ExtractFunction.cpp 27.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
//===--- ExtractFunction.cpp -------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Extracts statements to a new function and replaces the statements with a
// call to the new function.
// Before:
//   void f(int a) {
//     [[if(a < 5)
//       a = 5;]]
//   }
// After:
//   void extracted(int &a) {
//     if(a < 5)
//       a = 5;
//   }
//   void f(int a) {
//     extracted(a);
//   }
//
// - Only extract statements
// - Extracts from non-templated free functions only.
// - Parameters are const only if the declaration was const
//   - Always passed by l-value reference
// - Void return type
// - Cannot extract declarations that will be needed in the original function
//   after extraction.
// - Checks for broken control flow (break/continue without loop/switch)
//
// 1. ExtractFunction is the tweak subclass
//    - Prepare does basic analysis of the selection and is therefore fast.
//      Successful prepare doesn't always mean we can apply the tweak.
//    - Apply does a more detailed analysis and can be slower. In case of
//      failure, we let the user know that we are unable to perform extraction.
// 2. ExtractionZone store information about the range being extracted and the
//    enclosing function.
// 3. NewFunction stores properties of the extracted function and provides
//    methods for rendering it.
// 4. CapturedZoneInfo uses a RecursiveASTVisitor to capture information about
//    the extraction like declarations, existing return statements, etc.
// 5. getExtractedFunction is responsible for analyzing the CapturedZoneInfo and
//    creating a NewFunction.
//===----------------------------------------------------------------------===//

#include "AST.h"
#include "Logger.h"
#include "ParsedAST.h"
#include "Selection.h"
#include "SourceCode.h"
#include "refactor/Tweak.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Core/Replacement.h"
#include "clang/Tooling/Refactoring/Extract/SourceExtraction.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"

namespace clang {
namespace clangd {
namespace {

using Node = SelectionTree::Node;

// ExtractionZone is the part of code that is being extracted.
// EnclosingFunction is the function/method inside which the zone lies.
// We split the file into 4 parts relative to extraction zone.
enum class ZoneRelative {
  Before,     // Before Zone and inside EnclosingFunction.
  Inside,     // Inside Zone.
  After,      // After Zone and inside EnclosingFunction.
  OutsideFunc // Outside EnclosingFunction.
};

// A RootStmt is a statement that's fully selected including all it's children
// and it's parent is unselected.
// Check if a node is a root statement.
bool isRootStmt(const Node *N) {
  if (!N->ASTNode.get<Stmt>())
    return false;
  // Root statement cannot be partially selected.
  if (N->Selected == SelectionTree::Partial)
    return false;
  // Only DeclStmt can be an unselected RootStmt since VarDecls claim the entire
  // selection range in selectionTree.
  if (N->Selected == SelectionTree::Unselected && !N->ASTNode.get<DeclStmt>())
    return false;
  return true;
}

// Returns the (unselected) parent of all RootStmts given the commonAncestor.
// Returns null if:
// 1. any node is partially selected
// 2. If all completely selected nodes don't have the same common parent
// 3. Any child of Parent isn't a RootStmt.
// Returns null if any child is not a RootStmt.
// We only support extraction of RootStmts since it allows us to extract without
// having to change the selection range. Also, this means that any scope that
// begins in selection range, ends in selection range and any scope that begins
// outside the selection range, ends outside as well.
const Node *getParentOfRootStmts(const Node *CommonAnc) {
  if (!CommonAnc)
    return nullptr;
  const Node *Parent = nullptr;
  switch (CommonAnc->Selected) {
  case SelectionTree::Selection::Unselected:
    // Typicaly a block, with the { and } unselected, could also be ForStmt etc
    // Ensure all Children are RootStmts.
    Parent = CommonAnc;
    break;
  case SelectionTree::Selection::Partial:
    // Only a fully-selected single statement can be selected.
    return nullptr;
  case SelectionTree::Selection::Complete:
    // If the Common Ancestor is completely selected, then it's a root statement
    // and its parent will be unselected.
    Parent = CommonAnc->Parent;
    // If parent is a DeclStmt, even though it's unselected, we consider it a
    // root statement and return its parent. This is done because the VarDecls
    // claim the entire selection range of the Declaration and DeclStmt is
    // always unselected.
    if (Parent->ASTNode.get<DeclStmt>())
      Parent = Parent->Parent;
    break;
  }
  // Ensure all Children are RootStmts.
  return llvm::all_of(Parent->Children, isRootStmt) ? Parent : nullptr;
}

