IntrinsicEmitter.cpp 31.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
using namespace llvm;

cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
cl::opt<std::string>
    IntrinsicPrefix("intrinsic-prefix",
                    cl::desc("Generate intrinsics with this target prefix"),
                    cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));

namespace {
class IntrinsicEmitter {
  RecordKeeper &Records;

public:
  IntrinsicEmitter(RecordKeeper &R) : Records(R) {}

  void run(raw_ostream &OS, bool Enums);

  void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
                                raw_ostream &OS);
  void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS);
  void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
                                 raw_ostream &OS);
};
} // End anonymous namespace

//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//

void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
  emitSourceFileHeader("Intrinsic Function Source Fragment", OS);

  CodeGenIntrinsicTable Ints(Records);

  if (Enums) {
    // Emit the enum information.
    EmitEnumInfo(Ints, OS);
  } else {
    // Emit the target metadata.
    EmitTargetInfo(Ints, OS);

    // Emit the intrinsic ID -> name table.
    EmitIntrinsicToNameTable(Ints, OS);

    // Emit the intrinsic ID -> overload table.
    EmitIntrinsicToOverloadTable(Ints, OS);

    // Emit the intrinsic declaration generator.
    EmitGenerator(Ints, OS);

    // Emit the intrinsic parameter attributes.
    EmitAttributes(Ints, OS);

    // Emit code to translate GCC builtins into LLVM intrinsics.
    EmitIntrinsicToBuiltinMap(Ints, true, OS);

    // Emit code to translate MS builtins into LLVM intrinsics.
    EmitIntrinsicToBuiltinMap(Ints, false, OS);
  }
}

void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS) {
  // Find the TargetSet for which to generate enums. There will be an initial
  // set with an empty target prefix which will include target independent
  // intrinsics like dbg.value.
  const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
  for (const auto &Target : Ints.Targets) {
    if (Target.Name == IntrinsicPrefix) {
      Set = &Target;
      break;
    }
  }
  if (!Set) {
    std::vector<std::string> KnownTargets;
    for (const auto &Target : Ints.Targets)
      if (!Target.Name.empty())
        KnownTargets.push_back(Target.Name);
    PrintFatalError("tried to generate intrinsics for unknown target " +
                    IntrinsicPrefix +
                    "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
  }

  // Generate a complete header for target specific intrinsics.
  if (!IntrinsicPrefix.empty()) {
    std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
    OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
    OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
    OS << "namespace llvm {\n";
    OS << "namespace Intrinsic {\n";
    OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
  }

  OS << "// Enum values for intrinsics\n";
  for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
    OS << "    " << Ints[i].EnumName;

    // Assign a value to the first intrinsic in this target set so that all
    // intrinsic ids are distinct.
    if (i == Set->Offset)
      OS << " = " << (Set->Offset + 1);

    OS << ", ";
    if (Ints[i].EnumName.size() < 40)
      OS.indent(40 - Ints[i].EnumName.size());
    OS << " // " << Ints[i].Name << "\n";
  }

  // Emit num_intrinsics into the target neutral enum.
  if (IntrinsicPrefix.empty()) {
    OS << "    num_intrinsics = " << (Ints.size() + 1) << "\n";
  } else {
    OS << "}; // enum\n";
    OS << "} // namespace Intrinsic\n";
    OS << "} // namespace llvm\n\n";
    OS << "#endif\n";
  }
}

