GICombinerEmitter.cpp 37.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
//===- GlobalCombinerEmitter.cpp - Generate a combiner --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Generate a combiner implementation for GlobalISel from a declarative
/// syntax
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/Timer.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include "CodeGenTarget.h"
#include "GlobalISel/CodeExpander.h"
#include "GlobalISel/CodeExpansions.h"
#include "GlobalISel/GIMatchDag.h"
#include "GlobalISel/GIMatchTree.h"
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "gicombiner-emitter"

// FIXME: Use ALWAYS_ENABLED_STATISTIC once it's available.
unsigned NumPatternTotal = 0;
STATISTIC(NumPatternTotalStatistic, "Total number of patterns");

cl::OptionCategory
    GICombinerEmitterCat("Options for -gen-global-isel-combiner");
static cl::list<std::string>
    SelectedCombiners("combiners", cl::desc("Emit the specified combiners"),
                      cl::cat(GICombinerEmitterCat), cl::CommaSeparated);
static cl::opt<bool> ShowExpansions(
    "gicombiner-show-expansions",
    cl::desc("Use C++ comments to indicate occurence of code expansion"),
    cl::cat(GICombinerEmitterCat));
static cl::opt<bool> StopAfterParse(
    "gicombiner-stop-after-parse",
    cl::desc("Stop processing after parsing rules and dump state"),
    cl::cat(GICombinerEmitterCat));
static cl::opt<bool> StopAfterBuild(
    "gicombiner-stop-after-build",
    cl::desc("Stop processing after building the match tree"),
    cl::cat(GICombinerEmitterCat));

namespace {
typedef uint64_t RuleID;

// We're going to be referencing the same small strings quite a lot for operand
// names and the like. Make their lifetime management simple with a global
// string table.
StringSet<> StrTab;

StringRef insertStrTab(StringRef S) {
  if (S.empty())
    return S;
  return StrTab.insert(S).first->first();
}

class format_partition_name {
  const GIMatchTree &Tree;
  unsigned Idx;

public:
  format_partition_name(const GIMatchTree &Tree, unsigned Idx)
      : Tree(Tree), Idx(Idx) {}
  void print(raw_ostream &OS) const {
    Tree.getPartitioner()->emitPartitionName(OS, Idx);
  }
};
raw_ostream &operator<<(raw_ostream &OS, const format_partition_name &Fmt) {
  Fmt.print(OS);
  return OS;
}

/// Declares data that is passed from the match stage to the apply stage.
class MatchDataInfo {
  /// The symbol used in the tablegen patterns
  StringRef PatternSymbol;
  /// The data type for the variable
  StringRef Type;
  /// The name of the variable as declared in the generated matcher.
  std::string VariableName;

public:
  MatchDataInfo(StringRef PatternSymbol, StringRef Type, StringRef VariableName)
      : PatternSymbol(PatternSymbol), Type(Type), VariableName(VariableName) {}

  StringRef getPatternSymbol() const { return PatternSymbol; };
  StringRef getType() const { return Type; };
  StringRef getVariableName() const { return VariableName; };
};

class RootInfo {
  StringRef PatternSymbol;

public:
  RootInfo(StringRef PatternSymbol) : PatternSymbol(PatternSymbol) {}

  StringRef getPatternSymbol() const { return PatternSymbol; }
};

class CombineRule {
public:

  using const_matchdata_iterator = std::vector<MatchDataInfo>::const_iterator;

  struct VarInfo {
    const GIMatchDagInstr *N;
    const GIMatchDagOperand *Op;
    const DagInit *Matcher;

  public:
    VarInfo(const GIMatchDagInstr *N, const GIMatchDagOperand *Op,
            const DagInit *Matcher)
        : N(N), Op(Op), Matcher(Matcher) {}
  };

protected:
  /// A unique ID for this rule
  /// ID's are used for debugging and run-time disabling of rules among other
  /// things.
  RuleID ID;

  /// A unique ID that can be used for anonymous objects belonging to this rule.
  /// Used to create unique names in makeNameForAnon*() without making tests
  /// overly fragile.
  unsigned UID = 0;

  /// The record defining this rule.
  const Record &TheDef;

  /// The roots of a match. These are the leaves of the DAG that are closest to
  /// the end of the function. I.e. the nodes that are encountered without
  /// following any edges of the DAG described by the pattern as we work our way
  /// from the bottom of the function to the top.
  std::vector<RootInfo> Roots;

  GIMatchDag MatchDag;

  /// A block of arbitrary C++ to finish testing the match.
  /// FIXME: This is a temporary measure until we have actual pattern matching
  const CodeInit *MatchingFixupCode = nullptr;