// The ExtractionZone class forms a view of the code wrt Zone.
struct ExtractionZone {
  // Parent of RootStatements being extracted.
  const Node *Parent = nullptr;
  // The half-open file range of the code being extracted.
  SourceRange ZoneRange;
  // The function inside which our zone resides.
  const FunctionDecl *EnclosingFunction = nullptr;
  // The half-open file range of the enclosing function.
  SourceRange EnclosingFuncRange;
  SourceLocation getInsertionPoint() const {
    return EnclosingFuncRange.getBegin();
  }
  bool isRootStmt(const Stmt *S) const;
  // The last root statement is important to decide where we need to insert a
  // semicolon after the extraction.
  const Node *getLastRootStmt() const { return Parent->Children.back(); }
  void generateRootStmts();

private:
  llvm::DenseSet<const Stmt *> RootStmts;
};

// Whether the code in the extraction zone is guaranteed to return, assuming
// no broken control flow (unbound break/continue).
// This is a very naive check (does it end with a return stmt).
// Doing some rudimentary control flow analysis would cover more cases.
bool alwaysReturns(const ExtractionZone &EZ) {
  const Stmt *Last = EZ.getLastRootStmt()->ASTNode.get<Stmt>();
  // Unwrap enclosing (unconditional) compound statement.
  while (const auto *CS = llvm::dyn_cast<CompoundStmt>(Last)) {
    if (CS->body_empty())
      return false;
    else
      Last = CS->body_back();
  }
  return llvm::isa<ReturnStmt>(Last);
}

bool ExtractionZone::isRootStmt(const Stmt *S) const {
  return RootStmts.find(S) != RootStmts.end();
}

// Generate RootStmts set
void ExtractionZone::generateRootStmts() {
  for (const Node *Child : Parent->Children)
    RootStmts.insert(Child->ASTNode.get<Stmt>());
}

// Finds the function in which the zone lies.
const FunctionDecl *findEnclosingFunction(const Node *CommonAnc) {
  // Walk up the SelectionTree until we find a function Decl
  for (const Node *CurNode = CommonAnc; CurNode; CurNode = CurNode->Parent) {
    // Don't extract from lambdas
    if (CurNode->ASTNode.get<LambdaExpr>())
      return nullptr;
    if (const FunctionDecl *Func = CurNode->ASTNode.get<FunctionDecl>()) {
      // FIXME: Support extraction from methods.
      if (isa<CXXMethodDecl>(Func))
        return nullptr;
      // FIXME: Support extraction from templated functions.
      if (Func->isTemplated())
        return nullptr;
      return Func;
    }
  }
  return nullptr;
}

// Zone Range is the union of SourceRanges of all child Nodes in Parent since
// all child Nodes are RootStmts
llvm::Optional<SourceRange> findZoneRange(const Node *Parent,
                                          const SourceManager &SM,
                                          const LangOptions &LangOpts) {
  SourceRange SR;
  if (auto BeginFileRange = toHalfOpenFileRange(
          SM, LangOpts, Parent->Children.front()->ASTNode.getSourceRange()))
    SR.setBegin(BeginFileRange->getBegin());
  else
    return llvm::None;
  if (auto EndFileRange = toHalfOpenFileRange(
          SM, LangOpts, Parent->Children.back()->ASTNode.getSourceRange()))
    SR.setEnd(EndFileRange->getEnd());
  else
    return llvm::None;
  return SR;
}

// Compute the range spanned by the enclosing function.
// FIXME: check if EnclosingFunction has any attributes as the AST doesn't
// always store the source range of the attributes and thus we end up extracting
// between the attributes and the EnclosingFunction.
llvm::Optional<SourceRange>
computeEnclosingFuncRange(const FunctionDecl *EnclosingFunction,
                          const SourceManager &SM,
                          const LangOptions &LangOpts) {
  return toHalfOpenFileRange(SM, LangOpts, EnclosingFunction->getSourceRange());
}