void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS) {
  OS << "// Target mapping\n";
  OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
  OS << "struct IntrinsicTargetInfo {\n"
     << "  llvm::StringLiteral Name;\n"
     << "  size_t Offset;\n"
     << "  size_t Count;\n"
     << "};\n";
  OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
  for (auto Target : Ints.Targets)
    OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
       << ", " << Target.Count << "},\n";
  OS << "};\n";
  OS << "#endif\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToNameTable(
    const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
  OS << "// Intrinsic ID to name table\n";
  OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
  OS << "  // Note that entry #0 is the invalid intrinsic!\n";
  for (unsigned i = 0, e = Ints.size(); i != e; ++i)
    OS << "  \"" << Ints[i].Name << "\",\n";
  OS << "#endif\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
    const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
  OS << "// Intrinsic ID to overload bitset\n";
  OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
  OS << "static const uint8_t OTable[] = {\n";
  OS << "  0";
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
    if ((i+1)%8 == 0)
      OS << ",\n  0";
    if (Ints[i].isOverloaded)
      OS << " | (1<<" << (i+1)%8 << ')';
  }
  OS << "\n};\n\n";
  // OTable contains a true bit at the position if the intrinsic is overloaded.
  OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
  OS << "#endif\n\n";
}


// NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
enum IIT_Info {
  // Common values should be encoded with 0-15.
  IIT_Done = 0,
  IIT_I1   = 1,
  IIT_I8   = 2,
  IIT_I16  = 3,
  IIT_I32  = 4,
  IIT_I64  = 5,
  IIT_F16  = 6,
  IIT_F32  = 7,
  IIT_F64  = 8,
  IIT_V2   = 9,
  IIT_V4   = 10,
  IIT_V8   = 11,
  IIT_V16  = 12,
  IIT_V32  = 13,
  IIT_PTR  = 14,
  IIT_ARG  = 15,

  // Values from 16+ are only encodable with the inefficient encoding.
  IIT_V64  = 16,
  IIT_MMX  = 17,
  IIT_TOKEN = 18,
  IIT_METADATA = 19,
  IIT_EMPTYSTRUCT = 20,
  IIT_STRUCT2 = 21,
  IIT_STRUCT3 = 22,
  IIT_STRUCT4 = 23,
  IIT_STRUCT5 = 24,
  IIT_EXTEND_ARG = 25,
  IIT_TRUNC_ARG = 26,
  IIT_ANYPTR = 27,
  IIT_V1   = 28,
  IIT_VARARG = 29,
  IIT_HALF_VEC_ARG = 30,
  IIT_SAME_VEC_WIDTH_ARG = 31,
  IIT_PTR_TO_ARG = 32,
  IIT_PTR_TO_ELT = 33,
  IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
  IIT_I128 = 35,
  IIT_V512 = 36,
  IIT_V1024 = 37,
  IIT_STRUCT6 = 38,
  IIT_STRUCT7 = 39,
  IIT_STRUCT8 = 40,
  IIT_F128 = 41,
  IIT_VEC_ELEMENT = 42,
  IIT_SCALABLE_VEC = 43,
  IIT_SUBDIVIDE2_ARG = 44,
  IIT_SUBDIVIDE4_ARG = 45,
  IIT_VEC_OF_BITCASTS_TO_INT = 46
};

static void EncodeFixedValueType(MVT::SimpleValueType VT,
                                 std::vector<unsigned char> &Sig) {
  if (MVT(VT).isInteger()) {
    unsigned BitWidth = MVT(VT).getSizeInBits();
    switch (BitWidth) {
    default: PrintFatalError("unhandled integer type width in intrinsic!");
    case 1: return Sig.push_back(IIT_I1);
    case 8: return Sig.push_back(IIT_I8);
    case 16: return Sig.push_back(IIT_I16);
    case 32: return Sig.push_back(IIT_I32);
    case 64: return Sig.push_back(IIT_I64);
    case 128: return Sig.push_back(IIT_I128);
    }
  }

  switch (VT) {
  default: PrintFatalError("unhandled MVT in intrinsic!");
  case MVT::f16: return Sig.push_back(IIT_F16);
  case MVT::f32: return Sig.push_back(IIT_F32);
  case MVT::f64: return Sig.push_back(IIT_F64);
  case MVT::f128: return Sig.push_back(IIT_F128);
  case MVT::token: return Sig.push_back(IIT_TOKEN);
  case MVT::Metadata: return Sig.push_back(IIT_METADATA);
  case MVT::x86mmx: return Sig.push_back(IIT_MMX);
  // MVT::OtherVT is used to mean the empty struct type here.
  case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
  // MVT::isVoid is used to represent varargs here.
  case MVT::isVoid: return Sig.push_back(IIT_VARARG);
  }
}