  /// The MatchData defined by the match stage and required by the apply stage.
  /// This allows the plumbing of arbitrary data from C++ predicates between the
  /// stages.
  ///
  /// For example, suppose you have:
  ///   %A = <some-constant-expr>
  ///   %0 = G_ADD %1, %A
  /// you could define a GIMatchPredicate that walks %A, constant folds as much
  /// as possible and returns an APInt containing the discovered constant. You
  /// could then declare:
  ///   def apint : GIDefMatchData<"APInt">;
  /// add it to the rule with:
  ///   (defs root:$root, apint:$constant)
  /// evaluate it in the pattern with a C++ function that takes a
  /// MachineOperand& and an APInt& with:
  ///   (match [{MIR %root = G_ADD %0, %A }],
  ///             (constantfold operand:$A, apint:$constant))
  /// and finally use it in the apply stage with:
  ///   (apply (create_operand
  ///                [{ MachineOperand::CreateImm(${constant}.getZExtValue());
  ///                ]}, apint:$constant),
  ///             [{MIR %root = FOO %0, %constant }])
  std::vector<MatchDataInfo> MatchDataDecls;

  void declareMatchData(StringRef PatternSymbol, StringRef Type,
                        StringRef VarName);

  bool parseInstructionMatcher(const CodeGenTarget &Target, StringInit *ArgName,
                               const Init &Arg,
                               StringMap<std::vector<VarInfo>> &NamedEdgeDefs,
                               StringMap<std::vector<VarInfo>> &NamedEdgeUses);
  bool parseWipMatchOpcodeMatcher(const CodeGenTarget &Target,
                                  StringInit *ArgName, const Init &Arg);

public:
  CombineRule(const CodeGenTarget &Target, GIMatchDagContext &Ctx, RuleID ID,
              const Record &R)
      : ID(ID), TheDef(R), MatchDag(Ctx) {}
  CombineRule(const CombineRule &) = delete;

  bool parseDefs();
  bool parseMatcher(const CodeGenTarget &Target);

  RuleID getID() const { return ID; }
  unsigned allocUID() { return UID++; }
  StringRef getName() const { return TheDef.getName(); }
  const Record &getDef() const { return TheDef; }
  const CodeInit *getMatchingFixupCode() const { return MatchingFixupCode; }
  size_t getNumRoots() const { return Roots.size(); }

  GIMatchDag &getMatchDag() { return MatchDag; }
  const GIMatchDag &getMatchDag() const { return MatchDag; }

  using const_root_iterator = std::vector<RootInfo>::const_iterator;
  const_root_iterator roots_begin() const { return Roots.begin(); }
  const_root_iterator roots_end() const { return Roots.end(); }
  iterator_range<const_root_iterator> roots() const {
    return llvm::make_range(Roots.begin(), Roots.end());
  }

  iterator_range<const_matchdata_iterator> matchdata_decls() const {
    return make_range(MatchDataDecls.begin(), MatchDataDecls.end());
  }

  /// Export expansions for this rule
  void declareExpansions(CodeExpansions &Expansions) const {
    for (const auto &I : matchdata_decls())
      Expansions.declare(I.getPatternSymbol(), I.getVariableName());
  }

  /// The matcher will begin from the roots and will perform the match by
  /// traversing the edges to cover the whole DAG. This function reverses DAG
  /// edges such that everything is reachable from a root. This is part of the
  /// preparation work for flattening the DAG into a tree.
  void reorientToRoots() {
    SmallSet<const GIMatchDagInstr *, 5> Roots;
    SmallSet<const GIMatchDagInstr *, 5> Visited;
    SmallSet<GIMatchDagEdge *, 20> EdgesRemaining;

    for (auto &I : MatchDag.roots()) {
      Roots.insert(I);
      Visited.insert(I);
    }
    for (auto &I : MatchDag.edges())
      EdgesRemaining.insert(I);

    bool Progressed = false;
    SmallSet<GIMatchDagEdge *, 20> EdgesToRemove;
    while (!EdgesRemaining.empty()) {
      for (auto EI = EdgesRemaining.begin(), EE = EdgesRemaining.end();
           EI != EE; ++EI) {
        if (Visited.count((*EI)->getFromMI())) {
          if (Roots.count((*EI)->getToMI()))
            PrintError(TheDef.getLoc(), "One or more roots are unnecessary");
          Visited.insert((*EI)->getToMI());
          EdgesToRemove.insert(*EI);
          Progressed = true;
        }
      }
      for (GIMatchDagEdge *ToRemove : EdgesToRemove)
        EdgesRemaining.erase(ToRemove);
      EdgesToRemove.clear();

      for (auto EI = EdgesRemaining.begin(), EE = EdgesRemaining.end();
           EI != EE; ++EI) {
        if (Visited.count((*EI)->getToMI())) {
          (*EI)->reverse();
          Visited.insert((*EI)->getToMI());
          EdgesToRemove.insert(*EI);
          Progressed = true;
        }
        for (GIMatchDagEdge *ToRemove : EdgesToRemove)
          EdgesRemaining.erase(ToRemove);
        EdgesToRemove.clear();
      }

      if (!Progressed) {
        LLVM_DEBUG(dbgs() << "No progress\n");
        return;
      }
      Progressed = false;
    }
  }
};

/// A convenience function to check that an Init refers to a specific def. This
/// is primarily useful for testing for defs and similar in DagInit's since
/// DagInit's support any type inside them.
static bool isSpecificDef(const Init &N, StringRef Def) {
  if (const DefInit *OpI = dyn_cast<DefInit>(&N))
    if (OpI->getDef()->getName() == Def)
      return true;
  return false;
}