// returns true if Child can be a single RootStmt being extracted from
// EnclosingFunc.
bool validSingleChild(const Node *Child, const FunctionDecl *EnclosingFunc) {
  // Don't extract expressions.
  // FIXME: We should extract expressions that are "statements" i.e. not
  // subexpressions
  if (Child->ASTNode.get<Expr>())
    return false;
  // Extracting the body of EnclosingFunc would remove it's definition.
  assert(EnclosingFunc->hasBody() &&
         "We should always be extracting from a function body.");
  if (Child->ASTNode.get<Stmt>() == EnclosingFunc->getBody())
    return false;
  return true;
}

// FIXME: Check we're not extracting from the initializer/condition of a control
// flow structure.
llvm::Optional<ExtractionZone> findExtractionZone(const Node *CommonAnc,
                                                  const SourceManager &SM,
                                                  const LangOptions &LangOpts) {
  ExtractionZone ExtZone;
  ExtZone.Parent = getParentOfRootStmts(CommonAnc);
  if (!ExtZone.Parent || ExtZone.Parent->Children.empty())
    return llvm::None;
  ExtZone.EnclosingFunction = findEnclosingFunction(ExtZone.Parent);
  if (!ExtZone.EnclosingFunction)
    return llvm::None;
  // When there is a single RootStmt, we must check if it's valid for
  // extraction.
  if (ExtZone.Parent->Children.size() == 1 &&
      !validSingleChild(ExtZone.getLastRootStmt(), ExtZone.EnclosingFunction))
    return llvm::None;
  if (auto FuncRange =
          computeEnclosingFuncRange(ExtZone.EnclosingFunction, SM, LangOpts))
    ExtZone.EnclosingFuncRange = *FuncRange;
  if (auto ZoneRange = findZoneRange(ExtZone.Parent, SM, LangOpts))
    ExtZone.ZoneRange = *ZoneRange;
  if (ExtZone.EnclosingFuncRange.isInvalid() || ExtZone.ZoneRange.isInvalid())
    return llvm::None;
  ExtZone.generateRootStmts();
  return ExtZone;
}

// Stores information about the extracted function and provides methods for
// rendering it.
struct NewFunction {
  struct Parameter {
    std::string Name;
    QualType TypeInfo;
    bool PassByReference;
    unsigned OrderPriority; // Lower value parameters are preferred first.
    std::string render(const DeclContext *Context) const;
    bool operator<(const Parameter &Other) const {
      return OrderPriority < Other.OrderPriority;
    }
  };
  std::string Name = "extracted";
  QualType ReturnType;
  std::vector<Parameter> Parameters;
  SourceRange BodyRange;
  SourceLocation InsertionPoint;
  const DeclContext *EnclosingFuncContext;
  bool CallerReturnsValue = false;
  // Decides whether the extracted function body and the function call need a
  // semicolon after extraction.
  tooling::ExtractionSemicolonPolicy SemicolonPolicy;
  NewFunction(tooling::ExtractionSemicolonPolicy SemicolonPolicy)
      : SemicolonPolicy(SemicolonPolicy) {}
  // Render the call for this function.
  std::string renderCall() const;
  // Render the definition for this function.
  std::string renderDefinition(const SourceManager &SM) const;

private:
  std::string renderParametersForDefinition() const;
  std::string renderParametersForCall() const;
  // Generate the function body.
  std::string getFuncBody(const SourceManager &SM) const;
};

std::string NewFunction::renderParametersForDefinition() const {
  std::string Result;
  bool NeedCommaBefore = false;
  for (const Parameter &P : Parameters) {
    if (NeedCommaBefore)
      Result += ", ";
    NeedCommaBefore = true;
    Result += P.render(EnclosingFuncContext);
  }
  return Result;
}