#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
#endif

static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
                            unsigned &NextArgCode,
                            std::vector<unsigned char> &Sig,
                            ArrayRef<unsigned char> Mapping) {

  if (R->isSubClassOf("LLVMMatchType")) {
    unsigned Number = Mapping[R->getValueAsInt("Number")];
    assert(Number < ArgCodes.size() && "Invalid matching number!");
    if (R->isSubClassOf("LLVMExtendedType"))
      Sig.push_back(IIT_EXTEND_ARG);
    else if (R->isSubClassOf("LLVMTruncatedType"))
      Sig.push_back(IIT_TRUNC_ARG);
    else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
      Sig.push_back(IIT_HALF_VEC_ARG);
    else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
      Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
      Sig.push_back((Number << 3) | ArgCodes[Number]);
      MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
      EncodeFixedValueType(VT, Sig);
      return;
    }
    else if (R->isSubClassOf("LLVMPointerTo"))
      Sig.push_back(IIT_PTR_TO_ARG);
    else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
      Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
      // Encode overloaded ArgNo
      Sig.push_back(NextArgCode++);
      // Encode LLVMMatchType<Number> ArgNo
      Sig.push_back(Number);
      return;
    } else if (R->isSubClassOf("LLVMPointerToElt"))
      Sig.push_back(IIT_PTR_TO_ELT);
    else if (R->isSubClassOf("LLVMVectorElementType"))
      Sig.push_back(IIT_VEC_ELEMENT);
    else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
      Sig.push_back(IIT_SUBDIVIDE2_ARG);
    else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
      Sig.push_back(IIT_SUBDIVIDE4_ARG);
    else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
      Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
    else
      Sig.push_back(IIT_ARG);
    return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
  }

  MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));

  unsigned Tmp = 0;
  switch (VT) {
  default: break;
  case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
  case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
  case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
  case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
  case MVT::Any: {
    // If this is an "any" valuetype, then the type is the type of the next
    // type in the list specified to getIntrinsic().
    Sig.push_back(IIT_ARG);

    // Figure out what arg # this is consuming, and remember what kind it was.
    assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
           "Invalid or no ArgCode associated with overloaded VT!");
    unsigned ArgNo = NextArgCode++;

    // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
    return Sig.push_back((ArgNo << 3) | Tmp);
  }

  case MVT::iPTR: {
    unsigned AddrSpace = 0;
    if (R->isSubClassOf("LLVMQualPointerType")) {
      AddrSpace = R->getValueAsInt("AddrSpace");
      assert(AddrSpace < 256 && "Address space exceeds 255");
    }
    if (AddrSpace) {
      Sig.push_back(IIT_ANYPTR);
      Sig.push_back(AddrSpace);
    } else {
      Sig.push_back(IIT_PTR);
    }
    return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
                           Mapping);
  }
  }

  if (MVT(VT).isVector()) {
    MVT VVT = VT;
    if (VVT.isScalableVector())
      Sig.push_back(IIT_SCALABLE_VEC);
    switch (VVT.getVectorNumElements()) {
    default: PrintFatalError("unhandled vector type width in intrinsic!");
    case 1: Sig.push_back(IIT_V1); break;
    case 2: Sig.push_back(IIT_V2); break;
    case 4: Sig.push_back(IIT_V4); break;
    case 8: Sig.push_back(IIT_V8); break;
    case 16: Sig.push_back(IIT_V16); break;
    case 32: Sig.push_back(IIT_V32); break;
    case 64: Sig.push_back(IIT_V64); break;
    case 512: Sig.push_back(IIT_V512); break;
    case 1024: Sig.push_back(IIT_V1024); break;
    }