/// A convenience function to check that an Init refers to a def that is a
/// subclass of the given class and coerce it to a def if it is. This is
/// primarily useful for testing for subclasses of GIMatchKind and similar in
/// DagInit's since DagInit's support any type inside them.
static Record *getDefOfSubClass(const Init &N, StringRef Cls) {
  if (const DefInit *OpI = dyn_cast<DefInit>(&N))
    if (OpI->getDef()->isSubClassOf(Cls))
      return OpI->getDef();
  return nullptr;
}

/// A convenience function to check that an Init refers to a dag whose operator
/// is a specific def and coerce it to a dag if it is. This is primarily useful
/// for testing for subclasses of GIMatchKind and similar in DagInit's since
/// DagInit's support any type inside them.
static const DagInit *getDagWithSpecificOperator(const Init &N,
                                                 StringRef Name) {
  if (const DagInit *I = dyn_cast<DagInit>(&N))
    if (I->getNumArgs() > 0)
      if (const DefInit *OpI = dyn_cast<DefInit>(I->getOperator()))
        if (OpI->getDef()->getName() == Name)
          return I;
  return nullptr;
}

/// A convenience function to check that an Init refers to a dag whose operator
/// is a def that is a subclass of the given class and coerce it to a dag if it
/// is. This is primarily useful for testing for subclasses of GIMatchKind and
/// similar in DagInit's since DagInit's support any type inside them.
static const DagInit *getDagWithOperatorOfSubClass(const Init &N,
                                                   StringRef Cls) {
  if (const DagInit *I = dyn_cast<DagInit>(&N))
    if (I->getNumArgs() > 0)
      if (const DefInit *OpI = dyn_cast<DefInit>(I->getOperator()))
        if (OpI->getDef()->isSubClassOf(Cls))
          return I;
  return nullptr;
}

StringRef makeNameForAnonInstr(CombineRule &Rule) {
  return insertStrTab(to_string(
      format("__anon%" PRIu64 "_%u", Rule.getID(), Rule.allocUID())));
}

StringRef makeDebugName(CombineRule &Rule, StringRef Name) {
  return insertStrTab(Name.empty() ? makeNameForAnonInstr(Rule) : StringRef(Name));
}

StringRef makeNameForAnonPredicate(CombineRule &Rule) {
  return insertStrTab(to_string(
      format("__anonpred%" PRIu64 "_%u", Rule.getID(), Rule.allocUID())));
}

void CombineRule::declareMatchData(StringRef PatternSymbol, StringRef Type,
                                   StringRef VarName) {
  MatchDataDecls.emplace_back(PatternSymbol, Type, VarName);
}

bool CombineRule::parseDefs() {
  NamedRegionTimer T("parseDefs", "Time spent parsing the defs", "Rule Parsing",
                     "Time spent on rule parsing", TimeRegions);
  DagInit *Defs = TheDef.getValueAsDag("Defs");

  if (Defs->getOperatorAsDef(TheDef.getLoc())->getName() != "defs") {
    PrintError(TheDef.getLoc(), "Expected defs operator");
    return false;
  }

  for (unsigned I = 0, E = Defs->getNumArgs(); I < E; ++I) {
    // Roots should be collected into Roots
    if (isSpecificDef(*Defs->getArg(I), "root")) {
      Roots.emplace_back(Defs->getArgNameStr(I));
      continue;
    }

    // Subclasses of GIDefMatchData should declare that this rule needs to pass
    // data from the match stage to the apply stage, and ensure that the
    // generated matcher has a suitable variable for it to do so.
    if (Record *MatchDataRec =
            getDefOfSubClass(*Defs->getArg(I), "GIDefMatchData")) {
      declareMatchData(Defs->getArgNameStr(I),
                       MatchDataRec->getValueAsString("Type"),
                       llvm::to_string(llvm::format("MatchData%" PRIu64, ID)));
      continue;
    }

    // Otherwise emit an appropriate error message.
    if (getDefOfSubClass(*Defs->getArg(I), "GIDefKind"))
      PrintError(TheDef.getLoc(),
                 "This GIDefKind not implemented in tablegen");
    else if (getDefOfSubClass(*Defs->getArg(I), "GIDefKindWithArgs"))
      PrintError(TheDef.getLoc(),
                 "This GIDefKindWithArgs not implemented in tablegen");
    else
      PrintError(TheDef.getLoc(),
                 "Expected a subclass of GIDefKind or a sub-dag whose "
                 "operator is of type GIDefKindWithArgs");
    return false;
  }

  if (Roots.empty()) {
    PrintError(TheDef.getLoc(), "Combine rules must have at least one root");
    return false;
  }
  return true;
}