std::string NewFunction::renderParametersForCall() const {
  std::string Result;
  bool NeedCommaBefore = false;
  for (const Parameter &P : Parameters) {
    if (NeedCommaBefore)
      Result += ", ";
    NeedCommaBefore = true;
    Result += P.Name;
  }
  return Result;
}

std::string NewFunction::renderCall() const {
  return llvm::formatv(
      "{0}{1}({2}){3}", CallerReturnsValue ? "return " : "", Name,
      renderParametersForCall(),
      (SemicolonPolicy.isNeededInOriginalFunction() ? ";" : ""));
}

std::string NewFunction::renderDefinition(const SourceManager &SM) const {
  return llvm::formatv("{0} {1}({2}) {\n{3}\n}\n",
                       printType(ReturnType, *EnclosingFuncContext), Name,
                       renderParametersForDefinition(), getFuncBody(SM));
}

std::string NewFunction::getFuncBody(const SourceManager &SM) const {
  // FIXME: Generate tooling::Replacements instead of std::string to
  // - hoist decls
  // - add return statement
  // - Add semicolon
  return toSourceCode(SM, BodyRange).str() +
         (SemicolonPolicy.isNeededInExtractedFunction() ? ";" : "");
}

std::string NewFunction::Parameter::render(const DeclContext *Context) const {
  return printType(TypeInfo, *Context) + (PassByReference ? " &" : " ") + Name;
}

// Stores captured information about Extraction Zone.
struct CapturedZoneInfo {
  struct DeclInformation {
    const Decl *TheDecl;
    ZoneRelative DeclaredIn;
    // index of the declaration or first reference.
    unsigned DeclIndex;
    bool IsReferencedInZone = false;
    bool IsReferencedInPostZone = false;
    // FIXME: Capture mutation information
    DeclInformation(const Decl *TheDecl, ZoneRelative DeclaredIn,
                    unsigned DeclIndex)
        : TheDecl(TheDecl), DeclaredIn(DeclaredIn), DeclIndex(DeclIndex){};
    // Marks the occurence of a reference for this declaration
    void markOccurence(ZoneRelative ReferenceLoc);
  };
  // Maps Decls to their DeclInfo
  llvm::DenseMap<const Decl *, DeclInformation> DeclInfoMap;
  bool HasReturnStmt = false; // Are there any return statements in the zone?
  bool AlwaysReturns = false; // Does the zone always return?
  // Control flow is broken if we are extracting a break/continue without a
  // corresponding parent loop/switch
  bool BrokenControlFlow = false;
  // FIXME: capture TypeAliasDecl and UsingDirectiveDecl
  // FIXME: Capture type information as well.
  DeclInformation *createDeclInfo(const Decl *D, ZoneRelative RelativeLoc);
  DeclInformation *getDeclInfoFor(const Decl *D);
};

CapturedZoneInfo::DeclInformation *
CapturedZoneInfo::createDeclInfo(const Decl *D, ZoneRelative RelativeLoc) {
  // The new Decl's index is the size of the map so far.
  auto InsertionResult = DeclInfoMap.insert(
      {D, DeclInformation(D, RelativeLoc, DeclInfoMap.size())});
  // Return the newly created DeclInfo
  return &InsertionResult.first->second;
}

CapturedZoneInfo::DeclInformation *
CapturedZoneInfo::getDeclInfoFor(const Decl *D) {
  // If the Decl doesn't exist, we
  auto Iter = DeclInfoMap.find(D);
  if (Iter == DeclInfoMap.end())
    return nullptr;
  return &Iter->second;
}

void CapturedZoneInfo::DeclInformation::markOccurence(
    ZoneRelative ReferenceLoc) {
  switch (ReferenceLoc) {
  case ZoneRelative::Inside:
    IsReferencedInZone = true;
    break;
  case ZoneRelative::After:
    IsReferencedInPostZone = true;
    break;
  default:
    break;
  }
}

bool isLoop(const Stmt *S) {
  return isa<ForStmt>(S) || isa<DoStmt>(S) || isa<WhileStmt>(S) ||
         isa<CXXForRangeStmt>(S);
}