    return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
  }

  EncodeFixedValueType(VT, Sig);
}

static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
                           unsigned int &NumInserted,
                           SmallVectorImpl<unsigned char> &Mapping) {
  if (R->isSubClassOf("LLVMMatchType")) {
    if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
      ArgCodes.push_back(3 /*vAny*/);
      ++NumInserted;
    }
    return;
  }

  unsigned Tmp = 0;
  switch (getValueType(R->getValueAsDef("VT"))) {
  default: break;
  case MVT::iPTR:
    UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
    break;
  case MVT::iPTRAny:
    ++Tmp;
    LLVM_FALLTHROUGH;
  case MVT::vAny:
    ++Tmp;
    LLVM_FALLTHROUGH;
  case MVT::fAny:
    ++Tmp;
    LLVM_FALLTHROUGH;
  case MVT::iAny:
    ++Tmp;
    LLVM_FALLTHROUGH;
  case MVT::Any:
    unsigned OriginalIdx = ArgCodes.size() - NumInserted;
    assert(OriginalIdx >= Mapping.size());
    Mapping.resize(OriginalIdx+1);
    Mapping[OriginalIdx] = ArgCodes.size();
    ArgCodes.push_back(Tmp);
    break;
  }
}

#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",on)
#endif

/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it.  If not, return ~0U.
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
                                 std::vector<unsigned char> &TypeSig) {
  std::vector<unsigned char> ArgCodes;

  // Add codes for any overloaded result VTs.
  unsigned int NumInserted = 0;
  SmallVector<unsigned char, 8> ArgMapping;
  for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
    UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);

  // Add codes for any overloaded operand VTs.
  for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);

  unsigned NextArgCode = 0;
  if (Int.IS.RetVTs.empty())
    TypeSig.push_back(IIT_Done);
  else if (Int.IS.RetVTs.size() == 1 &&
           Int.IS.RetVTs[0] == MVT::isVoid)
    TypeSig.push_back(IIT_Done);
  else {
    switch (Int.IS.RetVTs.size()) {
      case 1: break;
      case 2: TypeSig.push_back(IIT_STRUCT2); break;
      case 3: TypeSig.push_back(IIT_STRUCT3); break;
      case 4: TypeSig.push_back(IIT_STRUCT4); break;
      case 5: TypeSig.push_back(IIT_STRUCT5); break;
      case 6: TypeSig.push_back(IIT_STRUCT6); break;
      case 7: TypeSig.push_back(IIT_STRUCT7); break;
      case 8: TypeSig.push_back(IIT_STRUCT8); break;
      default: llvm_unreachable("Unhandled case in struct");
    }

    for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
      EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
                      ArgMapping);
  }

  for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
                    ArgMapping);
}

static void printIITEntry(raw_ostream &OS, unsigned char X) {
  OS << (unsigned)X;
}

void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
                                     raw_ostream &OS) {
  // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
  // capture it in this vector, otherwise store a ~0U.
  std::vector<unsigned> FixedEncodings;

  SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;

  std::vector<unsigned char> TypeSig;

  // Compute the unique argument type info.
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    // Get the signature for the intrinsic.
    TypeSig.clear();
    ComputeFixedEncoding(Ints[i], TypeSig);

    // Check to see if we can encode it into a 32-bit word.  We can only encode
    // 8 nibbles into a 32-bit word.
    if (TypeSig.size() <= 8) {
      bool Failed = false;
      unsigned Result = 0;
      for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
        // If we had an unencodable argument, bail out.
        if (TypeSig[i] > 15) {
          Failed = true;
          break;
        }
        Result = (Result << 4) | TypeSig[e-i-1];
      }

      // If this could be encoded into a 31-bit word, return it.
      if (!Failed && (Result >> 31) == 0) {
        FixedEncodings.push_back(Result);
        continue;
      }
    }