// Parse an (Instruction $a:Arg1, $b:Arg2, ...) matcher. Edges are formed
// between matching operand names between different matchers.
bool CombineRule::parseInstructionMatcher(
    const CodeGenTarget &Target, StringInit *ArgName, const Init &Arg,
    StringMap<std::vector<VarInfo>> &NamedEdgeDefs,
    StringMap<std::vector<VarInfo>> &NamedEdgeUses) {
  if (const DagInit *Matcher =
          getDagWithOperatorOfSubClass(Arg, "Instruction")) {
    auto &Instr =
        Target.getInstruction(Matcher->getOperatorAsDef(TheDef.getLoc()));

    StringRef Name = ArgName ? ArgName->getValue() : "";

    GIMatchDagInstr *N =
        MatchDag.addInstrNode(makeDebugName(*this, Name), insertStrTab(Name),
                              MatchDag.getContext().makeOperandList(Instr));

    N->setOpcodeAnnotation(&Instr);
    const auto &P = MatchDag.addPredicateNode<GIMatchDagOpcodePredicate>(
        makeNameForAnonPredicate(*this), Instr);
    MatchDag.addPredicateDependency(N, nullptr, P, &P->getOperandInfo()["mi"]);
    unsigned OpIdx = 0;
    for (const auto &NameInit : Matcher->getArgNames()) {
      StringRef Name = insertStrTab(NameInit->getAsUnquotedString());
      if (Name.empty())
        continue;
      N->assignNameToOperand(OpIdx, Name);

      // Record the endpoints of any named edges. We'll add the cartesian
      // product of edges later.
      const auto &InstrOperand = N->getOperandInfo()[OpIdx];
      if (InstrOperand.isDef()) {
        NamedEdgeDefs.try_emplace(Name);
        NamedEdgeDefs[Name].emplace_back(N, &InstrOperand, Matcher);
      } else {
        NamedEdgeUses.try_emplace(Name);
        NamedEdgeUses[Name].emplace_back(N, &InstrOperand, Matcher);
      }

      if (InstrOperand.isDef()) {
        if (find_if(Roots, [&](const RootInfo &X) {
              return X.getPatternSymbol() == Name;
            }) != Roots.end()) {
          N->setMatchRoot();
        }
      }

      OpIdx++;
    }

    return true;
  }
  return false;
}

// Parse the wip_match_opcode placeholder that's temporarily present in lieu of
// implementing macros or choices between two matchers.
bool CombineRule::parseWipMatchOpcodeMatcher(const CodeGenTarget &Target,
                                             StringInit *ArgName,
                                             const Init &Arg) {
  if (const DagInit *Matcher =
          getDagWithSpecificOperator(Arg, "wip_match_opcode")) {
    StringRef Name = ArgName ? ArgName->getValue() : "";

    GIMatchDagInstr *N =
        MatchDag.addInstrNode(makeDebugName(*this, Name), insertStrTab(Name),
                              MatchDag.getContext().makeEmptyOperandList());

    if (find_if(Roots, [&](const RootInfo &X) {
          return ArgName && X.getPatternSymbol() == ArgName->getValue();
        }) != Roots.end()) {
      N->setMatchRoot();
    }

    const auto &P = MatchDag.addPredicateNode<GIMatchDagOneOfOpcodesPredicate>(
        makeNameForAnonPredicate(*this));
    MatchDag.addPredicateDependency(N, nullptr, P, &P->getOperandInfo()["mi"]);
    // Each argument is an opcode that will pass this predicate. Add them all to
    // the predicate implementation
    for (const auto &Arg : Matcher->getArgs()) {
      Record *OpcodeDef = getDefOfSubClass(*Arg, "Instruction");
      if (OpcodeDef) {
        P->addOpcode(&Target.getInstruction(OpcodeDef));
        continue;
      }
      PrintError(TheDef.getLoc(),
                 "Arguments to wip_match_opcode must be instructions");
      return false;
    }
    return true;
  }
  return false;
}
bool CombineRule::parseMatcher(const CodeGenTarget &Target) {
  NamedRegionTimer T("parseMatcher", "Time spent parsing the matcher",
                     "Rule Parsing", "Time spent on rule parsing", TimeRegions);
  StringMap<std::vector<VarInfo>> NamedEdgeDefs;
  StringMap<std::vector<VarInfo>> NamedEdgeUses;
  DagInit *Matchers = TheDef.getValueAsDag("Match");

  if (Matchers->getOperatorAsDef(TheDef.getLoc())->getName() != "match") {
    PrintError(TheDef.getLoc(), "Expected match operator");
    return false;
  }

  if (Matchers->getNumArgs() == 0) {
    PrintError(TheDef.getLoc(), "Matcher is empty");
    return false;
  }

  // The match section consists of a list of matchers and predicates. Parse each
  // one and add the equivalent GIMatchDag nodes, predicates, and edges.
  for (unsigned I = 0; I < Matchers->getNumArgs(); ++I) {
    if (parseInstructionMatcher(Target, Matchers->getArgName(I),
                                *Matchers->getArg(I), NamedEdgeDefs,
                                NamedEdgeUses))
      continue;

    if (parseWipMatchOpcodeMatcher(Target, Matchers->getArgName(I),
                                   *Matchers->getArg(I)))
      continue;