// Captures information from Extraction Zone
CapturedZoneInfo captureZoneInfo(const ExtractionZone &ExtZone) {
  // We use the ASTVisitor instead of using the selection tree since we need to
  // find references in the PostZone as well.
  // FIXME: Check which statements we don't allow to extract.
  class ExtractionZoneVisitor
      : public clang::RecursiveASTVisitor<ExtractionZoneVisitor> {
  public:
    ExtractionZoneVisitor(const ExtractionZone &ExtZone) : ExtZone(ExtZone) {
      TraverseDecl(const_cast<FunctionDecl *>(ExtZone.EnclosingFunction));
    }

    bool TraverseStmt(Stmt *S) {
      if (!S)
        return true;
      bool IsRootStmt = ExtZone.isRootStmt(const_cast<const Stmt *>(S));
      // If we are starting traversal of a RootStmt, we are somewhere inside
      // ExtractionZone
      if (IsRootStmt)
        CurrentLocation = ZoneRelative::Inside;
      addToLoopSwitchCounters(S, 1);
      // Traverse using base class's TraverseStmt
      RecursiveASTVisitor::TraverseStmt(S);
      addToLoopSwitchCounters(S, -1);
      // We set the current location as after since next stmt will either be a
      // RootStmt (handled at the beginning) or after extractionZone
      if (IsRootStmt)
        CurrentLocation = ZoneRelative::After;
      return true;
    }

    // Add Increment to CurNumberOf{Loops,Switch} if statement is
    // {Loop,Switch} and inside Extraction Zone.
    void addToLoopSwitchCounters(Stmt *S, int Increment) {
      if (CurrentLocation != ZoneRelative::Inside)
        return;
      if (isLoop(S))
        CurNumberOfNestedLoops += Increment;
      else if (isa<SwitchStmt>(S))
        CurNumberOfSwitch += Increment;
    }

    // Decrement CurNumberOf{NestedLoops,Switch} if statement is {Loop,Switch}
    // and inside Extraction Zone.
    void decrementLoopSwitchCounters(Stmt *S) {
      if (CurrentLocation != ZoneRelative::Inside)
        return;
      if (isLoop(S))
        CurNumberOfNestedLoops--;
      else if (isa<SwitchStmt>(S))
        CurNumberOfSwitch--;
    }

    bool VisitDecl(Decl *D) {
      Info.createDeclInfo(D, CurrentLocation);
      return true;
    }

    bool VisitDeclRefExpr(DeclRefExpr *DRE) {
      // Find the corresponding Decl and mark it's occurence.
      const Decl *D = DRE->getDecl();
      auto *DeclInfo = Info.getDeclInfoFor(D);
      // If no Decl was found, the Decl must be outside the enclosingFunc.
      if (!DeclInfo)
        DeclInfo = Info.createDeclInfo(D, ZoneRelative::OutsideFunc);
      DeclInfo->markOccurence(CurrentLocation);
      // FIXME: check if reference mutates the Decl being referred.
      return true;
    }

    bool VisitReturnStmt(ReturnStmt *Return) {
      if (CurrentLocation == ZoneRelative::Inside)
        Info.HasReturnStmt = true;
      return true;
    }

    bool VisitBreakStmt(BreakStmt *Break) {
      // Control flow is broken if break statement is selected without any
      // parent loop or switch statement.
      if (CurrentLocation == ZoneRelative::Inside &&
          !(CurNumberOfNestedLoops || CurNumberOfSwitch))
        Info.BrokenControlFlow = true;
      return true;
    }

    bool VisitContinueStmt(ContinueStmt *Continue) {
      // Control flow is broken if Continue statement is selected without any
      // parent loop
      if (CurrentLocation == ZoneRelative::Inside && !CurNumberOfNestedLoops)
        Info.BrokenControlFlow = true;
      return true;
    }
    CapturedZoneInfo Info;
    const ExtractionZone &ExtZone;
    ZoneRelative CurrentLocation = ZoneRelative::Before;
    // Number of {loop,switch} statements that are currently in the traversal
    // stack inside Extraction Zone. Used to check for broken control flow.
    unsigned CurNumberOfNestedLoops = 0;
    unsigned CurNumberOfSwitch = 0;
  };
  ExtractionZoneVisitor Visitor(ExtZone);
  CapturedZoneInfo Result = std::move(Visitor.Info);
  Result.AlwaysReturns = alwaysReturns(ExtZone);
  return Result;
}