    // Otherwise, we're going to unique the sequence into the
    // LongEncodingTable, and use its offset in the 32-bit table instead.
    LongEncodingTable.add(TypeSig);

    // This is a placehold that we'll replace after the table is laid out.
    FixedEncodings.push_back(~0U);
  }

  LongEncodingTable.layout();

  OS << "// Global intrinsic function declaration type table.\n";
  OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";

  OS << "static const unsigned IIT_Table[] = {\n  ";

  for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
    if ((i & 7) == 7)
      OS << "\n  ";

    // If the entry fit in the table, just emit it.
    if (FixedEncodings[i] != ~0U) {
      OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
      continue;
    }

    TypeSig.clear();
    ComputeFixedEncoding(Ints[i], TypeSig);


    // Otherwise, emit the offset into the long encoding table.  We emit it this
    // way so that it is easier to read the offset in the .def file.
    OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
  }

  OS << "0\n};\n\n";

  // Emit the shared table of register lists.
  OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
  if (!LongEncodingTable.empty())
    LongEncodingTable.emit(OS, printIITEntry);
  OS << "  255\n};\n\n";

  OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
}

namespace {
struct AttributeComparator {
  bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
    // Sort throwing intrinsics after non-throwing intrinsics.
    if (L->canThrow != R->canThrow)
      return R->canThrow;

    if (L->isNoDuplicate != R->isNoDuplicate)
      return R->isNoDuplicate;

    if (L->isNoReturn != R->isNoReturn)
      return R->isNoReturn;

    if (L->isWillReturn != R->isWillReturn)
      return R->isWillReturn;

    if (L->isCold != R->isCold)
      return R->isCold;

    if (L->isConvergent != R->isConvergent)
      return R->isConvergent;

    if (L->isSpeculatable != R->isSpeculatable)
      return R->isSpeculatable;

    if (L->hasSideEffects != R->hasSideEffects)
      return R->hasSideEffects;

    // Try to order by readonly/readnone attribute.
    CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
    CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
    if (LK != RK) return (LK > RK);
    // Order by argument attributes.
    // This is reliable because each side is already sorted internally.
    return (L->ArgumentAttributes < R->ArgumentAttributes);
  }
};
} // End anonymous namespace

/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
                                      raw_ostream &OS) {
  OS << "// Add parameter attributes that are not common to all intrinsics.\n";
  OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
  OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";

  // Compute the maximum number of attribute arguments and the map
  typedef std::map<const CodeGenIntrinsic*, unsigned,
                   AttributeComparator> UniqAttrMapTy;
  UniqAttrMapTy UniqAttributes;
  unsigned maxArgAttrs = 0;
  unsigned AttrNum = 0;
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const CodeGenIntrinsic &intrinsic = Ints[i];
    maxArgAttrs =
      std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
    unsigned &N = UniqAttributes[&intrinsic];
    if (N) continue;
    assert(AttrNum < 256 && "Too many unique attributes for table!");
    N = ++AttrNum;
  }

  // Emit an array of AttributeList.  Most intrinsics will have at least one
  // entry, for the function itself (index ~1), which is usually nounwind.
  OS << "  static const uint8_t IntrinsicsToAttributesMap[] = {\n";

  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const CodeGenIntrinsic &intrinsic = Ints[i];

    OS << "    " << UniqAttributes[&intrinsic] << ", // "
       << intrinsic.Name << "\n";
  }
  OS << "  };\n\n";

  OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
  OS << "  unsigned NumAttrs = 0;\n";
  OS << "  if (id != 0) {\n";
  OS << "    switch(IntrinsicsToAttributesMap[id - 1]) {\n";
  OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
  for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
       E = UniqAttributes.end(); I != E; ++I) {
    OS << "    case " << I->second << ": {\n";

    const CodeGenIntrinsic &intrinsic = *(I->first);

    // Keep track of the number of attributes we're writing out.
    unsigned numAttrs = 0;