    // Parse arbitrary C++ code we have in lieu of supporting MIR matching
    if (const CodeInit *CodeI = dyn_cast<CodeInit>(Matchers->getArg(I))) {
      assert(!MatchingFixupCode &&
             "Only one block of arbitrary code is currently permitted");
      MatchingFixupCode = CodeI;
      MatchDag.setHasPostMatchPredicate(true);
      continue;
    }

    PrintError(TheDef.getLoc(),
               "Expected a subclass of GIMatchKind or a sub-dag whose "
               "operator is either of a GIMatchKindWithArgs or Instruction");
    PrintNote("Pattern was `" + Matchers->getArg(I)->getAsString() + "'");
    return false;
  }

  // Add the cartesian product of use -> def edges.
  bool FailedToAddEdges = false;
  for (const auto &NameAndDefs : NamedEdgeDefs) {
    if (NameAndDefs.getValue().size() > 1) {
      PrintError(TheDef.getLoc(),
                 "Two different MachineInstrs cannot def the same vreg");
      for (const auto &NameAndDefOp : NameAndDefs.getValue())
        PrintNote("in " + to_string(*NameAndDefOp.N) + " created from " +
                  to_string(*NameAndDefOp.Matcher) + "");
      FailedToAddEdges = true;
    }
    const auto &Uses = NamedEdgeUses[NameAndDefs.getKey()];
    for (const VarInfo &DefVar : NameAndDefs.getValue()) {
      for (const VarInfo &UseVar : Uses) {
        MatchDag.addEdge(insertStrTab(NameAndDefs.getKey()), UseVar.N, UseVar.Op,
                         DefVar.N, DefVar.Op);
      }
    }
  }
  if (FailedToAddEdges)
    return false;

  // If a variable is referenced in multiple use contexts then we need a
  // predicate to confirm they are the same operand. We can elide this if it's
  // also referenced in a def context and we're traversing the def-use chain
  // from the def to the uses but we can't know which direction we're going
  // until after reorientToRoots().
  for (const auto &NameAndUses : NamedEdgeUses) {
    const auto &Uses = NameAndUses.getValue();
    if (Uses.size() > 1) {
      const auto &LeadingVar = Uses.front();
      for (const auto &Var : ArrayRef<VarInfo>(Uses).drop_front()) {
        // Add a predicate for each pair until we've covered the whole
        // equivalence set. We could test the whole set in a single predicate
        // but that means we can't test any equivalence until all the MO's are
        // available which can lead to wasted work matching the DAG when this
        // predicate can already be seen to have failed.
        //
        // We have a similar problem due to the need to wait for a particular MO
        // before being able to test any of them. However, that is mitigated by
        // the order in which we build the DAG. We build from the roots outwards
        // so by using the first recorded use in all the predicates, we are
        // making the dependency on one of the earliest visited references in
        // the DAG. It's not guaranteed once the generated matcher is optimized
        // (because the factoring the common portions of rules might change the
        // visit order) but this should mean that these predicates depend on the
        // first MO to become available.
        const auto &P = MatchDag.addPredicateNode<GIMatchDagSameMOPredicate>(
            makeNameForAnonPredicate(*this));
        MatchDag.addPredicateDependency(LeadingVar.N, LeadingVar.Op, P,
                                        &P->getOperandInfo()["mi0"]);
        MatchDag.addPredicateDependency(Var.N, Var.Op, P,
                                        &P->getOperandInfo()["mi1"]);
      }
    }
  }
  return true;
}

class GICombinerEmitter {
  StringRef Name;
  const CodeGenTarget &Target;
  Record *Combiner;
  std::vector<std::unique_ptr<CombineRule>> Rules;
  GIMatchDagContext MatchDagCtx;

  std::unique_ptr<CombineRule> makeCombineRule(const Record &R);

  void gatherRules(std::vector<std::unique_ptr<CombineRule>> &ActiveRules,
                   const std::vector<Record *> &&RulesAndGroups);

public:
  explicit GICombinerEmitter(RecordKeeper &RK, const CodeGenTarget &Target,
                             StringRef Name, Record *Combiner);
  ~GICombinerEmitter() {}

  StringRef getClassName() const {
    return Combiner->getValueAsString("Classname");
  }
  void run(raw_ostream &OS);

  /// Emit the name matcher (guarded by #ifndef NDEBUG) used to disable rules in
  /// response to the generated cl::opt.
  void emitNameMatcher(raw_ostream &OS) const;

  void generateDeclarationsCodeForTree(raw_ostream &OS, const GIMatchTree &Tree) const;
  void generateCodeForTree(raw_ostream &OS, const GIMatchTree &Tree,
                           StringRef Indent) const;
};

GICombinerEmitter::GICombinerEmitter(RecordKeeper &RK,
                                     const CodeGenTarget &Target,
                                     StringRef Name, Record *Combiner)
    : Name(Name), Target(Target), Combiner(Combiner) {}

void GICombinerEmitter::emitNameMatcher(raw_ostream &OS) const {
  std::vector<std::pair<std::string, std::string>> Cases;
  Cases.reserve(Rules.size());

  for (const CombineRule &EnumeratedRule : make_pointee_range(Rules)) {
    std::string Code;
    raw_string_ostream SS(Code);
    SS << "return " << EnumeratedRule.getID() << ";\n";
    Cases.push_back(std::make_pair(EnumeratedRule.getName(), SS.str()));
  }

