<unsigned> ProcIndices) {
LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
dbgs() << ") ");
// Create a seed transition with an empty PredTerm and the expanded sequences
// of SchedWrites for the current SchedClass.
std::vector<PredTransition> LastTransitions;
LastTransitions.emplace_back();
LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
ProcIndices.end());
for (unsigned WriteIdx : OperWrites) {
IdxVec WriteSeq;
expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
LastTransitions[0].WriteSequences.emplace_back();
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
Seq.append(WriteSeq.begin(), WriteSeq.end());
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
LLVM_DEBUG(dbgs() << " Reads: ");
for (unsigned ReadIdx : OperReads) {
IdxVec ReadSeq;
expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
LastTransitions[0].ReadSequences.emplace_back();
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
Seq.append(ReadSeq.begin(), ReadSeq.end());
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
LLVM_DEBUG(dbgs() << '\n');
// Collect all PredTransitions for individual operands.
// Iterate until no variant writes remain.
while (hasVariant(LastTransitions, *this)) {
PredTransitions Transitions(*this);
for (const PredTransition &Trans : LastTransitions)
Transitions.substituteVariants(Trans);
LLVM_DEBUG(Transitions.dump());
LastTransitions.swap(Transitions.TransVec);
}
// If the first transition has no variants, nothing to do.
if (LastTransitions[0].PredTerm.empty())
return;
// WARNING: We are about to mutate the SchedClasses vector. Do not refer to
// OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
inferFromTransitions(LastTransitions, FromClassIdx, *this);
}
// Check if any processor resource group contains all resource records in
// SubUnits.
bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
continue;
RecVec SuperUnits =
PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
RecIter RI = SubUnits.begin(), RE = SubUnits.end();
for ( ; RI != RE; ++RI) {
if (!is_contained(SuperUnits, *RI)) {
break;
}
}
if (RI == RE)
return true;
}
return false;
}
// Verify that overlapping groups have a common supergroup.
void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
continue;
RecVec CheckUnits =
PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
for (unsigned j = i+1; j < e; ++j) {
if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
continue;
RecVec OtherUnits =
PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
OtherUnits.begin(), OtherUnits.end())
!= CheckUnits.end()) {
// CheckUnits and OtherUnits overlap
OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
CheckUnits.end());
if (!hasSuperGroup(OtherUnits, PM)) {
PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
"proc resource group overlaps with "
+ PM.ProcResourceDefs[j]->getName()
+ " but no supergroup contains both.");
}
}
}
}
}
// Collect all the RegisterFile definitions available in this target.
void CodeGenSchedModels::collectRegisterFiles() {
RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
// RegisterFiles is the vector of CodeGenRegisterFile.
for (Record *RF : RegisterFileDefs) {
// For each register file definition, construct a CodeGenRegisterFile object
// and add it to the appropriate scheduling model.
CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
CGRF.MaxMovesEliminatedPerCycle =
RF->getValueAsInt("MaxMovesEliminatedPerCycle");
CGRF.AllowZeroMoveEliminationOnly =
RF->getValueAsBit("AllowZeroMoveEliminationOnly");
// Now set the number of physical registers as well as the cost of registers
// in each register class.
CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
if (!CGRF.NumPhysRegs) {
PrintFatalError(RF->getLoc(),
"Invalid RegisterFile with zero physical registers");
}
RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
bool AllowMoveElim = false;
if (MoveElimInfo->size() > I) {
BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
AllowMoveElim = Val->getValue();
}
CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
}
}
}
// Collect and sort WriteRes, ReadAdvance, and ProcResources.
void CodeGenSchedModels::collectProcResources() {
ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
// Add any subtarget-specific SchedReadWrites that are directly associated
// with processor resources. Refer to the parent SchedClass's ProcIndices to
// determine which processors they apply to.
for (const CodeGenSchedClass &SC :
make_range(schedClassBegin(), schedClassEnd())) {
if (SC.ItinClassDef) {
collectItinProcResources(SC.ItinClassDef);
continue;
}
// This class may have a default ReadWrite list which can be overriden by
// InstRW definitions.
for (Record *RW : SC.InstRWs) {
Record *RWModelDef = RW->getValueAsDef("SchedModel");
unsigned PIdx = getProcModel(RWModelDef).Index;
IdxVec Writes, Reads;
findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
collectRWResources(Writes, Reads, PIdx);
}
collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
}
// Add resources separately defined by each subtarget.
RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
for (Record *WR : WRDefs) {
Record *ModelDef = WR->getValueAsDef("SchedModel");
addWriteRes(WR, getProcModel(ModelDef).Index);
}
RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
for (Record *SWR : SWRDefs) {
Record *ModelDef = SWR->getValueAsDef("SchedModel");
addWriteRes(SWR, getProcModel(ModelDef).Index);
}
RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
for (Record *RA : RADefs) {
Record *ModelDef = RA->getValueAsDef("SchedModel");
addReadAdvance(RA, getProcModel(ModelDef).Index);
}
RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
for (Record *SRA : SRADefs) {
if (SRA->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = SRA->getValueAsDef("SchedModel");
addReadAdvance(SRA, getProcModel(ModelDef).Index);
}
}
// Add ProcResGroups that are defined within this processor model, which may
// not be directly referenced but may directly specify a buffer size.
RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
for (Record *PRG : ProcResGroups) {
if (!PRG->getValueInit("SchedModel")->isComplete())
continue;
CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
if (!is_contained(PM.ProcResourceDefs, PRG))
PM.ProcResourceDefs.push_back(PRG);
}
// Add ProcResourceUnits unconditionally.
for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
if (!PRU->getValueInit("SchedModel")->isComplete())
continue;
CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
if (!is_contained(PM.ProcResourceDefs, PRU))
PM.ProcResourceDefs.push_back(PRU);
}
// Finalize each ProcModel by sorting the record arrays.
for (CodeGenProcModel &PM : ProcModels) {
llvm::sort(PM.WriteResDefs, LessRecord());
llvm::sort(PM.ReadAdvanceDefs, LessRecord());
llvm::sort(PM.ProcResourceDefs, LessRecord());
LLVM_DEBUG(
PM.dump();
dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
RE = PM.WriteResDefs.end();
RI != RE; ++RI) {
if ((*RI)->isSubClassOf("WriteRes"))
dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
else
dbgs() << (*RI)->getName() << " ";
} dbgs() << "\nReadAdvanceDefs: ";
for (RecIter RI = PM.ReadAdvanceDefs.begin(),
RE = PM.ReadAdvanceDefs.end();
RI != RE; ++RI) {
if ((*RI)->isSubClassOf("ReadAdvance"))
dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
else
dbgs() << (*RI)->getName() << " ";
} dbgs()
<< "\nProcResourceDefs: ";
for (RecIter RI = PM.ProcResourceDefs.begin(),
RE = PM.ProcResourceDefs.end();
RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
<< '\n');
verifyProcResourceGroups(PM);
}
ProcResourceDefs.clear();
ProcResGroups.clear();
}
void CodeGenSchedModels::checkCompleteness() {
bool Complete = true;
bool HadCompleteModel = false;
for (const CodeGenProcModel &ProcModel : procModels()) {
const bool HasItineraries = ProcModel.hasItineraries();
if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
continue;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
if (Inst->hasNoSchedulingInfo)
continue;
if (ProcModel.isUnsupported(*Inst))
continue;
unsigned SCIdx = getSchedClassIdx(*Inst);
if (!SCIdx) {
if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
PrintError(Inst->TheDef->getLoc(),
"No schedule information for instruction '" +
Inst->TheDef->getName() + "' in SchedMachineModel '" +
ProcModel.ModelDef->getName() + "'");
Complete = false;
}
continue;
}
const CodeGenSchedClass &SC = getSchedClass(SCIdx);
if (!SC.Writes.empty())
continue;
if (HasItineraries && SC.ItinClassDef != nullptr &&
SC.ItinClassDef->getName() != "NoItinerary")
continue;
const RecVec &InstRWs = SC.InstRWs;
auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
});
if (I == InstRWs.end()) {
PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
"' lacks information for '" +
Inst->TheDef->getName() + "'");
Complete = false;
}
}
HadCompleteModel = true;
}
if (!Complete) {
errs() << "\n\nIncomplete schedule models found.\n"
<< "- Consider setting 'CompleteModel = 0' while developing new models.\n"
<< "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
<< "- Instructions should usually have Sched<[...]> as a superclass, "
"you may temporarily use an empty list.\n"
<< "- Instructions related to unsupported features can be excluded with "
"list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
"processor model.\n\n";
PrintFatalError("Incomplete schedule model");
}
}
// Collect itinerary class resources for each processor.
void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
II != IE; ++II) {
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
continue;
if (HasMatch)
PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
collectRWResources(Writes, Reads, PIdx);
}
}
}
void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
ArrayRef<unsigned> ProcIndices) {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (SchedRW.TheDef) {
if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
for (unsigned Idx : ProcIndices)
addWriteRes(SchedRW.TheDef, Idx);
}
else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
for (unsigned Idx : ProcIndices)
addReadAdvance(SchedRW.TheDef, Idx);
}
}
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
AI != AE; ++AI) {
IdxVec AliasProcIndices;
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
AliasProcIndices.push_back(
getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
}
else
AliasProcIndices = ProcIndices;
const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
IdxVec ExpandedRWs;
expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
SI != SE; ++SI) {
collectRWResources(*SI, IsRead, AliasProcIndices);
}
}
}
// Collect resources for a set of read/write types and processor indices.
void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
ArrayRef<unsigned> Reads,
ArrayRef<unsigned> ProcIndices) {
for (unsigned Idx : Writes)
collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
for (unsigned Idx : Reads)
collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
}
// Find the processor's resource units for this kind of resource.
Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
const CodeGenProcModel &PM,
ArrayRef<SMLoc> Loc) const {
if (ProcResKind->isSubClassOf("ProcResourceUnits"))
return ProcResKind;
Record *ProcUnitDef = nullptr;
assert(!ProcResourceDefs.empty());
assert(!ProcResGroups.empty());
for (Record *ProcResDef : ProcResourceDefs) {
if (ProcResDef->getValueAsDef("Kind") == ProcResKind
&& ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError(Loc,
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = ProcResDef;
}
}
for (Record *ProcResGroup : ProcResGroups) {
if (ProcResGroup == ProcResKind
&& ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError(Loc,
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = ProcResGroup;
}
}
if (!ProcUnitDef) {
PrintFatalError(Loc,
"No ProcessorResources associated with "
+ ProcResKind->getName());
}
return ProcUnitDef;
}
// Iteratively add a resource and its super resources.
void CodeGenSchedModels::addProcResource(Record *ProcResKind,
CodeGenProcModel &PM,
ArrayRef<SMLoc> Loc) {
while (true) {
Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
// See if this ProcResource is already associated with this processor.
if (is_contained(PM.ProcResourceDefs, ProcResUnits))
return;
PM.ProcResourceDefs.push_back(ProcResUnits);
if (ProcResUnits->isSubClassOf("ProcResGroup"))
return;
if (!ProcResUnits->getValueInit("Super")->isComplete())
return;
ProcResKind = ProcResUnits->getValueAsDef("Super");
}
}
// Add resources for a SchedWrite to this processor if they don't exist.
void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
assert(PIdx && "don't add resources to an invalid Processor model");
RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
if (is_contained(WRDefs, ProcWriteResDef))
return;
WRDefs.push_back(ProcWriteResDef);
// Visit ProcResourceKinds referenced by the newly discovered WriteRes.
RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
WritePRI != WritePRE; ++WritePRI) {
addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
}
}
// Add resources for a ReadAdvance to this processor if they don't exist.
void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
unsigned PIdx) {
RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
if (is_contained(RADefs, ProcReadAdvanceDef))
return;
RADefs.push_back(ProcReadAdvanceDef);
}
unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
RecIter PRPos = find(ProcResourceDefs, PRDef);
if (PRPos == ProcResourceDefs.end())
PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
"the ProcResources list for " + ModelName);
// Idx=0 is reserved for invalid.
return 1 + (PRPos - ProcResourceDefs.begin());
}
bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
for (const Record *TheDef : UnsupportedFeaturesDefs) {
for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
if (TheDef->getName() == PredDef->getName())
return true;
}
}
return false;
}
#ifndef NDEBUG
void CodeGenProcModel::dump() const {
dbgs() << Index << ": " << ModelName << " "
<< (ModelDef ? ModelDef->getName() : "inferred") << " "
<< (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
}
void CodeGenSchedRW::dump() const {
dbgs() << Name << (IsVariadic ? " (V) " : " ");
if (IsSequence) {
dbgs() << "(";
dumpIdxVec(Sequence);
dbgs() << ")";
}
}
void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
<< " Writes: ";
for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
SchedModels->getSchedWrite(Writes[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n Reads: ";
for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
SchedModels->getSchedRead(Reads[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
if (!Transitions.empty()) {
dbgs() << "\n Transitions for Proc ";
for (const CodeGenSchedTransition &Transition : Transitions) {
dumpIdxVec(Transition.ProcIndices);
}
}
}
void PredTransitions::dump() const {
dbgs() << "Expanded Variants:\n";
for (std::vector<PredTransition>::const_iterator
TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
dbgs() << "{";
for (SmallVectorImpl<PredCheck>::const_iterator
PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
PCI != PCE; ++PCI) {
if (PCI != TI->PredTerm.begin())
dbgs() << ", ";
dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
<< ":" << PCI->Predicate->getName();
}
dbgs() << "},\n => {";
for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
WSI != WSE; ++WSI) {
dbgs() << "(";
for (SmallVectorImpl<unsigned>::const_iterator
WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
if (WI != WSI->begin())
dbgs() << ", ";
dbgs() << SchedModels.getSchedWrite(*WI).Name;
}
dbgs() << "),";
}
dbgs() << "}\n";
}
}
#endif // NDEBUG