    // The argument attributes are alreadys sorted by argument index.
    unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
    if (ae) {
      while (ai != ae) {
        unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
        unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex

        OS << "      const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
        bool addComma = false;

        do {
          switch (intrinsic.ArgumentAttributes[ai].second) {
          case CodeGenIntrinsic::NoCapture:
            if (addComma)
              OS << ",";
            OS << "Attribute::NoCapture";
            addComma = true;
            break;
          case CodeGenIntrinsic::NoAlias:
            if (addComma)
              OS << ",";
            OS << "Attribute::NoAlias";
            addComma = true;
            break;
          case CodeGenIntrinsic::Returned:
            if (addComma)
              OS << ",";
            OS << "Attribute::Returned";
            addComma = true;
            break;
          case CodeGenIntrinsic::ReadOnly:
            if (addComma)
              OS << ",";
            OS << "Attribute::ReadOnly";
            addComma = true;
            break;
          case CodeGenIntrinsic::WriteOnly:
            if (addComma)
              OS << ",";
            OS << "Attribute::WriteOnly";
            addComma = true;
            break;
          case CodeGenIntrinsic::ReadNone:
            if (addComma)
              OS << ",";
            OS << "Attribute::ReadNone";
            addComma = true;
            break;
          case CodeGenIntrinsic::ImmArg:
            if (addComma)
              OS << ',';
            OS << "Attribute::ImmArg";
            addComma = true;
            break;
          }

          ++ai;
        } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
        OS << "};\n";
        OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
           << attrIdx << ", AttrParam" << attrIdx << ");\n";
      }
    }

    if (!intrinsic.canThrow ||
        (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) ||
        intrinsic.isNoReturn || intrinsic.isWillReturn || intrinsic.isCold ||
        intrinsic.isNoDuplicate || intrinsic.isConvergent ||
        intrinsic.isSpeculatable) {
      OS << "      const Attribute::AttrKind Atts[] = {";
      bool addComma = false;
      if (!intrinsic.canThrow) {
        OS << "Attribute::NoUnwind";
        addComma = true;
      }
      if (intrinsic.isNoReturn) {
        if (addComma)
          OS << ",";
        OS << "Attribute::NoReturn";
        addComma = true;
      }
      if (intrinsic.isWillReturn) {
        if (addComma)
          OS << ",";
        OS << "Attribute::WillReturn";
        addComma = true;
      }
      if (intrinsic.isCold) {
        if (addComma)
          OS << ",";
        OS << "Attribute::Cold";
        addComma = true;
      }
      if (intrinsic.isNoDuplicate) {
        if (addComma)
          OS << ",";
        OS << "Attribute::NoDuplicate";
        addComma = true;
      }
      if (intrinsic.isConvergent) {
        if (addComma)
          OS << ",";
        OS << "Attribute::Convergent";
        addComma = true;
      }
      if (intrinsic.isSpeculatable) {
        if (addComma)
          OS << ",";
        OS << "Attribute::Speculatable";
        addComma = true;
      }

      switch (intrinsic.ModRef) {
      case CodeGenIntrinsic::NoMem:
        if (intrinsic.hasSideEffects)
          break;
        if (addComma)
          OS << ",";
        OS << "Attribute::ReadNone";
        break;
      case CodeGenIntrinsic::ReadArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::ReadOnly,";
        OS << "Attribute::ArgMemOnly";
        break;
      case CodeGenIntrinsic::ReadMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::ReadOnly";
        break;
      case CodeGenIntrinsic::ReadInaccessibleMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::ReadOnly,";
        OS << "Attribute::InaccessibleMemOnly";
        break;
      case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::ReadOnly,";
        OS << "Attribute::InaccessibleMemOrArgMemOnly";
        break;
      case CodeGenIntrinsic::WriteArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::WriteOnly,";
        OS << "Attribute::ArgMemOnly";
        break;
      case CodeGenIntrinsic::WriteMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::WriteOnly";
        break;
      case CodeGenIntrinsic::WriteInaccessibleMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::WriteOnly,";
        OS << "Attribute::InaccessibleMemOnly";
        break;
      case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::WriteOnly,";
        OS << "Attribute::InaccessibleMemOrArgMemOnly";
        break;
      case CodeGenIntrinsic::ReadWriteArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::ArgMemOnly";
        break;
      case CodeGenIntrinsic::ReadWriteInaccessibleMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::InaccessibleMemOnly";
        break;
      case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
        if (addComma)
          OS << ",";
        OS << "Attribute::InaccessibleMemOrArgMemOnly";
        break;
      case CodeGenIntrinsic::ReadWriteMem:
        break;
      }
      OS << "};\n";
      OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
         << "AttributeList::FunctionIndex, Atts);\n";
    }