  OS << "static Optional<uint64_t> getRuleIdxForIdentifier(StringRef "
        "RuleIdentifier) {\n"
     << "  uint64_t I;\n"
     << "  // getAtInteger(...) returns false on success\n"
     << "  bool Parsed = !RuleIdentifier.getAsInteger(0, I);\n"
     << "  if (Parsed)\n"
     << "    return I;\n\n"
     << "#ifndef NDEBUG\n";
  StringMatcher Matcher("RuleIdentifier", Cases, OS);
  Matcher.Emit();
  OS << "#endif // ifndef NDEBUG\n\n"
     << "  return None;\n"
     << "}\n";
}

std::unique_ptr<CombineRule>
GICombinerEmitter::makeCombineRule(const Record &TheDef) {
  std::unique_ptr<CombineRule> Rule =
      std::make_unique<CombineRule>(Target, MatchDagCtx, NumPatternTotal, TheDef);

  if (!Rule->parseDefs())
    return nullptr;
  if (!Rule->parseMatcher(Target))
    return nullptr;

  Rule->reorientToRoots();

  LLVM_DEBUG({
    dbgs() << "Parsed rule defs/match for '" << Rule->getName() << "'\n";
    Rule->getMatchDag().dump();
    Rule->getMatchDag().writeDOTGraph(dbgs(), Rule->getName());
  });
  if (StopAfterParse)
    return Rule;

  // For now, don't support traversing from def to use. We'll come back to
  // this later once we have the algorithm changes to support it.
  bool EmittedDefToUseError = false;
  for (const auto &E : Rule->getMatchDag().edges()) {
    if (E->isDefToUse()) {
      if (!EmittedDefToUseError) {
        PrintError(
            TheDef.getLoc(),
            "Generated state machine cannot lookup uses from a def (yet)");
        EmittedDefToUseError = true;
      }
      PrintNote("Node " + to_string(*E->getFromMI()));
      PrintNote("Node " + to_string(*E->getToMI()));
      PrintNote("Edge " + to_string(*E));
    }
  }
  if (EmittedDefToUseError)
    return nullptr;

  // For now, don't support multi-root rules. We'll come back to this later
  // once we have the algorithm changes to support it.
  if (Rule->getNumRoots() > 1) {
    PrintError(TheDef.getLoc(), "Multi-root matches are not supported (yet)");
    return nullptr;
  }
  return Rule;
}

/// Recurse into GICombineGroup's and flatten the ruleset into a simple list.
void GICombinerEmitter::gatherRules(
    std::vector<std::unique_ptr<CombineRule>> &ActiveRules,
    const std::vector<Record *> &&RulesAndGroups) {
  for (Record *R : RulesAndGroups) {
    if (R->isValueUnset("Rules")) {
      std::unique_ptr<CombineRule> Rule = makeCombineRule(*R);
      if (Rule == nullptr) {
        PrintError(R->getLoc(), "Failed to parse rule");
        continue;
      }
      ActiveRules.emplace_back(std::move(Rule));
      ++NumPatternTotal;
    } else
      gatherRules(ActiveRules, R->getValueAsListOfDefs("Rules"));
  }
}

void GICombinerEmitter::generateCodeForTree(raw_ostream &OS,
                                            const GIMatchTree &Tree,
                                            StringRef Indent) const {
  if (Tree.getPartitioner() != nullptr) {
    Tree.getPartitioner()->generatePartitionSelectorCode(OS, Indent);
    for (const auto &EnumChildren : enumerate(Tree.children())) {
      OS << Indent << "if (Partition == " << EnumChildren.index() << " /* "
         << format_partition_name(Tree, EnumChildren.index()) << " */) {\n";
      generateCodeForTree(OS, EnumChildren.value(), (Indent + "  ").str());
      OS << Indent << "}\n";
    }
    return;
  }

  bool AnyFullyTested = false;
  for (const auto &Leaf : Tree.possible_leaves()) {
    OS << Indent << "// Leaf name: " << Leaf.getName() << "\n";

    const CombineRule *Rule = Leaf.getTargetData<CombineRule>();
    const Record &RuleDef = Rule->getDef();

    OS << Indent << "// Rule: " << RuleDef.getName() << "\n"
       << Indent << "if (!isRuleDisabled(" << Rule->getID() << ")) {\n";

    CodeExpansions Expansions;
    for (const auto &VarBinding : Leaf.var_bindings()) {
      if (VarBinding.isInstr())
        Expansions.declare(VarBinding.getName(),
                           "MIs[" + to_string(VarBinding.getInstrID()) + "]");
      else
        Expansions.declare(VarBinding.getName(),
                           "MIs[" + to_string(VarBinding.getInstrID()) +
                               "]->getOperand(" +
                               to_string(VarBinding.getOpIdx()) + ")");
    }
    Rule->declareExpansions(Expansions);