// Adds parameters to ExtractedFunc.
// Returns true if able to find the parameters successfully and no hoisting
// needed.
// FIXME: Check if the declaration has a local/anonymous type
bool createParameters(NewFunction &ExtractedFunc,
                      const CapturedZoneInfo &CapturedInfo) {
  for (const auto &KeyVal : CapturedInfo.DeclInfoMap) {
    const auto &DeclInfo = KeyVal.second;
    // If a Decl was Declared in zone and referenced in post zone, it
    // needs to be hoisted (we bail out in that case).
    // FIXME: Support Decl Hoisting.
    if (DeclInfo.DeclaredIn == ZoneRelative::Inside &&
        DeclInfo.IsReferencedInPostZone)
      return false;
    if (!DeclInfo.IsReferencedInZone)
      continue; // no need to pass as parameter, not referenced
    if (DeclInfo.DeclaredIn == ZoneRelative::Inside ||
        DeclInfo.DeclaredIn == ZoneRelative::OutsideFunc)
      continue; // no need to pass as parameter, still accessible.
    // Parameter specific checks.
    const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(DeclInfo.TheDecl);
    // Can't parameterise if the Decl isn't a ValueDecl or is a FunctionDecl
    // (this includes the case of recursive call to EnclosingFunc in Zone).
    if (!VD || isa<FunctionDecl>(DeclInfo.TheDecl))
      return false;
    // Parameter qualifiers are same as the Decl's qualifiers.
    QualType TypeInfo = VD->getType().getNonReferenceType();
    // FIXME: Need better qualifier checks: check mutated status for
    // Decl(e.g. was it assigned, passed as nonconst argument, etc)
    // FIXME: check if parameter will be a non l-value reference.
    // FIXME: We don't want to always pass variables of types like int,
    // pointers, etc by reference.
    bool IsPassedByReference = true;
    // We use the index of declaration as the ordering priority for parameters.
    ExtractedFunc.Parameters.push_back(
        {VD->getName(), TypeInfo, IsPassedByReference, DeclInfo.DeclIndex});
  }
  llvm::sort(ExtractedFunc.Parameters);
  return true;
}

// Clangd uses open ranges while ExtractionSemicolonPolicy (in Clang Tooling)
// uses closed ranges. Generates the semicolon policy for the extraction and
// extends the ZoneRange if necessary.
tooling::ExtractionSemicolonPolicy
getSemicolonPolicy(ExtractionZone &ExtZone, const SourceManager &SM,
                   const LangOptions &LangOpts) {
  // Get closed ZoneRange.
  SourceRange FuncBodyRange = {ExtZone.ZoneRange.getBegin(),
                               ExtZone.ZoneRange.getEnd().getLocWithOffset(-1)};
  auto SemicolonPolicy = tooling::ExtractionSemicolonPolicy::compute(
      ExtZone.getLastRootStmt()->ASTNode.get<Stmt>(), FuncBodyRange, SM,
      LangOpts);
  // Update ZoneRange.
  ExtZone.ZoneRange.setEnd(FuncBodyRange.getEnd().getLocWithOffset(1));
  return SemicolonPolicy;
}

// Generate return type for ExtractedFunc. Return false if unable to do so.
bool generateReturnProperties(NewFunction &ExtractedFunc,
                              const FunctionDecl &EnclosingFunc,
                              const CapturedZoneInfo &CapturedInfo) {
  // If the selected code always returns, we preserve those return statements.
  // The return type should be the same as the enclosing function.
  // (Others are possible if there are conversions, but this seems clearest).
  if (CapturedInfo.HasReturnStmt) {
    // If the return is conditional, neither replacing the code with
    // `extracted()` nor `return extracted()` is correct.
    if (!CapturedInfo.AlwaysReturns)
      return false;
    QualType Ret = EnclosingFunc.getReturnType();
    // Once we support members, it'd be nice to support e.g. extracting a method
    // of Foo<T> that returns T. But it's not clear when that's safe.
    if (Ret->isDependentType())
      return false;
    ExtractedFunc.ReturnType = Ret;
    return true;
  }
  // FIXME: Generate new return statement if needed.
  ExtractedFunc.ReturnType = EnclosingFunc.getParentASTContext().VoidTy;
  return true;
}