    if (numAttrs) {
      OS << "      NumAttrs = " << numAttrs << ";\n";
      OS << "      break;\n";
      OS << "      }\n";
    } else {
      OS << "      return AttributeList();\n";
      OS << "      }\n";
    }
  }

  OS << "    }\n";
  OS << "  }\n";
  OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
  OS << "}\n";
  OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
    const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
  StringRef CompilerName = (IsGCC ? "GCC" : "MS");
  typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
  BIMTy BuiltinMap;
  StringToOffsetTable Table;
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const std::string &BuiltinName =
        IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
    if (!BuiltinName.empty()) {
      // Get the map for this target prefix.
      std::map<std::string, std::string> &BIM =
          BuiltinMap[Ints[i].TargetPrefix];

      if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
        PrintFatalError(Ints[i].TheDef->getLoc(),
                        "Intrinsic '" + Ints[i].TheDef->getName() +
                            "': duplicate " + CompilerName + " builtin name!");
      Table.GetOrAddStringOffset(BuiltinName);
    }
  }

  OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
  OS << "// This is used by the C front-end.  The builtin name is passed\n";
  OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
  OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
  OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";

  OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
     << "Builtin(const char "
     << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";

  if (Table.Empty()) {
    OS << "  return Intrinsic::not_intrinsic;\n";
    OS << "}\n";
    OS << "#endif\n\n";
    return;
  }

  OS << "  static const char BuiltinNames[] = {\n";
  Table.EmitCharArray(OS);
  OS << "  };\n\n";

  OS << "  struct BuiltinEntry {\n";
  OS << "    Intrinsic::ID IntrinID;\n";
  OS << "    unsigned StrTabOffset;\n";
  OS << "    const char *getName() const {\n";
  OS << "      return &BuiltinNames[StrTabOffset];\n";
  OS << "    }\n";
  OS << "    bool operator<(StringRef RHS) const {\n";
  OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
  OS << "    }\n";
  OS << "  };\n";

  OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";

  // Note: this could emit significantly better code if we cared.
  for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
    OS << "  ";
    if (!I->first.empty())
      OS << "if (TargetPrefix == \"" << I->first << "\") ";
    else
      OS << "/* Target Independent Builtins */ ";
    OS << "{\n";

    // Emit the comparisons for this target prefix.
    OS << "    static const BuiltinEntry " << I->first << "Names[] = {\n";
    for (const auto &P : I->second) {
      OS << "      {Intrinsic::" << P.second << ", "
         << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
    }
    OS << "    };\n";
    OS << "    auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
    OS << "                              std::end(" << I->first << "Names),\n";
    OS << "                              BuiltinNameStr);\n";
    OS << "    if (I != std::end(" << I->first << "Names) &&\n";
    OS << "        I->getName() == BuiltinNameStr)\n";
    OS << "      return I->IntrinID;\n";
    OS << "  }\n";
  }
  OS << "  return ";
  OS << "Intrinsic::not_intrinsic;\n";
  OS << "}\n";
  OS << "#endif\n\n";
}

void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
  IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
}

void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
  IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
}