    DagInit *Applyer = RuleDef.getValueAsDag("Apply");
    if (Applyer->getOperatorAsDef(RuleDef.getLoc())->getName() !=
        "apply") {
      PrintError(RuleDef.getLoc(), "Expected apply operator");
      return;
    }

    OS << Indent << "  if (1\n";

    // Attempt to emit code for any untested predicates left over. Note that
    // isFullyTested() will remain false even if we succeed here and therefore
    // combine rule elision will not be performed. This is because we do not
    // know if there's any connection between the predicates for each leaf and
    // therefore can't tell if one makes another unreachable. Ideally, the
    // partitioner(s) would be sufficiently complete to prevent us from having
    // untested predicates left over.
    for (const GIMatchDagPredicate *Predicate : Leaf.untested_predicates()) {
      if (Predicate->generateCheckCode(OS, (Indent + "      ").str(),
                                       Expansions))
        continue;
      PrintError(RuleDef.getLoc(),
                 "Unable to test predicate used in rule");
      PrintNote(SMLoc(),
                "This indicates an incomplete implementation in tablegen");
      Predicate->print(errs());
      errs() << "\n";
      OS << Indent
         << "llvm_unreachable(\"TableGen did not emit complete code for this "
            "path\");\n";
      break;
    }

    if (Rule->getMatchingFixupCode() &&
        !Rule->getMatchingFixupCode()->getValue().empty()) {
      // FIXME: Single-use lambda's like this are a serious compile-time
      // performance and memory issue. It's convenient for this early stage to
      // defer some work to successive patches but we need to eliminate this
      // before the ruleset grows to small-moderate size. Last time, it became
      // a big problem for low-mem systems around the 500 rule mark but by the
      // time we grow that large we should have merged the ISel match table
      // mechanism with the Combiner.
      OS << Indent << "      && [&]() {\n"
         << Indent << "      "
         << CodeExpander(Rule->getMatchingFixupCode()->getValue(), Expansions,
                         Rule->getMatchingFixupCode()->getLoc(), ShowExpansions)
         << "\n"
         << Indent << "      return true;\n"
         << Indent << "  }()";
    }
    OS << ") {\n" << Indent << "   ";

    if (const CodeInit *Code = dyn_cast<CodeInit>(Applyer->getArg(0))) {
      OS << CodeExpander(Code->getAsUnquotedString(), Expansions,
                         Code->getLoc(), ShowExpansions)
         << "\n"
         << Indent << "    return true;\n"
         << Indent << "  }\n";
    } else {
      PrintError(RuleDef.getLoc(), "Expected apply code block");
      return;
    }

    OS << Indent << "}\n";

    assert(Leaf.isFullyTraversed());

    // If we didn't have any predicates left over and we're not using the
    // trap-door we have to support arbitrary C++ code while we're migrating to
    // the declarative style then we know that subsequent leaves are
    // unreachable.
    if (Leaf.isFullyTested() &&
        (!Rule->getMatchingFixupCode() ||
         Rule->getMatchingFixupCode()->getValue().empty())) {
      AnyFullyTested = true;
      OS << Indent
         << "llvm_unreachable(\"Combine rule elision was incorrect\");\n"
         << Indent << "return false;\n";
    }
  }
  if (!AnyFullyTested)
    OS << Indent << "return false;\n";
}

void GICombinerEmitter::run(raw_ostream &OS) {
  gatherRules(Rules, Combiner->getValueAsListOfDefs("Rules"));
  if (StopAfterParse) {
    MatchDagCtx.print(errs());
    PrintNote(Combiner->getLoc(),
              "Terminating due to -gicombiner-stop-after-parse");
    return;
  }
  if (ErrorsPrinted)
    PrintFatalError(Combiner->getLoc(), "Failed to parse one or more rules");
  LLVM_DEBUG(dbgs() << "Optimizing tree for " << Rules.size() << " rules\n");
  std::unique_ptr<GIMatchTree> Tree;
  {
    NamedRegionTimer T("Optimize", "Time spent optimizing the combiner",
                       "Code Generation", "Time spent generating code",
                       TimeRegions);

    GIMatchTreeBuilder TreeBuilder(0);
    for (const auto &Rule : Rules) {
      bool HadARoot = false;
      for (const auto &Root : enumerate(Rule->getMatchDag().roots())) {
        TreeBuilder.addLeaf(Rule->getName(), Root.index(), Rule->getMatchDag(),
                            Rule.get());
        HadARoot = true;
      }
      if (!HadARoot)
        PrintFatalError(Rule->getDef().getLoc(), "All rules must have a root");
    }

    Tree = TreeBuilder.run();
  }
  if (StopAfterBuild) {
    Tree->writeDOTGraph(outs());
    PrintNote(Combiner->getLoc(),
              "Terminating due to -gicombiner-stop-after-build");
    return;
  }