// FIXME: add support for adding other function return types besides void.
// FIXME: assign the value returned by non void extracted function.
llvm::Expected<NewFunction> getExtractedFunction(ExtractionZone &ExtZone,
                                                 const SourceManager &SM,
                                                 const LangOptions &LangOpts) {
  CapturedZoneInfo CapturedInfo = captureZoneInfo(ExtZone);
  // Bail out if any break of continue exists
  if (CapturedInfo.BrokenControlFlow)
    return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                   +"Cannot extract break/continue without "
                                    "corresponding loop/switch statement.");
  NewFunction ExtractedFunc(getSemicolonPolicy(ExtZone, SM, LangOpts));
  ExtractedFunc.BodyRange = ExtZone.ZoneRange;
  ExtractedFunc.InsertionPoint = ExtZone.getInsertionPoint();
  ExtractedFunc.EnclosingFuncContext =
      ExtZone.EnclosingFunction->getDeclContext();
  ExtractedFunc.CallerReturnsValue = CapturedInfo.AlwaysReturns;
  if (!createParameters(ExtractedFunc, CapturedInfo) ||
      !generateReturnProperties(ExtractedFunc, *ExtZone.EnclosingFunction,
                                CapturedInfo))
    return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                   +"Too complex to extract.");
  return ExtractedFunc;
}

class ExtractFunction : public Tweak {
public:
  const char *id() const override final;
  bool prepare(const Selection &Inputs) override;
  Expected<Effect> apply(const Selection &Inputs) override;
  std::string title() const override { return "Extract to function"; }
  Intent intent() const override { return Refactor; }

private:
  ExtractionZone ExtZone;
};

REGISTER_TWEAK(ExtractFunction)
tooling::Replacement replaceWithFuncCall(const NewFunction &ExtractedFunc,
                                         const SourceManager &SM,
                                         const LangOptions &LangOpts) {
  std::string FuncCall = ExtractedFunc.renderCall();
  return tooling::Replacement(
      SM, CharSourceRange(ExtractedFunc.BodyRange, false), FuncCall, LangOpts);
}

tooling::Replacement createFunctionDefinition(const NewFunction &ExtractedFunc,
                                              const SourceManager &SM) {
  std::string FunctionDef = ExtractedFunc.renderDefinition(SM);
  return tooling::Replacement(SM, ExtractedFunc.InsertionPoint, 0, FunctionDef);
}

bool ExtractFunction::prepare(const Selection &Inputs) {
  const Node *CommonAnc = Inputs.ASTSelection.commonAncestor();
  const SourceManager &SM = Inputs.AST->getSourceManager();
  const LangOptions &LangOpts = Inputs.AST->getLangOpts();
  if (auto MaybeExtZone = findExtractionZone(CommonAnc, SM, LangOpts)) {
    ExtZone = std::move(*MaybeExtZone);
    return true;
  }
  return false;
}

Expected<Tweak::Effect> ExtractFunction::apply(const Selection &Inputs) {
  const SourceManager &SM = Inputs.AST->getSourceManager();
  const LangOptions &LangOpts = Inputs.AST->getLangOpts();
  auto ExtractedFunc = getExtractedFunction(ExtZone, SM, LangOpts);
  // FIXME: Add more types of errors.
  if (!ExtractedFunc)
    return ExtractedFunc.takeError();
  tooling::Replacements Result;
  if (auto Err = Result.add(createFunctionDefinition(*ExtractedFunc, SM)))
    return std::move(Err);
  if (auto Err = Result.add(replaceWithFuncCall(*ExtractedFunc, SM, LangOpts)))
    return std::move(Err);
  return Effect::mainFileEdit(SM, std::move(Result));
}

} // namespace
} // namespace clangd
} // namespace clang