  NamedRegionTimer T("Emit", "Time spent emitting the combiner",
                     "Code Generation", "Time spent generating code",
                     TimeRegions);
  OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_DEPS\n"
     << "#include \"llvm/ADT/SparseBitVector.h\"\n"
     << "namespace llvm {\n"
     << "extern cl::OptionCategory GICombinerOptionCategory;\n"
     << "} // end namespace llvm\n"
     << "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_DEPS\n\n";

  OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_H\n"
     << "class " << getClassName() << " {\n"
     << "  SparseBitVector<> DisabledRules;\n"
     << "\n"
     << "public:\n"
     << "  bool parseCommandLineOption();\n"
     << "  bool isRuleDisabled(unsigned ID) const;\n"
     << "  bool setRuleDisabled(StringRef RuleIdentifier);\n"
     << "\n"
     << "  bool tryCombineAll(\n"
     << "    GISelChangeObserver &Observer,\n"
     << "    MachineInstr &MI,\n"
     << "    MachineIRBuilder &B,\n"
     << "    CombinerHelper &Helper) const;\n"
     << "};\n\n";

  emitNameMatcher(OS);

  OS << "bool " << getClassName()
     << "::setRuleDisabled(StringRef RuleIdentifier) {\n"
     << "  std::pair<StringRef, StringRef> RangePair = "
        "RuleIdentifier.split('-');\n"
     << "  if (!RangePair.second.empty()) {\n"
     << "    const auto First = getRuleIdxForIdentifier(RangePair.first);\n"
     << "    const auto Last = getRuleIdxForIdentifier(RangePair.second);\n"
     << "    if (!First.hasValue() || !Last.hasValue())\n"
     << "      return false;\n"
     << "    if (First >= Last)\n"
     << "      report_fatal_error(\"Beginning of range should be before end of "
        "range\");\n"
     << "    for (auto I = First.getValue(); I < Last.getValue(); ++I)\n"
     << "      DisabledRules.set(I);\n"
     << "    return true;\n"
     << "  } else {\n"
     << "    const auto I = getRuleIdxForIdentifier(RangePair.first);\n"
     << "    if (!I.hasValue())\n"
     << "      return false;\n"
     << "    DisabledRules.set(I.getValue());\n"
     << "    return true;\n"
     << "  }\n"
     << "  return false;\n"
     << "}\n";

  OS << "bool " << getClassName()
     << "::isRuleDisabled(unsigned RuleID) const {\n"
     << "  return DisabledRules.test(RuleID);\n"
     << "}\n";
  OS << "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_H\n\n";

  OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_CPP\n"
     << "\n"
     << "cl::list<std::string> " << Name << "Option(\n"
     << "    \"" << Name.lower() << "-disable-rule\",\n"
     << "    cl::desc(\"Disable one or more combiner rules temporarily in "
     << "the " << Name << " pass\"),\n"
     << "    cl::CommaSeparated,\n"
     << "    cl::Hidden,\n"
     << "    cl::cat(GICombinerOptionCategory));\n"
     << "\n"
     << "bool " << getClassName() << "::parseCommandLineOption() {\n"
     << "  for (const auto &Identifier : " << Name << "Option)\n"
     << "    if (!setRuleDisabled(Identifier))\n"
     << "      return false;\n"
     << "  return true;\n"
     << "}\n\n";

  OS << "bool " << getClassName() << "::tryCombineAll(\n"
     << "    GISelChangeObserver &Observer,\n"
     << "    MachineInstr &MI,\n"
     << "    MachineIRBuilder &B,\n"
     << "    CombinerHelper &Helper) const {\n"
     << "  MachineBasicBlock *MBB = MI.getParent();\n"
     << "  MachineFunction *MF = MBB->getParent();\n"
     << "  MachineRegisterInfo &MRI = MF->getRegInfo();\n"
     << "  SmallVector<MachineInstr *, 8> MIs = { &MI };\n\n"
     << "  (void)MBB; (void)MF; (void)MRI;\n\n";

  OS << "  // Match data\n";
  for (const auto &Rule : Rules)
    for (const auto &I : Rule->matchdata_decls())
      OS << "  " << I.getType() << " " << I.getVariableName() << ";\n";
  OS << "\n";

  OS << "  int Partition = -1;\n";
  generateCodeForTree(OS, *Tree, "  ");
  OS << "\n  return false;\n"
     << "}\n"
     << "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_CPP\n";
}

} // end anonymous namespace

//===----------------------------------------------------------------------===//

namespace llvm {
void EmitGICombiner(RecordKeeper &RK, raw_ostream &OS) {
  CodeGenTarget Target(RK);
  emitSourceFileHeader("Global Combiner", OS);

  if (SelectedCombiners.empty())
    PrintFatalError("No combiners selected with -combiners");
  for (const auto &Combiner : SelectedCombiners) {
    Record *CombinerDef = RK.getDef(Combiner);
    if (!CombinerDef)
      PrintFatalError("Could not find " + Combiner);
    GICombinerEmitter(RK, Target, Combiner, CombinerDef).run(OS);
  }
  NumPatternTotalStatistic = NumPatternTotal;
}

} // namespace llvm